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Abstract By means of a Sălăgean differential operator and Ruscheweyh derivative we
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1. INTRODUCTION AND DEFINITIONS

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and

H(U) the space of holomorphic functions in U .

Let

A (p, n) = {f ∈ H(U) : f(z) = zp +
∞∑

j=p+n
ajz

j , z ∈ U}, (1)

with A (1, n) = An and

H[a, n] = {f ∈ H(U) : f(z) = a + anzn + an+1z
n+1 + . . . , z ∈ U},

where p, n ∈ N, a ∈ C.

Let S denote the subclass of functions that are univalent in U .

By S∗n (p, α) we denote a subclass of A (p, n) consisting of p-valently starlike

functions of order α, 0 ≤ α < p that satisfy

Re
(

zf ′(z)
f(z)

)
> α, z ∈ U. (2)
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2 Alina Alb Lupaş

Further, a function f belonging to S is said to be p-valently convex of order

α in U , if and only if

Re
(

zf ′′(z)
f ′(z)

+ 1
)

> α, z ∈ U (3)

for some α, (0 ≤ α < p) . We denote by Kn(p, α), the class of functions in S

which are p-valently convex of order α in U and denote by Rn(p, α) the class

of functions in A (p, n) which satisfy

Re f ′(z) > α, z ∈ U. (4)

It is well-known that Kn(p, α) ⊂ S∗n(p, α) ⊂ S.

If f and g are analytic functions in U , we say that f is subordinate to g,

written f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1,

for all z ∈ U such that f(z) = g(w(z)) for all z ∈ U . If g is univalent, then

f ≺ g if and only if f(0) = g(0) and f(U) ⊆ g(U).

Let Sm be the Sălăgean differential operator [7], Sm : A (p, n) → A (p, n),

p, n ∈ N, m ∈ N ∪ {0} , defined as

S0f (z) = f (z) ,

S1f (z) = Sf(z) = zf ′(z),

Smf(z) = S(Sm−1f(z)) = z(Sm−1f (z))′, z ∈ U.

In [6] Ruscheweyh has defined the operator Rm : A (p, n) → A (p, n), p, n ∈
N, m ∈ N ∪ {0},

R0f (z) = f (z) ,

R1f (z) = zf ′(z),

(m + 1)Rm+1f(z) = z [Rmf(z)]′ + mRmf(z), z ∈ U.

Let Dm
λ be a generalized Sălăgean and Ruscheweyh operator introduced by

A. Alb Lupaş in [1], Dm
λ : A (p, n) → A (p, n), p, n ∈ N, m ∈ N ∪ {0}, defined

as

Dm
λ f(z) = (1− λ)Rmf(z) + λSmf(z), z ∈ U, λ ≥ 0.

We note that if f ∈ A (p, n), then

Dm
λ f(z) = zp +

∞∑

j=n+p

(
λjm + (1− λ) Cm

m+j−1

)
ajz

j , z ∈ U, λ ≥ 0.
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For λ = 1, we get the Sălăgean operator [7] and for λ = 0 we get the operator

[6].

To prove our main theorem we shall need the following lemma.

Lemma 1.1. [5] Let u be analytic in U, with u(0) = 1, and suppose that

Re
(

1 +
zu′(z)
u(z)

)
>

3α− 1
2α

, z ∈ U. (5)

Then Re u(z) > α for z ∈ U and 1/2 ≤ α < 1.

2. MAIN RESULTS

Definition 2.1. We say that a function f ∈ A (p, n) is in the class BL(p,m, µ, α, λ),

p, n ∈ N, m ∈ N ∪ {0}, µ ≥ 0, λ ≥ 0, α ∈ [0, 1) if
∣∣∣∣∣
Dm+1

λ f (z)
zp

(
zp

Dm
λ f(z)

)µ

− p

∣∣∣∣∣ < p− α, z ∈ U. (6)

Remark 2.1. The family BL(p,m, µ, α, λ) is a new comprehensive class of an-

alytic functions which includes various new classes of analytic univalent func-

tions as well as some very well-known ones. For example, BL(1, 0, 1, α, 1)≡
S∗n (1, α) , BL(1, 1, 1, α, 1)≡Kn (1, α) and BL(1, 0, 0, α, 1)≡Rn (1, α). Another

interesting subclasses are the special case BL(1, 0, 2, α, 1)≡B (α) which has

been introduced by Frasin and Darus [4], the class BL(1, 0, µ, α, 1) ≡ B(µ, α)

introduced by Frasin and Jahangiri [5], the class

BL(1,m, µ, α, 1) = BS(m,µ, α) introduced and studied by A.Cătaş and A. Alb

Lupaş [2] and the class BL(1, m, µ, α, 0) = BR(m,µ, α) introduced and studied

by A.Cătaş and A. Alb Lupaş [1].

In this note we provide a sufficient condition for functions to be in the

class BL(p,m, µ, α, λ). Consequently, as a special case, we show that convex

functions of order 1/2 are also members of the above defined family.

Theorem 2.1. If for the function f ∈ A (p, n) , p, n ∈ N, m ∈ N ∪ {0},
µ ≥ 0, λ ≥ 0, 1/2 ≤ α < 1 we have

(m + 2) (1− λ) Rm+2f (z)− (m + 1) (1− λ) Rm+1f (z) + λSm+2f (z)
(1− λ) Rm+1f (z) + λSm+1f (z)

− (7)

µ
(m + 1) (1− λ)Rm+1f (z)−m (1− λ) Rmf (z) + λSm+1f (z)

(1− λ)Rmf (z) + λSmf (z)
+pµ−p+1 ≺ 1+βz,
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z ∈ U, where

β =
3α− 1

2α
,

then f ∈ BL(p,m, µ, α, λ).

Proof. If we consider

u(z) =
Dm+1

λ f (z)
zp

(
zp

Dm
λ f(z)

)µ

(8)

then u(z) is analytic in U with u(0) = 1. A simple differentiation yields

zu′(z)
u(z)

=
(m + 2) (1− λ) Rm+2f (z)− (m + 1) (1− λ)Rm+1f (z) + λSm+2f (z)

(1− λ) Rm+1f (z) + λSm+1f (z)
−

(9)

µ
(m + 1) (1− λ) Rm+1f (z)−m (1− λ) Rmf (z) + λSm+1f (z)

(1− λ) Rmf (z) + λSmf (z)
+ pµ− p.

Using (7) we get

Re
(

1 +
zu′(z)
u(z)

)
>

3α− 1
2α

.

Thus, from Lemma 16, we deduce that

Re

{
Dm+1

λ f (z)
zp

(
zp

Dm
λ f(z)

)µ
}

> α.

Therefore, f ∈ BL(p,m, µ, α, λ), by Definition 2.1.

As consequences of the above theorem we have the following corollaries.

Corolar 2.1. If f ∈ An and

Re

{
9zf ′′(z) + 7

2z2f ′′′(z)
f ′(z) + 1

2zf ′′(z)
− 2zf ′′(z)

f ′(z)

}
> −5

2
, z ∈ U (10)

then

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

3
7
, z ∈ U. (11)

That is, f is convex of order 3
7 .

Corolar 2.2. If f ∈ An and

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

1
2
, z ∈ U (12)

then

Re f ′(z) >
1
2
, z ∈ U. (13)
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In other words, if the function f is convex of order 1
2 then f ∈ BL(1, 0, 0, 1

2 , 1) ≡
Rn

(
1, 1

2

)
.

Corolar 2.3. If f ∈ An and

Re
{

zf ′′(z)
f ′(z)

− zf ′(z)
f(z)

}
> −3

2
, z ∈ U (14)

then

Re
{

zf ′(z)
f(z)

}
>

1
2
, z ∈ U. (15)

That is, f is a starlike function of order 1
2 .

Corolar 2.4. If f ∈ An and

Re
{

2zf ′′(z) + z2f ′′′(z)
f ′(z) + zf ′′(z)

− zf ′′(z)
f ′(z)

}
> −1

2
, z ∈ U (16)

then f ∈ BL(1, 1, 1, 1/2, 1) hence

Re
{

1 +
zf ′′(z)
f ′(z)

}
>

1
2
, z ∈ U. (17)

That is, f is convex of order 1
2 .
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Analele Universităţii din Oradea, XV, 2008.



6 Alina Alb Lupaş
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1. INTRODUCTION

The results of the article are formulated and proved for the category C2V

of topological locally convex Hausdorff vector spaces. We denote by R the

lattice of the non-null reflective subcategories of the category C2V. Supposing

that Rm is the sublattice of the lattice R of those R elements that possess the

property: R-replique of the category C2V objects can be realized in two steps -

first the topology is weakened, second it is completed somehow. The definded

semireflexive spaces have such a property defined in different ways.

In the lattice R two more complete sublattices are indicated.

Rb = {R ∈ R | R ⊃ S}, Rp = {R ∈ R | R ⊃ Γ0} where S (respectively Γ0 )

is the subcategory of the weak topology spaces (respectively-complete).

In Section 2 some properties of the three lattices Rb, Rp and Rm are exam-

ined. In Section 3 the next issues are discussed (3.5 - 3.8).

1. Which elements of the lattice Rm can be realized as a semireflex-

ive product of one element of the lattice Rb and of one element of the lattice

Rp?

7
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2. Let L = R ×sr A, where R ∈ Rb, and A ∈ Rp. The subcategory

R is compulsory c - reflective, does S ⊂ R and that mean the reflector functor

r : C2V −→ R is left exact?

3. Let L = R×sr A ∈ Rm. Are the factors R and A determined in

a unique way?

4. Let R1, R2 ∈ Rb, Γ1, Γ2 ∈ Rp and R1 ×sr Γ1 = R2 ×sr Γ2. What

are the relations of inclusion between subcategories R1 and R2 or Γ1 and Γ2?

1.1. TERMINOLOGY AND NOTATIONS IN

LOCALLY CONVEX SPACES THEORY

The c-reflective subcategories were studied in [9] and [7]. Left and right

products were defined and studied in [6]. Other authors results concerning

semireflexive subcategories can be found in [2].

In the category C2V we consider the following bicategory structures:

(Epi,Mf )=(the class of epimorphisms, the class of strict monomorphisms);

(Eu, Mp)=(the class of universal epimorphisms, the class of precise monomor-

phisms)=(the class of surjective mappings, the class of topological embedings);

(Ep, Mu)=(the class of precise epimorphisms, the class of universal monomor-

phisms) [3], [7];

(Ef , Mono)=(the class of strict epimorphisms, the class of monomorphisms).

We will consider the following subcategories:

Π, the subcategory of complete spaces with weak topology [8];

S, the subcategory of spaces with weak topology [8];

sN, the subcategory of strict nuclear spaces [5];

N, the subcategory of nuclear spaces [10];

Sc, the subcategory of Schwartz spaces [8];

Γ0, the subcategory of complete spaces [11];

qΓ0, the subcategory of quasicomplete spaces [12];

sR, the subcategory of semireflexive spaces [8];

iR, the subcategory of inductive semireflexive spaces [4];

M, the subcategory of spaces with Mackey topology [11];

The last subcategory is coreflective and the others are reflective.
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Definition 1.1. Let A and B be two classes of morphisms of the category C.

The class A is B-hereditary, if fg ∈ A and f ∈ B, it follows that g ∈ A.

Dual notion: the class B-cohereditary.

2. THE FACTORIZATION OF THE REFLECTOR

FUNCTORS

The results of this section can be found in [1] in Russian (see also [14]).

2.1. The lattice R of the non-null subcategories of the category C2V is

divided into three complete sublattices:

a) The sublattice Rb of Eu-reflective subcategories. A subcategory R is Eu-

reflective if the R-replique of any object of the category C2V is a bijection.

Moreover,

Rb = {R ∈ R | R ⊃ S}.

b) The sublattice Rp of Mp-reflective subcategories, the class of those re-

flective subcategories R for R-replique for any object of the category C2V is a

topological embeding:

Rp = {R ∈ R | R ⊃ Γ0}.

c) Rm = (R \ (Rb ∪ Rp)) ∪ {C2V}.
We mention that Rm is a complete sublattice with the first element Π and

the last element C2V.

Figure 2.1
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2.2. Let L be an element of lattice Rm. For any object X of category C2V let

Figure 2.2

lX : X −→ lX be its L-replique, and lX = pXbX its (Eu, Mp)-factorization.

We denote by B = B(L) the full subcategory of the category C2V consisting

of all bX form objects and those isomorphic to these. We also can say that B

is the subcategory of all Mp-subobjects of the objects L. It is clear that B is

a Eu-reflective subcategory, and bX is B-replique of the objects X. Therefore

B ∈ Rb.

2.3. Let Γ′′ = Γ′′(L) be the full subcategory of all objects Y of the category

C2V, having the property:

Any morphism f : bX −→ Y is extended through pX :

f = gpX

for some morphism g. The subcategory Γ′′ is closed under Mf -subobjects and

products. Further, Γ0 ⊂ Γ′′, therefore Γ′′ ∈ Rp. It is obvious that pX is

Γ′′-replique of the object bX.

We denote by G(L) the class of all the Mp-reflective subcategories for which

pX is the replique of the object bX. The class G(L) has a minimal element

Γ′ = Γ′(L) = ∩{Γ | Γ ∈ G(L)}.
Thus G(L) is a complete lattice with first element Γ′(L) and the last element

Γ′′(L).

We can write

G(L) = {Γ ∈ Rp | Γ′(L) ⊂ Γ ⊂ Γ′′(L)}.

2.4. For any element Γ ∈ G(L) the morphism pX is Γ-replique of the object

bX. Therefore if l : C2V −→ L, b : C2V −→ B and g : C2V −→ Γ are the

reflective functors, then

l = gb.
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Theorem. Let r : C2V −→ R and g : C2V −→ Γ be two reflective functors

with R ∈ Rb and Γ ∈ Rp. The following affirmations are equivalent:

1. l = gr.

2. R = B and Γ ∈ G(L).

2.5. Example. Let us examine the case L = Π. Then

B(Π) = S

and

Γ′(Π) = Γ0.

Theorem. The subcategory Γ′′(Π) contains all the normal spaces.

Proof. Let X be a weak topology space: X ∈| S |, and gX
0 : X −→ g0X

its Γ0-replique. Then gX
0 is also the Π-replique of object X. In this case g0X

∼ Kτ , where K is the field of numbers over which the vector spaces from the

category C2V : K = R or K = C are examined. Let f : X −→ Y ↪→ Ŷ , where

Y is a normal space, and Ŷ is his completion.

Figure 1.3

Then

if = ggX
0

for some morphism g, where i is a canonical embedding. Since g0X ∼ Kτ , we

conclude that g(g0X) is a finite dimensional subspace in Ŷ . Then subspace

f(X) of the Y space as a finite dimensional space is complete and

f = g1g
X
0

for some morphism g1. The theorem is proved.
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2.6. Let X and Y be two normal incomplete subspaces, the algebraical

dimension of which is:

ℵ0 ≤ dimX < dimY

Let Γ1 (respectively Γ2 ) be the smallest reflective subcategory which con-

tains the subcategory Γ0 and X space (respectively Y space). Then the sub-

category Γ1 is not contained in the subcategory Γ2.

Theorem. Lattice G(Π) contains a proper class of elements.

2.7. Remark. On another side we have

B(C2V) = C2V, G(C2V) = {C2V}.

3. SEMIREFLEXIVE SUBCATEGORIES

3.1. Definition. Let R and A be two subcategories of the category C2V,

where R is a reflective subcategory. Object X of the category C2V is called

(R, A)-semireflexive, if his R-replique belongs to the subcategory A.

We denote by

L = R×sr A

the subcategory of all (R, A)-semireflexive objects. The subcategory L is called

the semireflexive product of the subcategories R and A.

3.2 In the lattice R there are elements R such that their reflector functor

r : C2V −→ R is left exact. These kind of elements that belong to sublattice

Rb are called the c-reflective subcategories.

The subcategories S, sN and Sc are c-reflective. The subcategory N belongs

to class Rb but is not c-reflective.

We mention that also in lattices Rp and Rm there are elements of which

reflector functor is left exact. For example, the functors

g0 : C2V −→ Γ0,

π : C2V −→ Π

have this property.

3.3. Theorem. Let R and A be two reflective subcategories of the category

C2V and the reflector functor r : C2V −→ R is left exact. Then the subcategory

L = R×sr A
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is a reflective subcategory of the category C2V.

Proof. It is easily to verify that L is closed under Mf -subobjects and prod-

ucts (see [2]). So it is reflective.

3.4. From the definition we can deduce:

1. Let R, A ∈ Rb. Then S ⊂ R×sr A.

2. Let R, A ∈ Rp. Then Γ0 ⊂ R×sr A.

3. Let R ∈ Rb, A ∈ Rp and R ×sr A be a reflective subcategory of

the category C2V. As a rule R×sr A ∈ Rm.

3.5. Well known examples of semireflexive subcategories are represented

by a semireflexive product of an element of the lattice Rb and of one element

of the lattice Rp. Thus we formulate the following problem.

Problem. Which elements of the lattice Rm can be realized as a semireflex-

ive product of one element of the lattice Rb and of one element of the lattice

Rp?

3.6. Another problem concerning this topic is the following one.

Problem. Let L = R ×sr A ∈ Rm, where R ∈ Rb, and A ∈ Rp. Is the

subcategory R necessarily c-reflective?

3.7. Problem. Let L = R×srA ∈ Rm. Are the factors R and A determined

in a unique way?

3.8. Problem. Let R1, R2 ∈ Rb, Γ1, Γ2 ∈ Rp and R1 ×sr Γ1=R2 ×sr Γ2.

What relations of inclusion are between the subcategories R1 and R2 or Γ1 and

Γ2?

3.9. Let (E, t) be a locally convex Hausdorff space, m(t)- Mackey topology

[11] compatible with t topology. Thus (E, m(t)) is M-coreplique of the object

(E, t). For the elements of the lattice R we will analyze the following condition

(SR). Let (E, t) ∈| L |, L ∈ R. Then for any locally convex topology u on

the vector spaces E

t ≤ u ≤ m(t),

the space (E, u) belongs to the subcategory L.

3.10 Categorial, the condition (SR) can be written this way

(SR). Let X ∈| L |, and b : Y −→ X ∈ Eu ∩Mu. Then Y ∈| L |.
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3.11. a) In the lattice Rb the elements S, sN, N, Sc do not satisfy the

condition (SR). There are elements that satisfy this condition.

b) In the lattice Rm there are both elements that have the (SR) property

and elements that do not have this property.

The subcategory Π has the (SR) property.

Indeed, let (E, t) ∈| Π |. Then the topology t is a Mackey topology: t = m(t)

[12].

3.12. Theorem. Any element of the lattice Rp has the property (SR).

Proof. Let Γ ∈ Rp, X ∈| Γ | and b : Y −→ X ∈ Eu ∩ Mu. Further, let

gY : Y −→ gY be the Γ-replique of the object Y . Then

b = fgY

for some morphism f .

Figure 2.1

Since b ∈ Mu, gY ∈ Epi and the class Mu is Epi-cohereditary it follows that

f ∈ Mu. Also, from the above equality it follows that f ∈ Eu. Thus in this

equality the mappings b and f are bijections. So gY also is a bijection, in

particulary gY ∈ Eu. Therefore gY ∈ Mp ∩ Eu = Iso. The theorem is proved.

3.13. Theorem. Given an element L ∈ Rm, the following affirmations are

equivalent

1. the subcategory L satisfies condition (SR);

2. L = B×sr Γ, where B = B(L) and Γ ∈ G(L);

3. there is an element R ∈ Rb and an element Γ ∈ Rp such that

L = R×sr Γ.

Proof. We prove the following implications 1 =⇒ 2 =⇒ 3 =⇒ 1.

1 =⇒ 2. We verify the embedding L ⊂ B ×sr Γ. Let X ∈| L |. Then in

(Eu, Mp)-factorization of the morphism lX = pXbX both bX and pX morphisms

are isomorphisms.
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Figure 2.2

Thus bX ∈| Γ |. So X ∈| B×sr Γ |.
Converse. We verify the embedding B ×sr Γ ⊂ L. Let (E, t) ∈| B ×sr Γ |.

Then b(E, t) = (E, b(t)) ∈| Γ |, where the topologies t and b(t) are compatible

with the same duality.

Figure 2.3

Thus pE ∈ Iso, and (E, b(t)) ∈| L |. By condition (SR), we have

(E, t) ∈| L |.
2 =⇒ 3. Obviously.

3 =⇒ 1. Let L = R×sr Γ, (E, t) ∈| L |, and (E, u) be a locally convex space

where t ≤ u ≤ m(t)

Figure 2.4

Let (E, r(u)) be the R-replique of the object (E, u). Then

r(t) ≤ r(u) ≤ m(t)

and Theorem 3.12 implies that the space (E, r(u)) belongs to the subcategory

Γ. So (E, u) ∈| L |. Theorem is proved.

3.14. Theorem. Assume R1 ⊂ R2 ⊂ R3, where Ri ∈ Rb, i = 1, 2, 3, and

Γ ∈ Rp. Then

1. R1 ×sr Γ ⊂ R2 ×sr Γ;

2. if R1 ×sr Γ = R3 ×sr Γ, then R1 ×sr Γ = R2 ×sr Γ also.
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Proof. Let X be a object of the category C2V. Since R1 ⊂ R2 ⊂ R3, we

deduce that between the respective repliques of the object X the following

relations

Figure 2.5

rX
2 = frX

3 , (1)

rX
1 = grX

2 = gfrX
3 , (2)

for some morphisms f and g, hold.

1. Let X ∈| R1 ×sr Γ |. Then r1X ∈| Γ |, and from equality (2),

and Theorem 3.12 we deduce that r2X ∈| Γ |. Thus X ∈| R2 ×sr Γ |.
2. Assume X ∈| R2 ×sr Γ |. Then r2X ∈| Γ |, and from Theorem

3.12 and equality (1) it follows that r3X ∈| Γ |, so X ∈| R3 ×sr Γ |.
3.15. Theorem. For any reflective subcategory R with the property

S ⊂ R ⊂ N, we have

R×sr qΓ0 = sR,

in particular,

S×sr qΓ0 = sN ×sr qΓ0 = N ×sr qΓ0 = sR.

Proof. Following the previous theorem, it is enough to prove that

N ×sr qΓ0 = sR, since, from the definition of the subcategory sR we have

S×sr qΓ0 = sR.

Let X ∈| N ×sr qΓ0 |. Then N-replique nX of the object X belongs to the

subcategory qΓ0.
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Thus nX is a quasicomplete nuclear space. So it is semireflexive ([12] III

7.2. corollary 2, and also [12] IV 5.8 example 4).

3.16. Theorem. Assume that R ∈ Rb, Γ, Γ1 ∈ Rp, Γ ⊂ Γ1, and

g : C2V −→ Γ, g1 : C2V −→ Γ1 are the reflector functors.

1. If R is a c-reflective subcategory, then g(R) ⊂ R.

2. If g(R) ⊂ R, then g1(R) ⊂ R.

Proof. 1. Let X ∈| R |, gX : X −→ gX be the Γ-replique of the object X,

and rgX : gX −→ rgX the R-replique of object gX. Then

rgXgX = r(gX) ∈ Mp,

since r(Mp) ⊂ Mp for a c-reflective subcategory ([2], theorem 2.8). In the

above equality r(gX) ∈ Mp, and the class Mp is the Epi-cohereditary. So

rgX ∈ Mp ∩ Eu = Iso.

Figure 2.6

2. Let X ∈| R |, and gX : X −→ gX and gX
1 : X −→ g1X be the respective

repliques of the object X. Since Γ ⊂ Γ1 it follows that

gX = fgX
1

for some morphism f .

Figure 2.7
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Just like above we deduce that f ∈ Mp. The hypothesis implies that gX ∈| R |
and R is a Eu-reflective subcategory. So it is closed under Mp-subobjects. It

follows g1X ∈| R |.
3.17. Theorem. Assume

L = R×sr Γ

where R ∈ Rb and Γ ∈ Rp. If g(R) ⊂ R, then

R ⊂ B = B(L).

Proof. Let X be an arbitrary object of the category C2V, rX : X −→ rX

and grX : rX −→ grX - R and Γ-replique of the respective objects.

Figure 2.8

Since grX ∈| R | we deduce that grX ∈| L |.
Thus

flX = grXrX (1)

for some morphism f . Supposing that the Eu, Mp-factorization of the mor-

phism lX ,

lX = pXbX (3)

holds, we deduce

grXrX = fpXbX (4)

where bX ∈ Eu, and grX ∈ Mp, i.e. bX ⊥ grX . Thus

rX = tbX , (5)
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for some morphism t,

grXt = fpX . (6)

The equality (4) indicates that R ⊂ B.

3.18. Conclusions. Returning to problems 3.5-3.8 we can make the fol-

lowing assertions.

1. The L elements of the lattice Rm can be presented as a semire-

flexive product

L = R×sr Γ

with R ∈ Rb and Γ ∈ Rp having the property (SR) (Theorem 3.13).

2. sR = N ×sr qΓ0 and N is not a c-reflective subcategory.

3. Let L = R×sr Γ. Then neither the first nor the second factor is

determined in a unique way (Theorem 3.13 and 3.15).

4. A partially answer is given to question 3.8 by Theorem 3.17.

2.19. Examples. The right product of two subcategories and following

examples are examined in more detail in the article [2].

1. Since (M, S) is a pair of conjugated subcategories in the category C2V

and Π = S ∩ Γ0 we have ([2])

S×sr Γ0 = M×d Π.

2. Let qΓ0 be a subcategory of the quasicomplete spaces, and sR the sub-

category of the semireflexive spaces [12]. Then

S×sr (qΓ0) = M×d (S ∩ qΓ0) = sR.

3. The subcategory Sc of Schwartz spaces is c-reflective. Let K be a coreflec-

tive subcategory of the category C2V for which (K, Sc) is a pair of conjugated

subcategories. Then

Sc×sr Γ0 = iR = K×d (Sc ∩ Γ0);

iR is a subcategory of the inductive semireflexive spaces ([4], theorem 1.5).
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[14] Ţurcanu A., The factorization of reflexive functors, ”Al.I. Cuza” University, Iaşi, 2007.
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1. INTRODUCTION

In this paper we denote by a → ap, p > 0 the application which corresponds

to a p- Lie algebra. Throughout the article L is a finite-dimensional p-Lie

algebra over a field K of characteristic p > 0. We denote by Φ(L) the Frattini

subalgebra of L, that is the intersection of the maximal subalgebras of L and

by F (L) the Frattini ideal of L, that is the largest ideal of L which is contained

in Φ(L). Analogously we denote by Fp(L) the Frattini p-ideal of L i.e. the

largest p-ideal of L that is contained in Φp(L), where Φp(L) is the Frattini

p-subalgebra of L, that is the intersection of the maximal p-subalgebras of L.

If A is a p-subalgebra of L, the p-core of A is the largest ideal of L contained in

A and we denote that with pAL. We say that A is p-core-free in L if pAL = 0.

A p-subalgebra A of L is p-c-suplemented in L if there is a p-subalgebra B of

L such that L = A + B and A∩B is a p-subalgebra of pAL. We say that L is

p-c-supplemented if every p-subalgebra of L is p-c-supplemented in L.

2. BASIC PROPERTIES

We present some notions and results that we use in the sequel:

21
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[x, y] is the product of x y in L;

L(1) is the derived algebra of L;

(A)p = ({xpn | x ∈ A, n ∈ N}) where xpn
= (xpn−1

)p;

Ap = ({xp | x ∈ A}) where A is a subalgebra of L;

L1 :=
⋂∞

i=1 Lpi
;

L0 := {x ∈ L
∣∣ xpn

= 0, n ∈ N };
CL(M) := {x ∈ L | [x,M ] = 0} , M ⊂ L;

NL(A) = {x ∈ L |[x,A] ⊆ A}, where A ⊂ L.

The first properties of the p-ideals and p-subalgebras of an p-algebra are

stated by M. Lincoln and D.A. Towers [9] and we present them in the following.

Lemma 2.1. [9] Let A and B be p-subalgebras of L, such that A is an ideal

of L . Then A+B is a p-subalgebra of L.

Lemma 2.2. [9] Let A be a subalgebra of L. Then (A)(1)
p ⊆ A(1).

Lemma 2.3. [9] If I is an ideal of L, then (I)p ⊆ CL(I). In particular,

(I)p is an ideal of L.

Lemma 2.4. [9] If A ⊆ L then NL(A) is p-closed.

We give below some results relative to Fp(L) and Φp(L) inspired by results

relative to F (L) and Φ(L) obtained by Stitzinger [8] for nilpotent Lie algebras.

Lemma 2.5. For any p-Lie algebra L, and A a p-subalgebra of L, the

following statements are true

(i) if A + Φp(L) = L then A = L;

(ii) if I is an ideal of L such that I ⊂ Φp(A), then I ⊂ Φp(L).

Proof. (i) We assume that A 6= L. Then there exists a maximal p-

subalgebra M of L such that A ⊂ M. Now Φp(L) ⊂ M and so L = M ,

fact contradicting the maximality of M . The result follows.

(ii) Because A is a p-subalgebra of L and I is an ideal of L, Lemma 2.1 implies

that I + A is a p-subalgebra of L with I ⊂ Φp(A). If I 6⊆ Φp(L), then there is
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a maximal p-subalgebra M of L such that I ⊂ M, hence M ⊂ Φp(A), which is

in contradiction with the maximality of I, so I ⊂ Φp(L).

Lemma 2.6. If I is a p-ideal of L, then

(i) (Φp(L) + I)/I ⊂ Φp(L/I);

(ii) (Fp(L) + I)/I ⊂ Fp(L/I);

(iii) if I ⊂ Φp(L), then (i) and (ii) are true with equality; moreover, if

Fp(L/I) = 0, then Fp(L) ⊂ I;

(iv) if A is a minimal p-subalgebra of L such that L = I+A then I∩A ⊂ Fp(A);

(v) if I ∩ Fp(L) = 0, then there is a p-subalgebra A of L such that

L = I+̇A (where +̇ denotes a vector space direct sum).

Proof. The assertions from (i), (ii) and (iii) are similar with those from

Proposition 4.3 [9].

(iv) If I ∩A 6⊆ Fp(A) then there is a maximal p-subalgebra M of A such that

I ∩ A + M = A. Hence L = I + M , contradicting the minimality of A. It

follows that I ∩A ⊂ Fp(A).

(v) Let A be minimal with the property L = I+A. Then by (iv), I∩A ⊂ Fp(A).

But I ∩ A is a p-ideal of L hence, by Lemma 2.5(ii), I ∩ A ⊂ Fp(L) ∩ I = 0.

We conclude that L = I+̇A.

Definition 2.1. (i) If L is a p-Lie algebra we denote by Sp(L) the sum of

the minimal abelian p-ideals of L and we call it the abelian p-socle of L.

(ii) We say that L p-splits over an p-ideal I of p-Lie algebra L, if there is a

p-subalgebra A of L such that L = I+̇A, where +̇ represents the direct sum of

vector spaces.

Lemma 2.7. The abelian p-socle Sp(L) is a p-ideal of L.

Proof. Let x ∈ Sp(L), l ∈ L. Then xpn
= 0, or

[
l, xpn]

= [l, x] (adx)pn−1
=

0 and so (xpn
) is a minimal abelian p-ideal of L. Hence xpn ∈ Sp(L).
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3. FP -FREE LIE ALGEBRA

In this section we will present the relationship between F(L) and Fp(L) .

Definition 3.1. A p-Lie algebra is called F-free (respectively, Fp-free) if

F (L) = 0 (respectively, Fp(L) = 0 ).

Theorem 3.1. If L is Fp-free, then L p-splits over its abelian p-socle.

Proof. If L is Fp-free, then Fp(L) = 0. Let I = Sp(L) be the abelian-p-

socle of L which is an abelian p-ideal of L. Then I ∩ Fp(L) = 0. In accord

with Lemma 2.7(iv), there is a p-subalgebra A of L such that L = I+̇A, so L

p-splits over I.

Theorem 3.2. For any p-Lie algebra L, the relation F (L) ⊂ Fp(L) holds.

Proof. It is clear that L/Fp(L) is Fp(L)-free and hence the previous the-

orem implies that L/Fp(L) splits over S(L/Fp(L)). So L/Fp(L) is F-free and

it follows that F (L) ⊂ Fp(L).

In the following we introduce two further subalgebras of L.

Definition 3.2 If L is a p-Lie algebra we note by T (L)-the intersection of

all maximal subalgebras of L that are not ideals of L and correspondingly by

Tp(L) the intersection of all maximal p-subalgebras of L which are not p-ideals

of L. We also define τ(L) (respectively, τp(L)), to be the largest ideal (respec-

tively, p-ideal) of L that is contained in T(L) (respectively, Tp(L)).

In these conditions the following statements hold.

Lemma 3.1. If I is a p-ideal of L, then:

(i) (Tp(L) + I) ⊂ Tp(L/I);

(ii) (τp(L) + I)/I ⊂ τp(L/I);

(iii) if I ⊂ Tp(L), then statements (i) and (ii) occur with equality; moreover,

if τp(L/I) = 0 then τp(L) ⊂ I.
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Lemma 3.2. Let A be a maximal p-subalgebra of L. Then

(i) if A is an ideal of L we have L(1) ⊂ A;

(ii) if A is not an ideal of L, it is a p-subalgebra of L.

Proof. (i) Let x 6∈ A. Then L = A + (x)p and according to Lemma 2.2 it

follows that L(1) ⊂ A.

(ii) We assume that A is not p-close, then (A)p = L, from where, according

to Lemma 2.2 we deduce that L(1) = (A)(1)
p ⊂ A(1) ⊂ A, hence A is an ideal

of L, contradicting the hypothesis, so any maximal subalgebra of L which is

not an ideal of L is a p-subalgebra of L.

Theorem 3.3 For any p-Lie algebra L, the following statements hold:

(i) τp(L) = CL(Fp(L));

(ii) τ(L) = τp(L);

(iii) if N is the nilradical of L, then Fp(L) = Φp(L) ∩N ;

(iv) if L is perfect (that is L = L(1)), then Φp(L) = Φ(L).

Proof. (i) According to Lemma 3.2(i) we have [τp(L), L] ⊂ L(1) ∩ τp(L) ⊂
Fp(L), hence τp(L) ⊂ CL(Fp(L)). Now we assume that CL(Fp(L)) 6⊆ τp(L).

Then there is a maximal p-subalgebra A of L which is not an ideal of L such

that CL(Fp(L)) 6⊆ A. Now it is easy to prove that CL(Fp(L)) is p-closed, so

L = CL(Fp(L)) + A. Then L(1) ⊂ Fp(L) + A ⊂ A and A is an ideal of L- a

contradiction. Therefore CL(Fp(L)) ⊂ τp(L).

(ii) According to Lemma 3.2(ii) it immediately follows that τp(L) ⊂ τ(L).

Consider now a x ∈ τ(L). Then, according with Theorem 2.8 [10] and with

Theorem 3.2, [x, L] ⊂ F (L) ⊂ Fp(L). Therefore, according to Theorem 3.3(i)

x ∈ CL(Fp(L)) = τp(L) and hence we obtain the conclusion.

(iii) Let A = Φp(L) ∩ N . Then according to Theorem 3.2, N (1) ⊂ F (L) ⊂
Fp(L) and so N (1) ⊂ A. Let us assume that A is not an ideal of L. Then,

since AL ⊂ NL ⊂ N , we have that AL 6⊆ Φp(L). Hence, there is a maximal

p-subalgebra M of L such that AL 6⊆ M . It follows that N 6⊆ M and hence

L = N + M . So, AL = A(N + M) ⊂ N (1) + M ⊂ M , a contradiction. From

these we can say that A is a p-ideal of L which is contained in Φp(L) and thus

A ⊂ Fp(L). The reverse assertion is immediate.

(iv) It is clear that any maximal p-subalgebra of L is a maximal subalgebra
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of L, hence Φp(L) ⊂ Φ(L). According to Lemma 3.2(ii) we have that Φ(L) ⊂
Φp(L), and Φp(L) = Φ(L) follows. In accord with Theorem 3.2 and 3.3 we

obtain F (L) ⊂ Fp(L) ⊂ CL(F (L)) = CL(Fp(L)).

4. P-C-SUPPLEMENTED SUBALGEBRAS OF

P-LIE ALGEBRAS

In this section we present some results about p-c-Supplemented subalgebras

of p-Lie algebras that take into account the results similar to those already

presented by Ballester-Bolinches, Wang and Xiuyun in [1].

Lemma 4.1 Let L be a p-Lie algebra and A a p-subalgebra of L. The fol-

lowing statements hold

(i) if B is a p-subalgebra of A and it is p-c-supplemented in L, then B is p-c-

supplemented in A;

(ii) if I is a p-ideal of L and a p-subalgebra of A then A is p-c-supplemented

in L if and only if A/I is p-c-supplemented in L/I.

Proof. (i) Assume that A is a p-subalgebra of L and B is p-c-supplemented

in L. Then there is a p-subalgebra C of L such that L = B + C and B ∩ Cis

a p-subalgebra of pBL. It follows that A = (B + C) ∩ A and B ∩ C ∩ A is

a p-subalgebra of pBL ∩ A which is a p-subalgebra of pBA, and so B is p-c-

supplemented in A.

(ii) First we suppose that A/I is p-c-supplemented in L/I. Then there is a

p-subalgebra B/I of L/I such that L/I = A/I + B/I and (A/I) ∩ (B/I) is a

p-subalgebra of p(A/I)L/I =p AL/I. It follows that L = A + B and A ∩ B is

a p-subalgebra of pAL, whence A is p-c-supplemented in L.

Now, conversely, we assume that I is an p-ideal of L, more than that, I is a

p-subalgebra of A and p-c-supplemented in L. In these circumstances there is

a p-subalgebra B of L such that L = A + B and A ∩B is a p-c-subalgebra of

pAL. Hence L/I = A/I +(B+I)/I and (A/I)∩(B+I)/I = (A∩(B+I))/I =

(I +A∩B)/I but (I +A∩B)/I is a p-subalgebra of pAL/I =p (A/I)L/I , and

so A/I is p-c-supplemented in L/I.
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Lemma 4.2 Let L be a p-Lie algebra and A, B be p-subalgebras of L such

that A is a p-subalgebra of Fp(B). If A is p-c-supplemented in L then A is an

ideal of L and A is p-subalgebra of Fp(L).

Proof. First of all we assume that L = A + C and A∩C is a p-subalgebra

of pAL. Then B = B ∩ L = B ∩ (B + C) = A + B ∩ C = B ∩ C since A is a

p-subalgebra of Fp(B). From these we obtain that A is a p-subalgebra of B

that is a p-subalgebra of C, and A = A∩C that is a p-c subalgebra of AL and

A is an ideal of L. It then follows from Lemma 4.1 [9] that A is a p-subalgebra

of Fp(L).

The results obtained in this last section can be extended and give way to

many other results.
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1. INTRODUCTION

Loynes introduced the notions of V E-space and V H-space (or LV H-space)

respectively, in [6] as generalizations of pre-Hilbert, Hilbert space, respectively.

LV H-spaces have also been named pseudo-Hilbert spaces in [10] and later

Loynes spaces in [11]. In [10] and [11] these spaces are used in the abstract

study of the stochastic processes.

The Halmos-Bram criterion for subnormality given in [1] was proved before

for a subnormal operator that admits adjoint on a Loynes space. The same

characterization is given in this paper for a n-tuple of gramian commuting

operators (Theorem 3.1).

2. PRELIMINARIES

For our purposes, we need to recall some definitions and known results.

Definition 2.1. [6] A locally convex space Z is called admissible in the

Loynes sense if the following conditions are satisfied:

(A.1) Z is complete;

29
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(A.2) in Z there is a closed convex cone, noted as Z+, by which an order

relation is currently introduced on Z (that is z1 ≤ z2 if z2 − z1 ∈ Z+);

(A.3) in Z there is an involution Z 3 z → z∗ ∈ Z (i.e. z∗∗ = z, (αz)∗ = αz∗,

(z1 + z2)∗ = z∗1 + z∗2), such that z ∈ Z+ implies z∗ = z;

(A.4) the topology of Z is compatible with the order (i.e. there exists a basis

of solid (convex) neighbourhoods of the origin);

(A.5) the monotone decreasing nets from Z+ are convergent.

A set C ⊂ Z is called solid if 0 ≤ z′ ≤ z′′ and z′′ ∈ C implies z′ ∈ C.

Definition 2.2. [6] For an admissible space Z in the Loynes sense, a C-

linear topological space H is called pre-Loynes Z-space if the following proper-

ties are satisfied:

(L.1) H is endowed with a Z-valued inner product (gramian) with the proper-

ties:

(G.1) [h, h] ≥ 0; [h, h] = 0 implies h = 0;

(G.2) [h1 + h2, h] = [h1, h] + [h2, h];

(G.3) [λh, k] = λ[h, k];

(G.4) [h, k]∗ = [k, h];

for each h, k, h1, h2 ∈ H, λ ∈ C;

(L.2) the topology of H is the weakest locally convex topology on H for which

the application H 3 h → [h, h] ∈ Z is continuous.

If, in addition H is complete with this topology, then H is called Loynes

Z-space.

Definition 2.3. [6] A subspace M in Loynes Z-space H is called accessible,

if for any h ∈ H there exist an unique h1 ∈ M and h2⊥M (i.e. [h2, h
′
] =

0, ∀h′ ∈ M) such that h = h1 + h2. The operator PM defined by PMh := h1 is

called the gramian projection associated to the accessible space M.

Let H be a Loynes Z-space. We denote by PZ the set of monotonic

semi-norms that generates the topology of Z and by qp : H → [0,∞), the
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semi-norm defined by qp(h) = (p[h, h])1/2, where p ∈ PZ .

Let H and K two Loynes Z-spaces. We denote by L(H, K) the space of all

linear operators from H to K. We say that an operator T ∈ L(H,K) admits

adjoint and we denote that by T ∈ L∗(H, K) if there exists S ∈ L(K, H) such

that

[Th, k]K = [h, Sk]H ; h ∈ H , k ∈ K.

If S exists, it is unique determined and we denote by T ∗ = S the gramian

adjoint of T.([4])

We also introduce the following notations:

L∗(H) - the set of all linear operators on H that admit adjoint,

C∗(H) - the set of operators T ∈ L∗(H) with the property that for any

p ∈ PZ there exist Mp > 0 and p0 ∈ PZ such that p([Th, Th]) ≤ Mp · p0([h, h])

for any h ∈ H,

CQ∗(H) - the set of operators T ∈ C∗(H) with the property that for any

p ∈ PZ there exists Mp > 0 such that p([Th, Th]) ≤ Mp · p([h, h]) for any

h ∈ H,

CU∗(H) - the set of operators T ∈ C∗(H) with the property that there exists

M > 0 for any p ∈ PZ such that p([Th, Th]) ≤ M · p([h, h]) for any h ∈ H,

B∗(H) - the set of operators T ∈ L∗(H) with the property that there exists

M > 0 such that [Th, Th] ≤ M · [h, h] for any h ∈ H.

It is known that in the Loynes spaces the following inclusions hold

B(H) ⊆ CU(H) ⊆ CQ(H) ⊆ C(H) ⊆ L(H) ,

B∗(H) ⊆ CU∗(H) ⊆ CQ∗(H) ⊆⊆ C∗(H) ⊆ L∗(H),

and B∗(H) ⊂ B(H) , CU∗(H) ⊂ CU(H) , CQ∗(H) ⊂ CQ(H) , C∗(H) ⊂ C(H) ,

L∗(H) ⊂ L(H). This classes appear first in the A. Michael’s books.
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We remark that the classical Fuglede-Putnam theorem holds in the case of

Loynes spaces.

Theorem 2.1 Let H1 and H2 be two Loynes Z-spaces and N1, N2 two

gramian normal operators on H1 , H2 respectively. If there exists T ∈ B∗(H1, H2)

such that TN1 = N2T then TN∗
1 = N∗

2 T .

For further considerations we state the following theorem.

Theorem 2.2. [6] Let Γ be a ∗-semigroup, and Tε (ε ∈ Γ) a family of

continuous linear operators in the V H-space H satisfying the following condi-

tions:

(a) Tε = I, Tε∗ = (Tε)∗;

(b) Tε is positive-definite as a function of ε, in the sense that if gε (ε ∈ Γ)

is a function from Γ to H which vanishes except for a finite number of

indices then ∑
ε,η

[Tε∗ηgη, gε] ≥ 0;

(c) for a given α in Γ and a given neighbourhood N0 of the origin in Z, there

exists a neighbourhood Nα
0 of the origin in Z such that, if gε is such a

function, ∑
ε,η

[Tε∗ηgη, gε] ∈ Nα
0

implies that ∑
ε,η

[Tε∗α∗αηgη, gε] ∈ N0.

Then there exist a V H-space Ĥ, in which H can be isomorphically em-

bedded as an accessible subspace, and a representation Dε of Γ in Ĥ,

such that if P is the projection onto H then

Tε = prDε,

where by prDε we mean the restriction to H of the operator PDε. There

is, moreover, such an Ĥ which is minimal in the sense that it is generated

by elements of the form Dεf ,where f ∈ H and ε ∈ Γ, and this minimum
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Ĥ is uniquely determined up to isomorphism. The following properties

are valid in this minimum Ĥ :

(1) if N0 in condition (c) is closed, then [h, h] ∈ N∗
0 implies that

[Dαh, Dαh] ∈ N0,

for h in Ĥ;

(2) if Tεαη = Tεβη + Tεγη for some fixed α, β, γ, and all ε, η in Γ, then

Dα = Dβ + Dγ ;

(3) if {α(λ)} is a net such that ∩αN
α(λ)
0 is a neighbourhood of the origin in Z,

then Tεα(λ)η → Tεαη weakly for all ε, η implies that Dα(λ) → Dα weakly.

3. CHARACTERIZATIONS OF N-TUPLES OF

COMMUTING GRAMIAN SUBNORMAL

OPERATORS

Definition 3.1. If n ∈ N∗ and {Ti}n
i=1 ⊂ L∗(H), H being a Loynes Z-space,

we say that the n-tuple (T1, T2, ..., Tn) of commuting operators is gramian sub-

normal if there exist a Loynes Z-space K, K ⊃ H and the gramian normal com-

muting operators Ni ∈ B∗(K), i ∈ {1, .., n} such that H is accessible in K, H

is invariant under each Ni, i ∈ {1, ..., n} and Ni |H= Ti for any i ∈ {1, ..., n}.
Examples1. As in the Hilbert space, the gramian isometries on B∗(H) are

gramian subnormal operators on Loynes spaces. For that we use Proposition

3.1.9 concerning partial isometries from [4].

2. As in the Hilbert space, the natural gramian shift SL defined in l2[Z+, L].

(see, [4]) by

SL(l0, l1, ..., lm, ...) = (0, l0, ..., lm−1, ...)

is gramian subnormal operator (also see [4]).

In the sequel, the following lemma will be useful.

Lemma 3.1. For any h1, h2 ∈ H and α > 0 the following inequality holds

[h1, h2] + [h2, h1] ≤ α[h1, h1] +
1
α

[h2, h2].
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Proof. From Definition 2.2, condition (G.1), we have

[αh1 − h2, αh1 − h2] ≥ 0.

It is clear that

[αh1 − h2, αh1 − h2] = α2[h1, h1] + [h2, h2]− α[h1, h2]− α[h2, h1].

Thus

α[h1, h2] + α[h2, h1] ≤ α2[h1, h1] + [h2, h2]

for any α > 0, whence the conclusion.

As in the case of Hilbert space we have

Lemma 3.2 Let T, S be two operators from B∗(H) with S ≤ T and T, S ≥ 0.

Then ‖S‖ ≤ ‖T‖.

Proof. By using the definition, it follows that 0 ≤ [Sh, h] ≤ [Th, h], ∀ h ∈ H.

By Lemma 1, [7], T and S are gramian self-adjoint operators, therefore by

[2], from [Th, Th] ≤ ‖T‖2[h, h], we obtain [Th, h] ≤ ‖T‖[h, h], ∀ h ∈ H. Thus

0 ≤ [Sh, h] ≤ ‖T‖[h, h], h ∈ H. Applying again the same theorem see [2],

we have, [Sh, Sh] ≤ ‖T‖2[h, h], ∀ h ∈ H. This means that ‖S‖2 ≤ ‖T‖2, i.e.

‖S‖ ≤ ‖T‖.

The following lemma generalizes Lemma 1 for the Loynes spaces [5].

Lemma 3.3 Let H be a Loynes Z-space and Al be n commutative operators

from B∗(H). If for every non-negative integer M and element hi1,...,in ∈ H

(0 ≤ il ≤ M, l = 1, 2, ..., n)

(1)
M∑

il,jl=0; l=1,2,...,n

[Ai1
1 ...Ain

n hj1,...,jn , Aj1
1 ...Ajn

n hi1,...,in ] ≥ 0,

then for any νl ∈ N, l = 1, 2, ..., n we have

(2)
M∑

il,jl=0; l=1,2,...,n

[Ai1+ν1
1 ...Ain+νn

n hji,...,jn , Aj1+ν1
1 ...Ajn+νn

n hi1,...,in ] ≤
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≤‖ A1 ‖2ν1 · ‖ A2 ‖2ν2 ... ‖ An ‖2νn

M∑

il,jl=0; l=1,2,...,n

[Ai1
1 ...Ain

n hj1,...,jn , Aj1
1 ...Ajn

n hi1,...,in ].

Proof. Let Hi1,...,in be spaces isomorphic to H (il = 0, 1, 2, ...; l = 1, 2, 3, ..., n)

and

K =
∑

il≥0; l=1,2,...,n

¢Hi1,...,in ,

i.e. the set of sequences (hj)j∈Zn
+

with hj ∈ Hj1,...,jn (j = (j1, ..., jn)) for which
∑

jl≥0; l=1,2,...,n

[hj1,...,jn , hj1,...,jn ]

is convergent in Z. We shall denote the sum of the series by [h, h]K, where

h = (hj)j∈Zn
+

is an element from K. We define by polarity

[h, h
′
]K =

1
4
·([h+h

′
, h+h

′
]K−[h−h

′
, h−h

′
]K+i·[h+i·h′ , h+i·h′ ]K−i·[h−i·h′ , h−i·h′ ]K)

for h, h
′ ∈ K.

The set ∑

il≥0; l=1,2,...,n

¢Hi1,...,in

will be formally denoted by l2[Zn
+,H] and it is a Loynes Z-space with gramian

[., .]K [4].

For ε > 0, we define Bl = (‖Al‖+ε)−1 ·Al (l = 1, 2, ..., n). It is obvious that

‖Bl‖ < 1 (l = 1, ..., n). Now, we define the operator S : K → K by Sh = k,

h = (hj)j∈Zn
+
∈ K , k = (kj)j∈Zn

+
∈ K, where

ki = ki1,...,in =
∞∑

jl≥0; l−1,2,...,n

B∗jn
n ...B∗j1

1 Bi1
1 Bi2

2 ...Bin
n hj1,...,jn .

Using Lemma 3.1 we show that k is correctly defined. We have,

[
M+p∑

jl=M+1; l=1,...,n

B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn ,

M+p∑

kl=M+1; l=1,...,n

B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk1,...,kn ] =

=
M+p∑

jl,kl=M+1; l=1,...,n

[B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn , B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk1,...,kn ] =

=
M+p∑

jl=M+1; l=1,...,n

[B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn , B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn ]+
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+
M+p∑

jl 6=kl=M+1; l=1,...,n

[B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn , B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk1,...,kn ] ≤

≤
M+p∑

jl=M+1, l=1,...,n

‖B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n ‖ · [hj1,...,jn , hj1,...,jn ]+

+
1
2
·(

M+p∑

jl,kl=M+1; jl 6=kl,l=1,...,n

[B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn , B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk1,...,kn ]+

+
M+p∑

jl,kl=M+1; jl 6=kl; l=1,...,n

[B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk1,...,kn , B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj1,...,jn ]) ≤

≤
M+p∑

jl=M+1; l=1,...,n

[hj1,...,jn , hj1,...,jn ]+

1
2
·

M+p∑

jl,kl=M+1; kl 6=jl; l=1,...,n

(αjl,kl
[B∗jn

n ...B∗j1
1 Bi1

1 ...Bin
n hj , B∗jn

n ...B∗j1
1 Bi1

1 ...Bin
n hj ]+

+
1

αjl,kl

· [B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk, B
∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk]) =

=
M+p∑

jl=M+1, l=1,...,n

[hj1,...,jn , hj1,...,jn ] +
1
2
·

M+p∑

jl,kl=M+1, l=1,...,n

(
(j1 + 1)2...(jn + 1)2

(k1 + 1)2...(kn + 1)2
·

·[B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj , B
∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj ] +
(k1 + 1)2...(kn + 1)2

(j1 + 1)2...(jn + 1)2
·

·[B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk, B
∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk]) ≤
M+p∑

jl=M+1, l=1,...,n

[hj1,...,jn , hj1,...,jn ]+

+
1
2
· (

M+p∑

kl=M+1, l=1,...,n

1
(k1 + 1)2...(kn + 1)2

·

·
M+p∑

jl=M+1, l=1,...,n

(j1+1)2...(jn+1)2·[B∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj , B
∗jn
n ...B∗j1

1 Bi1
1 ...Bin

n hj ]+

+
M+p∑

jl=M+1, l=1,...,n

1
(j1 + 1)2...(jn + 1)2

M+p∑

kl=M+1, l=1,...,n

(k1 + 1)2...(kn + 1)2·

·[B∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk, B
∗kn
n ...B∗k1

1 Bi1
1 ...Bin

n hk]) → 0, as p −→∞.

Therefore k ∈ K is correctly defined. In the same way one proves that S is

correctly defined and bounded.
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For h = (hi1,..,in)i∈Zn
+

whose components are equal to zero except for a finite

number of hi1,...,in , we have by hypothesis

[Sh, h] =
M∑

jl,kl=0

[Bj1
1 ...Bjn

n hk1,...,kn , Bk1
1 ...Bkn

n hj1,...,jn ] =

=
M∑

jl,kl=0, l=1,...,n

[
Aj1

1 ...Ajn
n hk1,...,kn

(‖A1‖+ ε)j1 ...(‖An‖+ ε)jn
,

Ak1
1 ...Akn

n hj1,...,jn

(‖A1‖+ ε)k1 ...(‖An‖+ ε)kn
] =

=
M∑

jl,kl=0; l=1,...,n

[Aj1
1 ...Ajn

n zk1,...,kn , Ak1
1 ...Akn

n zj1,...,jn ] ≥ 0,

where zk1,...,kn = hk1,...,kn

(‖A1‖+ε)k1 ...(‖An‖+ε)kn
. The set of these h is obvious dense in

K. This means that S ≥ 0 on K.

In the same way we define an operator T : K −→ K by Th = h′, h = (hi)i∈Zn
+

and h′ = (h′i)i∈Zn
+

where

h′i = h′i1,...,in =
∞∑

jl=0; l=1,...,n

B∗jn+νn
n ...B∗j1+ν1

1 Bi1+ν1
1 Bin+νn

n hj1,...,jn .

Analogously we show that T is a positive and bounded operator on K.

We define B
′

: K −→ K by B
′
k = k

′
, k = (kj)j∈Zn

+
and k

′
= (k

′
i)i∈Zn

+
,

where k
′
i = Bν1

1 ...Bνn
n ki. It is clear that B

′ ∈ B∗(K) and ‖B′‖ < 1. Moreover,

B
′′

: K −→ K, B
′′
k = k

′′
where k

′′
= (k

′′
i )i∈Zn

+
and k

′′
i = B∗νn

n ...B∗ν1
1 ki

has the same property as B
′
. Also we have B

′′
SB

′
= T. Therefore ‖T‖ ≤

‖B′′‖ · ‖S‖ · ‖B′‖ < ‖S‖.
[Tk, Tk] = [B′′SB′k, B′′SB′k] ≤ [SB′k, SB′k].

[SB′k, SB′k] =
∞∑

jl=0,l=1,...,n

[kl, kl] =

=

∞∑

jl=0,l=1,...,n

[

∞∑
il=0

B∗in
n ...B∗i1

1 Bj1+ν1
1 ...Bjn+νn

n hi1,...,in ,

∞∑

kl=0

B∗kn
n ...B∗k1

1 Bj1+ν1
1 ...Bjn+νn

n hk1,...,kn ] =

=

∞∑

jl≥0

∞∑

kl,il=0

[B∗in
n ...B∗i1

1 Bj1+ν1
1 ...Bjn+νn

n hi1,...,in , B∗kn
n ...B∗k1

1 Bj1+ν1
1 ...Bjn+νn

n hk1,...,kn ] =

=

∞∑

rl=νl,l=1,...,n

∞∑

kl,il=0

[B∗in
n ...B∗i1

1 Br1
1 ...Brn

n hi1,...,in , B∗kn
n ...B∗k1

1 Br1
1 ...Brn

n hk1,...,kn ], rl ∈ N, rl = jl+νl
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Hence (where jl ∈ N, l = 1, ..., n)

[Tk, Tk] ≤
∞∑

jl≥0

∞∑

kl,il=0

[B∗in
n ...B∗i1

1 Bj1
1 ...Bjn

n hi1,...,in , B∗kn
n ...B∗k1

1 Bj1
1 ...Bjn

n hk1,...,kn ] =

= [Sk, Sk].

Therefore [Tk, Tk] ≤ [Sk, Sk] or [T 2k, k] ≤ [S2k, k] where T ≥ 0, S ≥ 0. By

Proposition 45 of [9], taking f(x) =
√

x on [0,∞) we have
√

T 2 ≤
√

S2 i.e.

T ≤ S.

Thus T ≤ S i.e. [Th, h] ≤ [Sh, h] for any h ∈ K.

The last inequality becomes

M∑

jl,kl=0; l=1,...,n

[Bj1+ν1
1 ...Bjn+νn

n hk1,...kn , Bk1+ν1
1 ...Bkn+νn

n hj1,...jn ] =

=
M∑

jl,kl=0; l=1,...,n

[Aj1+ν1
1 ...Ajn+νn

n zk1,...,kn , Ak1+ν1
1 ...Akn+νn

n zj1,...,jn ]
(‖A1‖+ ε)2ν1 ...(‖An‖+ ε)2νn

≤

≤
M∑

jl,kl=0; l=1,...,n

[B∗kn
n ...B∗k1

1 Bj1
1 ...Bjn

n hk1,...kn , hj1,...jn ].

Because ε was chosen arbitrarily positive, we obtain the inequality (2).

Theorem 3.1 An n-tuple (T1, T2, ...Tn) of commuting operators where

Tl ∈ B∗(H), l = 1, 2, ..., n is gramian b-subnormal if and only if:

(3)
M∑

il,jl≥0; l=1,...,n

[T i1
1 T i2

2 ...T in
n hj1,j2,...,jn , T j1

1 T j2
2 ...T jn

n hi1,i2,...,in ] ≥ 0

Proof. ” ⇒ ” If {Ti}n
i=1 ⊂ L∗(H) is gramian b-subnormal we consider Ni,

i ∈ {1, ..., n}, a gramian normal extension of n-tuple (T1, T2, ..., Tn) to a Loynes

Z-space K ⊇ H, as in the Definition 3.1.

Denoting by P the gramian self-adjoint projection of K on H, we have

Tm
i h = PN∗m

i h, for any h ∈ H, m ≥ 1 and i ∈ {1, ..., n}.
Taking into account the equalities N∗j

i N l
i = N l

iN
∗j
i and N∗j

i N l
k = N l

kN
∗j
i ,

(i, k ∈ {1, ..., n}, l, j ∈ {1, ...,M}), obtained by applying Theorem 2.1 to the
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gramian normal commuting operators Ni and Nk, and using the fact that H

is invariant under Ni (i ∈ {1, ..., n}) for any hi1,i2,...,in ∈ H, we obtain

M∑

il,jl≥0; l=1,...,n

[T i1
1 T i2

2 ...T in
n hj1,j2,...,jn , T j1

1 T j2
2 ...T jn

n hi1,i2,...,in ] =

=
M∑

il,jl≥0; l=1,...,n

[N i1
1 N i2

2 ...N in
n hj1,j2,...,jn , N j1

1 N j2
2 ...N jn

n hi1,i2,...,in ] =

=
M∑

il,jl≥0; l=1,...,n

[N∗j1
n ...N∗j2

2 N∗j1
1 N i1

1 N i2
2 ...N in

n hj1,j2,...,jn , hi1,i2,...,in ] =

=
M∑

il,jl≥0; l=1,...,n

[N i1
1 N i2

2 ...N in
n N∗j1

1 N∗j2
2 ...N∗jn

n hj1,j2,...,jn , hi1,i2,...,in ] =

=
M∑

il,jl≥0; l=1,...,n

[N∗j1
1 N∗j2

2 ...N∗jn
n hj1,j2,...,jn , N∗in

n ...N∗i2
2 N∗i1

1 hi1,i2,...,in ] =

=
M∑

il,jl≥0; l=1,...,n

[N∗j1
1 N∗j2

2 ...N∗jn
n hj1,j2,...,jn , N∗i1

1 N∗i2
2 ...N∗in

n hi1@,i2,...,in ] =

= [
M∑

jl≥0; l=1,...,n

N∗j1
1 N∗j2

2 ...N∗jn
n hj1,...,jn ,

M∑

il≥0; l=1,...,n

N∗i1
1 N∗i2

2 ...N∗in
n hi1,...,in ] =

= [g, g] ≥ 0,

where

g =
M∑

il≥0; l=1,...,n

N∗i1
1 N∗i2

2 ...N∗in
n hi1,...,in .

In the previous series of equalities (the third equality from the end) we used

the fact that the operators Ni commuted as pairs.

Conversely, let (T1, ...Tn) be an n-tuple which satisfies the condition (3).

Let

S = N× N× ...× N = (N× ...× N)× (N× ...× N)
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be a ∗ semigroup with unit e = (0, ..., 0), the involution (i1, ..., in, j1, ..., jn)∗ =

(j1, ..., jn, i1, ..., in) and the operation

(i1, ..., in, j1, ..., jn)+(il1, ..., i
l
n, jl

1, ..., j
l
n) = (i1+il1, ..., in+iln, j1+jl

1, ..., jn+jl
n).

The above-defined application satisfies all the conditions from the definition

of an involution:

(i 1)

((i1, ..., in, j1, ..., jn)∗)∗ = ((i1, ..., in, j1, ..., jn));

(i 2)

((i1, ..., in, j1, ..., jn) + (il1, ..., i
l
n, jl

1, ..., j
l
n))∗ =

= (i1 + il1, ..., in + iln, j1 + jl
1, ..., jn + jl

n)∗ =

= (j1 + jl
1, ..., jn + jl

n, i1 + il1, ..., in + iln) =

= (j1, ..., jn, i1, ..., in) + (jl
1, ..., j

l
n, il1, ..., i

l
n) =

= (i1, ..., in, j1, ..., jn)∗ + (il1, ..., i
l
n, jl

1, ..., j
l
n)∗;

= (λ · j1, ..., λ · jn, λ · i1, ..., λ · in) = λ · (i1, ..., in, j1, ..., jn)∗.

Now, for Ti ∈ L∗(H), i ∈ 1, ..., n we define the application S 3 (i1, ..., in, j1, ..., jn) →
T (i1, ..., in, j1, ..., jn) ∈ L∗(H) by T (i1, ..., in, j1, ..., jn) = T ∗j11 T ∗j22 ...T ∗jn

n T i1
1 ...T in

n .

It is obvious that T (0, ..., 0) = I. By using the fact that Ti and Tj commute

(i, j ∈ 1, ..., n), we prove that T ((i1, ..., in, j1, ..., jn)∗) = T ((i1, ..., in, j1, ..., jn))∗.

Indeed

T ((i1, ..., in, j1, ..., jn)∗) = T (j1, ..., jn, i1, ..., in) =

= T ∗i11 T ∗i22 ...T in
n T j1

1 ...T jn
n

and

T ((i1, ..., in, j1, ..., jn))∗ = (T ∗j11 T ∗j22 ...T ∗jn
n T i1

1 ...T in
n )∗ =

T ∗inn ...T ∗i11 T jn
n ...T j1

1 = T ∗i11 ...T ∗inn T j1
1 ...T jn

n .

We denote π = (i1, ..., in, j1, ..., jn) and πl = (il1, ..., i
l
n, jl

1, ..., j
l
n).
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Let {gπ} ⊂ H be a finite set. We have,

∑

π, πl

′ [Tπ∗+πl · gπl , gπ] =

∑

(i1,...,jn); (il1,...,jl
n)

′[T(j1+il1,...,jn+iln,i1+jl
1,...,in+jl

n) · gil1,...,iln,jl
1,...,jl

n
, gi1,...,in,j1,...,jn ] =

=
∑

(i1,...,jn); (il1,...,jl
n)

′[T ∗i1+jl
1

1 ...T ∗in+jl
n

n ...T jn+iln
n gil1,...,jl

n
, gi1,...,jn ] =

=
∑

(i1,...,jn); (il1,...,jl
n)

′[T j1+il1
1 ...T jn+iln

n gil1,...,jl
n
, T in+jl

n
n ...T

i1+jl
1

1 gi1,...,jn ] =

=
∑

(i1,...,jn), (il1,...,jl
n)

′[T j1+il1
1 ...T jn+iln

n gil1,...,jl
n
, T

i1+jl
1

1 ...T in+jl
n

n gi1,...,jn ] =

=
∑

(i1,...,jn); (il1,...,jl
n)

′[T j1
1 ...T jn

n hjl
1,...,jl

n
, T

jl
1

1 ...T jl
n

n hj1,...,jn ] ≥ 0

by relation (3), where we noted

hj1,...,jn =
∑

(il,...,in)

′ T i1
1 ...T in

n gi1,...,jn

and

hjl
1,...,jl

n
=

∑

(ill,...,i
l
n)

′ T il1
1 ...T iln

n gil1,...,jl
n.

By using the condition (b), we obtain (here u = (u1, ..., un, v1, ..., vn))

∑

π, πl

′ [Tπ∗+u∗+u+πlgπl , gπ] =

=
∑

(i1,...,jn); (il1,...,jl
n)

′ [T (j1 + v1 + u1 + il1, ..., in + un + vn + jl
n)gil1,...,jl

n
, gi1,...,jn ] =

=
∑

(i1,...,jn); (il1,...,jl
n)

′ [T ∗i1+u1+v1+jl
1

1 ...T ∗in+un+vn+jl
n

n T
j1+v1+u1+il1
1 ...T jn+vn+un+iln

n gil1,...,jl
n
, gi1,...,jn ]
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=
∑

(i1,...,jn); (il1,...,jl
n)

′ [T j1+v1+u1+il1
1 ...T jn+vn+un+iln

n gil1,...,jl
n
, T

i1+u1+v1+jl
1

1 ...T in+un+vn+jl
n

n gi1,...,jn ]

=
∑

(j1,...,jn); (jl
1,...,jl

n)

′ [T j1+v1+u1
1 ...T jn+vn+un

n hjl
1,...,jl

n
, T

u1+v1+jl
1

1 ...T un+vn+jl
n

n hj1,...,jn ].

In what follows, we apply the condition (b) and it follows
∑

π,πl

′ [Tπ∗+u∗+u+πlgπl , gπ] ≤

≤ c ·
∑

(j1,...,jn); (jl
1,...,jl

n)

′[T j1
1 ...T jn

n hjl
1,...,jl

n
, T

jl
1

1 ...T jl
n

n hj1,...,jn ] =

= c ·
∑

π,πl

′ [Tπ∗+πlgπl , gπ]

Therefore the conditions of Theorem 2.2 are satisfied for Tπ so that there ex-

ists a representation in K , Dπ which will be as in the fundamental theorem

(see [6]) and H is accessible in K.

Because π = (i1, ..., in, j1, ..., jn) =

= i1 · (1, 0, ..., 0) + ... + in · (0, ..., 0, 1, 0, ..., 0) + j1 · (0, ..., 0, 1, 0, ..., 0) + ...+,

+ jn · (0, ..., 0, 1) = i1 · η1 + ... + in · ηn + ... + j1 · η∗1 + ... + jn · η∗n
where ηi = (0, ..., 0, 1, 0, ..., 0) with 1 on i place and η∗i = (0, ..., 0, 1, 0, ..., 0)

with 1 on n + i place.

Therefore

π =
n∑

l=1

(ηl · il + η∗l · jl)

and denoting Dηl
= Nl we have

Dπ =
n∏

l = 1

DηlilDη∗l jl
=

n∏

l = 1

N il
l N∗jl

l =

= N∗j1
1 ...N∗jn

n N i1
1 ...N in

n .

It is obvious that Nl, l = 1, ..., n is a gramian normal operator and from

T (i1, ..., in, j1, ..., jn) = T ∗j11 ...T ∗jn
n T i1

1 ...T in
n and Tπh = PDπh, h ∈ H it follows
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that

(∗)T ∗j11 ...T ∗jn
n T i1

1 ...T in
n h = PN∗j1

1 ...N∗jn
n N i1

1 ...N jn
n h

h ∈ H.

Using this last equality we show that T ⊆ N.

Taking in (∗) j1 = ... = jn = i2 = ... = in = 0, ..., j1 = ... = jn = i1 =

... = in−1 = 0 and j1 = i1 = 1 and j2 = i2 = ... = in = 0 respectively,...,

jn = in = 1 and j1 = ... = jn−1 = i1 = ... = in−1 = 0 respectively, we obtain

T j
i h = PN j

i h and T ∗i Tih = PN∗
i Nih, (h ∈ H, i ∈ {1, ..., n}).

From [Tih, Tih] = [PNih, PNih] we have [Nih−PNih,Nih−PNih] = 0. It

is easy to see that Nih = Tih, (h ∈ H, i ∈ {1, ..., n}).
We obtain (b) for Ni instead of Ti and taking only a term we obtain that

Ni is from B∗(K).
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1. INTRODUCTION

Consider the cubic system of differential equations

ẋ = y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 = P (x, y),

ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) = −Q(x, y),
(1)

in which the variables x, y and coefficients a, b, . . . , s are assumed to be real.

The origin O(0, 0) is a singular point of a center or focus type for (1), i.e. a

weak focus. The purpose of this paper is to find verifiable conditions for their

distinctions.

It is known [5] that the origin is a center for system (1) if and only if in some

neighborhood of O(0, 0) it possesses a holomorphic first integral F (x, y) = C

or a holomorphic integrating factor of the form

µ(x, y) = 1 +
∞∑

k=1

µk(x, y),

where µk are homogeneous polynomials of degree k.

45
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Also, it is known [9] that for (1) a formal power series Ψ(x, y) can be found,

such that

D(Ψ) = g3(x2 + y2)2 + g5(x2 + y2)3 + · · · ,

where g2j+1 are polynomials in the coefficients of system (1) called focal values.

The origin O(0, 0) is a center for (1) if and only if g2j+1 = 0, j = 1, 2, . . . ,∞.

The problem of the center was solved for quadratic systems and for cubic

systems with only homogeneous cubic nonlinearities. If the cubic system (1)

contains both quadratic and cubic nonlinearities, the problem of the center

was solved only in some particular cases (see, for example, [9], [2], [3], [13],

[14]–[15]).

In this paper we solve the problem of the centre for cubic differential system

(1) assuming that (1) has three invariant straight lines and is Darboux inte-

grable. The paper is organized as follows. The results concerning the relation

between Darboux integrability and invariant algebraic curves are presented in

sections 2 and 3. In section 4 we find four sufficient series of conditions for

the existence of three invariant straight lines. In section 5 we obtain suffi-

cient conditions for the existence of a centre by using the Darboux method of

integrability.

2. INVARIANT STRAIGHT LINES AND

CENTERS IN CUBIC SYSTEMS

We shall study the problem of the center assuming that (1) has invariant

straight lines.

Definition 2.1. An algebraic invariant curve [1] (or an algebraic particular

integral) of (1) is a set of points (considered over C2) satisfying an equation

f(x, y) = 0, where f is a polynomial in x and y such that

df

dt
= ḟ =

∂f

∂x
P − ∂f

∂y
Q = fK,

for some polynomial K = K(x, y) called the cofactor of the invariant algebraic

curve f(x, y) = 0.

By Definition 1 a straight line

L ≡ C + Ax + By = 0, A2 + B2 6= 0, (2)
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is an invariant straight lines for (1) if and only if there exists a polynomial

K(x, y) such that the following identity holds

A · P (x, y)−B ·Q(x, y) ≡ (C + Ax + By) ·K(x, y). (3)

According to [2] the cubic system (1) cannot have more than four nonho-

mogeneous invariant straight lines, i.e. invariant straight lines of the form

1 + Ax + By = 0, A2 + B2 6= 0. (4)

The cofactor of (4) is

K(x, y) = −Bx + Ay + (aA− gB + AB)x2+

(cA− dB + B2 −A2)xy + (fA− bB −AB)y2.
(5)

If the cubic system (1) has complex invariant straight lines then obviously

they occur in complex conjugated pairs

L ≡ C + Ax + By = 0 and L ≡ C + Ax + By = 0.

As homogeneous invariant straight lines Ax + By = 0 system (1) can have

only the lines x± iy = 0, i2 = −1.

From (3) identifying the coefficients of monomials in x and y, it follows that

(4) is an invariant straight line of (1) if and only if A and B are the solutions

of the system

F1(A,B) = A2B + aA2 − gAB − kA + sB = 0,

F2(A,B) = AB2 − fAB + bB2 + rA− lB = 0,

F3(A,B) = A3 − 2AB2 − cA2 + (d− a)AB + gB2 + mA− qB = 0,

F4(A,B) = B3 − 2A2B + fA2 + (c− b)AB − dB2 − pA + nB = 0.

(6)

In [2] and [3] for cubic differential system (1) coefficient conditions for the

existence of four invariant straight lines was found. It was proved that the

system (1) with four invariant straight lines (real, complex, real and complex)

has a singular point of a center type at the origin, if and only if the first two

focal values vanish.
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3. DARBOUX INTEGRABILITY AND

INTEGRATING FACTORS

The problem of integrating a differential equation by using invariant alge-

braic curves was considered for the first time by Darboux in 1878 in [4]. One

of the main applications of the Darboux method is proving the existence of a

center.

Definition 3.1. A real system (1) is integrable on an open set U of R2 if there

exists a nonconstant analytic function F : U → R which is constant along all

solution curves (x(t), y(t)) in U , i.e. F (x(t), y(t)) = constant, for all values

of t where the solution is defined. Such an F is called a first integral of (1) or

a constant of motion on U .

Definition 3.2. An integrating factor for a system (1) on some open set U of

R2 is a C1 function µ = µ(x, y) defined on U , not identically zero on U, such

that
∂(µP )

∂x
− ∂(µQ)

∂y
= 0.

This condition also can be written as follows:

∂µ

∂x
P − ∂µ

∂y
Q + µ

(
∂P

∂x
− ∂Q

∂y

)
= 0. (7)

Theorem 3.1. Suppose that f(x, y) ∈ C[x, y] and let f(x, y) = fn1
1 · · · fnq

q

be the factorization of f in irreducible factors over C[x, y]. Then the curve

f(x, y) = 0 is invariant if and only if the curves fj(x, y) = 0 are invariant for

j = 1, . . . q.

If the cubic system (1) has sufficiently many invariant algebraic curves

fj(x, y) = 0, j = 1, . . . , q, then in most cases a first integral (an integrat-

ing factor) can be constructed in the Darboux form [4]

fα1
1 fα2

2 · · · fαq
q , (8)

where αi ∈ C and fi(x, y) ∈ C[x, y]. In this case we say that the system (1) is

Darboux integrable.

If (8) is a first integral or an integrating factor, then necessarily the curves

fi(x, y) = 0 are invariant algebraic curves of (1).
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Theorem 3.2. The expression (8) is an integrating factor for (1) if and only

if

N∑

i=1

αiKi(x, y) ≡ ∂Q

∂y
− ∂P

∂x
, (9)

where αi, i = 1, N are numbers do not simultaneously equal to zero.

Let the cubic system (1) have three invariant straight lines Lj = 0, j =

1, 2, 3 of the form (2). According to Theorem 2 system (1) has an integrating

factor of the form

µ(x, y) = Lα1
1 Lα

2 Lα3
3 (10)

if and only if

α1K1 + α2K2 + α3K3 ≡ ∂Q

∂y
− ∂P

∂x
, (11)

where αj , j = 1, 2, 3 are numbers do not simultaneously equal to zero.

Integrating factors of the form (8) were successfully used solving the prob-

lem of the center for quadratic systems [6] and for cubic system with only

homogeneous cubic nonlinearities [7].

By [2] and [3] if the cubic system (1) has four invariant straight lines and

the first two focal values vanish, then it is Darboux integrable.

4. CONDITIONS FOR THE EXISTENCE OF

THREE INVARIANT STRAIGHT LINES

It is easy to see that for the relative positions of three invariant straight

lines three different cases can occur:

1) two of the invariant straight lines are parallel;

2) all the invariant straight lines pass through the same point (forming a

bundle);

3) the invariant straight lines are in a generic position (forming a triangle).
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4.1. CONDITIONS FOR THE EXISTENCE OF

THREE INVARIANT STRAIGHT LINES

TWO OF WHICH ARE PARALLEL

Let the invariant straight lines L1, L2 be real and parallel for (1). Then by

a rotation of axes we can make them parallel to the axis of ordinates (Oy).

Note that by a rotation of axes of coordinates the differential system (1) does

not change the form.

If L1 and L2 are complex, then the straight lines L1, L2 conjugate with L1

and L2 are also invariant for (1) (the coefficients in (1) are real). As for (1)

the problem of the center with at least four invariant straight lines is solved,

it remains to consider only the case when L2 ≡ L1. From L1||L1, it follows

that L1 looks as 1 + A(x + By) = 0, where A is a complex number and B is

real. In this case, via a rotation of axes about the origin, it is also possible to

make the straight lines L1 and L2 to be parallel to the axis Oy. Notice that

the case: the cubic system (1) has a weak focus and three parallel invariant

straight lines is not realized.

In order for the cubic system (1) have two invariant straight lines L1, L2

parallel to the axis Oy, it is necessary that the right-hand sides of the first

equation from (1) look as P (x, y) = y(1 + cx + mx2), i.e.

a = f = k = p = r = 0, m(c2 − 4m) 6= 0. (12)

If conditions (12) are fulfilled, then (1) has the following invariant straight

lines

L1,2 ≡ 1 +
c±√c2 − 4m

2
x = 0.

We pass now to the problem of finding conditions for the existence of the

third invariant straight line, which for above reasons is assumed to be real.

Let L3 be given by the equation 1+Ax+By = 0, where A, B are real numbers

and B 6= 0. In this case A, B should satisfy the algebraic system of equations

(6).

Rescaling on coordinate axes and time t, we can make B = 1 and the system

(1) under conditions (12) does not change the form.
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Assume that B = 1, then from (6) and (12) we find A = l− b in conditions

a = f = k = p = r = 0, n = b2 + bc− 3bl − cl + d + 2l2 − 1,

q = −b3 − b2c + 3b2l + 2bcl − bd− 3bl2 − bm + 2b− cl2+

+ dl + g + l3 + lm− 2l, s = −b2 − bg + 2bl + gl − l2.

(13)

So, in order for the system (1) have three invariant straight lines L1, L2, L3,

L1||L2||Oy, L3 ≡ 1 + Ax + y = 0, it is necessary and sufficient that conditions

(13) be fulfilled. The invariant straight lines are

L1,2 ≡ 1 +
c±√c2 − 4m

2
x = 0, L3 ≡ 1 + (l − b)x + y = 0 (14)

and have, respectively, the cofactors

K1,2 = y(2mx + c±√c2 − 4m)/2, K3 = −x + (l − b)y+

+(l − b− g)x2 + (1− b2 − bc + 2bl + cl − d− l2)xy − ly2.
(15)

4.2. CONDITIONS FOR THE EXISTENCE OF A

BUNDLE OF THREE INVARIANT

STRAIGHT LINES

Assume that the cubic system (1) has three invariant straight lines which

pass through the same point (x0, y0). By a rotation and rescaling of coordinate

axes we can make x0 = 0, y0 = 1. In this case, the equation of each invariant

straight line forming a bundle has the form

1 + Ax− y = 0. (16)

Obviously the point (0, 1) of the intersection of these invariant straight lines

is a singular point for (1), i.e. P (0, 1) = Q(0, 1) = 0. From these equalities we

find r = −f − 1, l = −b. Substituting B = −1, r = −f − 1 and l = −b in (6)

we obtain

F1(A,B) = (a− 1)A2 + (g − k)A− s = 0, F2(A,B) ≡ 0,

F3(A,B) = A3 − cA2 + (a− d + m− 2)A + g + q = 0,

F4(A,B) = (f + 2)A2 + (b− c− p)A− d− n− 1 = 0.
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From these equalities we can see that the system (1) has three distinct invariant

straight lines of the form (16) if and only if the following conditions

a = 1, f = −2, k = g, l = −b, n = −d− 1, p = b− c, r = 1, s = 0, (17)

4(g + q)c3 + (d−m + 1)2c2 + 18(d−m + 1)(g + q)c + 4d3−
12(m− 1)d2 + 12(m− 1)2d− 27(g + q)2 − 4(m− 1)3 6= 0.

(18)

hold.

In the conditions (17), (18) the straight line (16) is invariant for (1) if and

only if A satisfies the equation

A3 − cA2 + (m− d− 1)A + g + q = 0. (19)

The left-hand side of inequality (18) coincides with the discriminant of the

equation (19), and (18) implies the roots A1, A2, A3 of the equation (19) to

be distinct: Ai 6= Aj , ∀i 6= j.

4.3. CONDITIONS FOR THE EXISTENCE OF

THREE INVARIANT STRAIGHT LINES

FORMING A TRIANGLE

Assume that the differential system (1) has exactly three invariant straight

lines

Lj ≡ Ajx + Bjy + Cj = 0, j = 1, 2, 3; Aj , Bj , Cj ∈ C (20)

such that no pair of the lines is parallel and no more than two lines pass

through the same point (in generic position), i.e.

∆jl =

∣∣∣∣∣
Aj Bj

Al Bl

∣∣∣∣∣ 6= 0, j 6= l, j, l = 1, 2, 3; ∆123 =

∣∣∣∣∣∣∣∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣∣∣
6= 0.

(21)

The invariant straight line L3 can be considered real.

Conditions (21) allow us to write system (1) in the form [8]

dx
dt

=
( 3∑

j=1

TjLjy

Lj
+ p1

) 3∏
j=1

Lj ≡ P (x, y),

dy
dt

= −
( 3∑

j=1

TjLjx

Lj
+ q1

) 3∏
j=1

Lj ≡ Q(x, y),
(22)
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where Ljx = ∂Lj/∂x, Ljy = ∂Lj/∂y; p1, q1 ∈ R and Tj , j = 1, 2, 3 are linear

in x and y. Let Tj = mjx + njy + sj , j = 1, 2, 3.

The straight lines L1, L2, L3 have respectively the cofactors

K1(x, y) = ∆12L3T2 + ∆13L2T3 + (p1A1 − q1B1)L2L3,

K2(x, y) = ∆23L1T3 + ∆21L3T1 + (p1A2 − q1B2)L1L3,

K3(x, y) = ∆31L2T1 + ∆32L1T2 + (p1A3 − q1B3)L1L2.

(23)

By affine transformations of coordinates and time rescaling

x → α1x + β1y + γ1, y → α2x + β2y + γ2, t → αt (24)

system (22) does not change the form.

Let (x∗, y∗) be a singular point for (22) with pure imaginary eigenvalues.

By transformations of the form (24), first we translate (x∗, y∗) at the origin,

i.e.

P (0, 0) = Q(0, 0) = 0 (25)

and then transform the linear part of P (x, y) to be equal with y, and of Q(x, y)

to be equal with −x, i.e.

P ′
x(0, 0) = Q′

y(0, 0) = 0, P ′
y(0, 0) = −Q′

x(0, 0) = 1. (26)

The intersection point of the straight lines L1 and L2 is a singular point for

(22) and has real coordinates. In particular, this point can be (0, 0).

We shall consider two cases: 1) (0, 0) 6∈ L1 ∩ L2 and 2) (0, 0) ∈ L1 ∩ L2.

1). Let (0, 0) 6∈ L1 ∩ L2. By rotating the system of coordinates (x →
x cosϕ − y sinϕ, y → x sinϕ + y cosϕ) and rescaling the axes of coordinates

(x → αx, y → αy), we obtain

L1 ∩ L2 = (0, 1). (27)

In this case the invariant straight lines (20) can be written as

Lj = Ajx− y +1, L3 = A3x+B3y +1, Aj ∈ C, j = 1, 2; A3, B3 ∈ R, (28)

and (21):

∆12 = A2−A1 6= 0, ∆j3 = AjB3+A3 6= 0, j = 1, 2, ∆123 = B3+1 6= 0. (29)
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The relations (25), (26) and P (0, 1) = Q(0, 1) = 0 induce the following condi-

tions on the coefficients of system (22):

p1 = s1 + s2 − s3B3, q1 = −s1A1 − s2A2 − s3A3,

m1 = (s1A
2
1 − s1A1A2 + s3A2A3B3 −m3A2B3+

+ s3A
2
3 −m3A3 + 1)/(A1 −A2),

n1 = (s3A2B
2
3 − s1A1 − n3A2B3 + s1A2 + A2+

+ s3A3B3 − n3A3)/(A1 −A2),

m2 = (s2A1A2 − s3A1A3B3 + m3A1B3 − s2A
2
2 − s3A

2
3+

+m3A3 − 1)/(A1 −A2),

n2 = (n3A1B3 − s3A1B
2
3 − s2A1 −A1 + s2A2 − s3A3B3+

+n3A3)/(A1 −A2).

(30)

2). Let now (0, 0) ∈ L1 ∩ L2. In this case

L1,2 ≡ x± iy = 0, i2 = −1 and L3 ≡ A3x + B3y + 1 = 0.

The identity (3) for L1,2 = x± iy gives the following coefficient conditions

for (1)

b + c− g = a + d− f = p− q + l − k = m + n− r − s = 0. (31)

Via a rotation of axes about the origin and under the transformation x →
γx, y → γy, γ ∈ R \ 0, the invariant straight line L3 = 0 becomes 1− x = 0.

Remark that under the above-mentioned transformation the curve x2 +y2 = 0

remains invariant.

For L3 = 1− x the identity (3) yields

k = −a, m = −c− 1, p = −f, r = 0. (32)

From (31) and (32) we obtain that L1,2 ≡ x2 + y2 = 0, L3 ≡ 1− x = 0 are

invariant straight lines for (1) if and only if the following relations

f = a + d, g = b + c, k = −a, l = d + q, m = −c− 1,

n = c + s + 1, p = −a− d, r = 0,
(33)

are satisfied. These curves have respectively the cofactors

K1, 2 = 2(ax− by − ax2 − (c + s + 1)xy − (d + q)y2),

K3 = −y − ax2 − (c + 1)xy − (a + d)y2.
(34)
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5. DARBOUX INTEGRABILITY IN THE CUBIC

SYSTEMS WITH THREE INVARIANT

STRAIGHT LINES

In this section by using the identity (11) we shall construct an integrating

factor of the Darboux type (10) in each of the cases (13), (17), (30) and (33).

In this way we prove the presence of a center at the origin.

5.1. SOLUTION OF THE PROBLEM OF THE

CENTER FOR CUBIC DIFFERENTIAL

SYSTEMS WITH THREE INVARIANT

STRAIGHT LINES OF WHICH TWO ARE

PARALLEL

Let us consider the invariant straight lines (14) with cofactors (15). From

the identity (11), we find that

x : α3 = −d,

y :
√

c2 − 4m (α1 − α2) + (α1 + α2 + 2)c + 2bd− 2ld− 4b = 0,

xy : (b2 + bc− lc + d− 1)(d− 2) + (d− 4)l2 − 2bl(d− 3)+

+(α1 + α2 + 2)m = 0,

x2 : l3 − l2(3b + c) + l(3b2 + 2bc + 2d− 2) + (l − b)m−
−b3 − b2c− 2bd + 2b− dg + g = 0,

y2 : l(d− 3) = 0.

We shall consider two cases: 1) l = 0 and 2) d− 3 = 0, l 6= 0.

1) Let l = 0, then x2 : b3 + b2c + 2bd + bm− 2b + dg − g = 0.

If b = g = 0, the cubic system (1) along with three invariant straight lines

(14) has also one more invariant straight line 1 + (d− 1)y = 0.

If b = 0, d = 1, g 6= 0, we have the following conditions

a = b = f = k = l = n = p = r = s = 0, d = 1, q = g (35)
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for the existence of three invariant straight lines

L1,2 ≡ 1 +
c±√c2 − 4m

2
x = 0, L3 ≡ 1 + y = 0

and a Darboux integrating factor of the form (10) with α1 = α2 = α3 = −1.

If b 6= 0, m = (−b3−b2c−2bd+2b−dg+g)/b, then along with three invariant

straight lines (14), the system (1) has also one more invariant straight line

1− bx + (d− 1)y = 0.

2) Let now d = 3, l 6= 0, then

x2 : l3 − (3b + c)l2 + (3b2 + 2bc + 4)l + (l − b)m− b3 − b2c− 4b− 2g = 0.

If l = b, then g = 0 and we have the following conditions

a = f = g = k = p = q = r = s = 0, d = 3, l = b, n = 2 (36)

for the existence of three invariant straight lines

L1,2 ≡ 1 +
c±√c2 − 4m

2
x = 0, L3 ≡ 1 + y = 0

and a Darboux integrating factor of the form (10) with

α1,2 =
(m + 1)(4m− c2)± (c + 2bm)

√
c2 − 4m

m(c2 − 4m)
, α3 = −3

If l − b 6= 0, then we obtain the following conditions

a = f = k = p = r = 0, d = 3, q = 3(b + g − l),

m = (−b3 − b2c + 3b2l + 2bcl − 3bl2 − 4b− cl2 − 2g + l3 + 4l)/(b− l),

s = −b2 − bg + 2bl + gl − l2, n = b2 + bc− 3bl − cl + 2l2 + 2,

(37)

for the existence of three invariant straight lines

L1,2 ≡ 1 +
c(b− l)±

√
(b− l) δ

2(b− l)
x = 0, L3 ≡ 1 + (l − b)x + y = 0

and a Darboux integrating factor of the form (10) with

α1,2 =
(
δ1 ± δ2

√
(b− l) δ

)
/δ3, α3 = −3,
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where

δ = 4b3 + 4b2c− 12b2l + bc2 − 8bcl + 12bl2 + 16b− c2l + 4cl2 + 8g − 4l3 − 16l,

δ1 = δ(b3 + b2c− 5b2l − 2bcl + 7bl2 + 6b + cl2 + 4g − 3l3 − 6l),

δ2 = 2b4 + 3b3c− 12b3l + b2c2 − 11b2cl + 24b2l2 + 8b2 − 2bc2l + 13bcl2 + 2bc

+4bg − 20bl3 − 32bl + c2l2 − 5cl3 − 2cl − 12gl + 6l4 + 24l2,

δ3 = −2δ(b3 + b2c− 3b2l − 2bcl + 3bl2 + 4b + cl2 + 2g − l3 − 4l).

Theorem 5.1. The conditions (35), (36) and (37) are sufficient conditions

in order for the cubic system (1) to have three invariant straight lines of two

which are parallel, and a center at the origin.

5.2. SOLUTION OF THE PROBLEM OF THE

CENTER FOR CUBIC DIFFERENTIAL

SYSTEMS WITH A BUNDLE OF THREE

INVARIANT STRAIGHT LINES

Let the coefficient conditions (17) are satisfied and the inequality (18) holds.

In this case, we have three distinct invariant straight lines Lj ≡ 1+Ajx− y =

0, j = 1, 2, 3 with cofactors Lj = x+Ajy+gx2+(cAj−A2
j+d+1)xy+(b−Aj)y2.

In order to find an integrating factor composed from these invariant straight

lines we use the identity (11), which yields: q = g(d + 1), bd = 0 and

α1 = [(d− 2)A2A3 + (c− 2b)(A2 + A3 − c) + d2 + d + 2m]/(A1 −A2)(A1 −A3),

α2 = [(d− 2)A1A3 + (c− 2b)(A1 + A3 − c) + d2 + d + 2m]/(A1 −A2)(A3 −A2),

α3 = [(d− 2)A1A2 + (c− 2b)(A1 + A2 − c) + d2 + d + 2m]/(A1 −A3)(A1 −A3).

Denote by A1, A2 and A3 the roots of equations (19). Then

c = A1 +A2 +A3, m = A1A2 +A1A3 +A2A3 +d+1, g(d+2) = −A1A2A3.

Let b = 0. Then along with these three invariant straight lines system (1)

has also the invariant straight line 1 + (d + 1)y = 0.

If d = 0, b 6= 0, then we have the following center conditions

a = r = 1, f = −2, k = q = g, l = −b, n = −1, p = b− c, d = s = 0 (38)
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and an integrating factor of the form (10) with

α1 = (A2
1 −A1A2 −A1A3 − 2bA1 − 2)/(A1 −A2)(A3 −A1),

α2 = (A2
2 −A1A2 −A2A3 − 2bA2 − 2)/(A1 −A2)(A2 −A3),

α3 = (A2
3 −A1A3 −A2A3 − 2bA3 − 2)/(A1 −A3)(A3 −A2).

Theorem 5.2. The conditions (38) are sufficient conditions in order for sys-

tem (1) to have a bundle of three invariant straight lines and a center at the

origin.

5.3. SOLUTION OF THE PROBLEM OF THE

CENTER FOR CUBIC DIFFERENTIAL

SYSTEMS WITH THREE INVARIANT

STRAIGHT LINES FORMING A TRIANGLE

1) Consider the cubic system (22) and let the conditions (30) hold. Let

(0, 0) 6∈ L1 ∪ L2 ∪ L3. In this case, a singular point (0, 0) is a weak focus for

(22) and the invariant straight lines L1, L2, L3 are given by formulas (28) and

(29).

Denote

h1= (B3 + 1)(n3 − s3B3)[A3(n3 − s3B3)− (m3 − s3A3) · (B3 + A1A2)]

+ (n3 − s3B3)(m3 − s3A3)(A1A2 −A1A3 −A2A3 + A2
3) + (B3 + 1)

· (m3 − s3A3)(1−m3A3 + s3A
2
3)−A3(n3 − s3B3)

+A1A2(m3 − s3A3).
(39)

Theorem 5.3. The cubic system (22) with conditions (30) and h1 = 0 has a

center at the origin.

Proof. The system (22) with the invariant straight lines L1, L2, L3 and

cofactors K1, K2, K3 has a Darboux integrating factor of the form (10) if and

only if the identity (11) holds. Let ∆ ≡ A1∆23 + A2A3 − A2
3 + B2

3 + B3 6= 0.
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From (11) by taking into account (23), (30) and h1 = 0, we obtain

α1 = (n3 − s3B3)(A1∆23 + A2A3 −A2
3) + A3(B3 + 1)(m3 − s3A3)+

+B3 −A1A2 − 3− α2 + α3B3;

α2 = −[(n3 − s3B3)(A2
1∆23 + A1A2A3 −A1A

2
3 + A3B3 + A3) + (m3 − s3A3)·

(B3 + 1)(A1A3 −B3)−A2
1A2 + A1B3 − 2A1 + A2 + A3 + ∆13α3]/∆12;

α3 = [−(B3 + 1)2(n3 − s3B3)2(A2
3 + A2

1A
2
2) + 2A1A2(B3 + 1)(n3 − s3B3)2·

(A1 −A3)(A2 −A3)− (n3 − s3B3)2(A1 −A3)2(A2 −A3)2 + (B3 + 1)·
(n3 − s3B3)(A2

1A
2
2 + A1A2 −A1A3 −A2A3 + 2A2

3)− (A1 −A3)(A2 −A3)·
(1 + A1A2)(n3 − s3B3) + (B3 + 1)2(A2

3 + B2
3)(m3 − s3A3)2 − (B3 + 1)·

(m3 − s3A3)(A1A2A3 −A1B3 −A2B3 + 2A3B3 + A3)−∆]/∆.

2) Assume now that the coefficient conditions (33) hold. In this case (0, 0) ∈
L1 ∪ L2 ∪ L3. Let us find the coefficient conditions under which the system

(1) has an integrating factor of the form

µ = (x2 + y2)α1(1− x)α2 , (40)

where α1, α2 ∈ R. Let us write down the identity (11) with K1, K2 from

(34). Equating in this identity to zero the coefficient of y, we find that α2 =

−2bα1 − 2b + c. Next, we equate to zero the coefficients of x, x2, xy and y2 in

(11), we obtain, respectively

2aα1 + 2a− d = 0, 2a(b− 1)α1 + 2ab− ac− 3a− q = 0,

2(bc + b− c− s− 1)α1 + 2bc + 2b− c2 − 5c− 2s− 4 = 0,

2(ab + bd− d− q)α1 + 2ab− ac− a + 2bd− cd− 4d− 3q = 0.

(41)

2.1) The case a 6= 0. From the first equation of (41) we find α1 = (d −
2a)/(2a). The second equation gives q = bd−ac−a− d. In this condition the

fourth equation of (41) becomes an identity and the third one looks like

G ≡ a(c + 1)(c + 2)− d(c + 1)(b− 1) + ds = 0.

Taking into consideration that ∂(µP )
∂x − ∂(µQ)

∂y = xyG
a , we conclude that under

coefficient conditions

f = a + d, g = b + c, k = −a, l = bd− ac− a,

m = −c− 1, n = c + s + 1, p = −a− d, r = 0,

q = bd− ac− a− d, a(c + 1)(c + 2)− d(c + 1)(b− 1) + ds = 0

(42)
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and a 6= 0 the system (1) has an integrating factor of the form (40) with

α1 = (d− 2a)/(2a), α2 = (ac− bd)/a.

2.2). The case a = 0. From the first equation of (41) we get d = 0

and from the second one, q = 0. Remark that conditions (33) together with

a = d = q = 0 are contained in (42). Hence in the case 2.2) by constructing

an integrating factor of the form (40) we do not obtain new sufficient center

conditions for (1) different from (42).

Theorem 5.4. The cubic system (1) with conditions (42) has a center at the

origin.
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[6] Cozma, D., Şubă, A. , Solution of the problem of the centre for a cubic differential

system with three invariant straight lines, Qualitative Theory of Dynamical Systems,

1, 2 (2001), 129–143.
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du premier degré. Bull. des Sc. Math. 1878, pp. 60–96; 13–144; 155-200.

[8] Koij, R. E., Christopher, C. J., Algebraic invariant curves and the integrability of poly-

nomial systems, Appl. Math. Lett., 4, 6 (1993), 51–53.
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Abstract This paper opens a series of studies regarding stability criteria for quasi-

geostrophic forced zonal flows in the presence of lateral diffusion and bottom

dissipation of the vertical vorticity.

The criteria, implying the asymptotic vanishing of the perturbation kinetic

energy, are expressed in terms of the maximum shear of the basic flow and/or its

meridional derivative and they are independent on the perturbation wavenum-

ber. Some stability regions are enlarged with respect to some linear asymptotic

stability criteria found in the literature. A comparison with the inviscid case

is made.

Keywords: hidrodynamic stability, turbulence.
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1. INTRODUCTION

When we deal with oceanic or atmospheric fluids the flow is characterized

by many parameters and is very complex presenting large spatial variations

in the vertical direction and characteristics of turbulence with a extremely

variable spectrum. For this reason, we limit our considerations to only a

part of the turbulent scale (the synoptic scale) and a well determined spatial

region, taking the rest of the atmosphere into account by means of initial

and boundary conditions. Consequently, we obtained the quasigeostrophic

approximation [1] [2] [3] [4] used to describe the dynamics of planetary fluids,

namely ocean and atmosphere, with the synoptical scale. In the inviscid case,

63
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Vamos and Georgescu [5] proved that it represents the model of the fifth order

asymptotic approximation of the primitive equations [4], as the Rossby number

tends to zero. All other small parameters were expressed with by powers of

this number. Thus, the main parameters remaining to govern the flow are the

Reynolds number related to the lateral dissipation and the parameter r related

to the bottom dissipation. The wind stress curl enters through the forcing

term F which is assumed to be longitude-independent. In this approximation,

we consider ”channelled flows”, that is, flows ideally placed between rigid walls

of a constant latitude which isolate the region. They are interesting from a

geophysical point of view, as, in a rotating planet, they maintain themselves

without any external forcing; therefore they are the simplest flow configuration

in the presence of longitude-independent force. The Antartic Circumpolar

current is a meaningful example of this dynamics!

Non stationary forcing, implying non steady basic flows Ψ0(y, t), were used

to study the case of barotropic flows by Kuo [1] [2], Haidvogel and Holland

[6], Wolanski [7] and Crisciani and Mosetti [8]. A more complicated forcing,

and, correspondingly a two dimensional basic flow Ψ0(x, y, t) was suitable for

baroclinic instability studies in channel geometry (e.g. for Antarctic flows)or

in rectangular closed basins (e.g. for Northern Hemisphere flows. Among these

studies, for various types of basin geometries, we quote those of Stommel [9],

Munk [10], Mc Williams and Chow [11], Le Provost and Verron [12], Crisciani

[13], and Crisciani and Mosetti [14][15][16]. The linear as well as the non linear

cases were considered.

Many mathematical methods applicable to fluid flow stability are available

in the monographs by Lin [17], Ladyzenskaya [18], Joseph [19], Drazin and

Reid [20], Georgescu [21], Straughan [22] and Chossat and Ioos [23]. We shall

apply many of them to investigate the stability of wind driven flows in various

circumstances.

In this paper we present linear stability criteria for the case of the stationary

and longitude independent basic flow Ψ0(y), corresponding to the forcing F (y).

Some of these criteria will extend those of Crisciani and Mosetti [24], while

others will use some results of these authors.
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In Section 2 we present the mathematical model (equation and boundary

conditions) governing the perturbation.

In Section 3 the inequality of the kinetic energy K is deduced ; three meth-

ods to derive conditions for negativity of the rate of change of K are presented,

and several linear stability criteria are deduced. A special attention is focused

on choosing the best among an infinite set of criteria and on giving closed form

expressions for the curves bounding the stability domain.

In Section 4 we examine our results to determine the best linear stability

criteria in order to compare it with the non-linear stability, suggesting that the

increase of stability values permits a more reasonable comparison with the non

linear case and consequently, the discussion of possible subcritical instabilities

[21].

2. THE BAROTROPIC CHANNEL

MATHEMATICAL MODEL. BASIC STATE

AND PERTURBATIONS

In the ambit of quasigeostrophic circulation of barotropic flows with lon-

gitude independent forcing, the stability problem of zonal flows leads to the

formulation of the following vorticity balance

∂∇2Ψ
∂t

+ J(Ψ,∇2Ψ + βy) = F (y, t)− r∇2Ψ + A∇4Ψ. (1)

where Ψ is the stream function,(y being latitude and x longitude), ∇2Ψ is the

vertical vorticity, i.e. the vertical component of the curl of the geostrophic

current, β is the planetary vorticity gradient due to latitudinal variation of

the Coriolis parameter, F is a forcing term, −r∇2Ψ is the bottom dissipation

term and A∇4Ψ is related to lateral vorticity diffusion [3] [4]. In the following

both the constants A and r will be assumed to be greater than zero. The

boundary conditions on Ψ are:

Ψx = 0 y = y1 y = y2 (2)

∇2Ψ = 0 y = y1 y = y2 (3)
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where (2) is the condition of zero mass flux across the wall latitude, and (3)

represents the zero lateral vorticity diffusion. The subscript indicates the dif-

ferentiation. If we specify the forcing term F (y), the problem (1)-(2)-(3) has

the zonal solution Ψ0(y) [8], apart from a vorticity vanishing term. The basic

flow, characterized by the local vorticity ∇2Ψ0 = q0, is the unique solution of

the following two-point problem q0(y1) = q0(y2) = 0 for the ordinary differen-

tial equation Aq0yy − rq0 + F (y) = 0.

Therefore the linear perturbation φ(x, y, t) = Ψ − Ψ0, induced by the per-

turbation of the initial condition , satisfies the following equation [8]

(∇2φ)t−Ψ0y(∇2φ)x+(Ψ0yyy+β)φx+r∇2φ−A∇4φ = 0, (x, y, z, t) ∈ Ω×R+,

(4)

the boundary conditions

φx = 0, ∇2φ = 0 at y = y1 and y = y2, (5)

and some initial conditions φ = φ0 for t = 0. In (4) Ω is the closed basin

Ω = { (x, y, z) ∈ R3 | 0<x<L, y1<y<y2, 0<z<D }, and R+ = { t ∈ R | t ≥ 0}.
Let K(t) =

1
2

∫

Ω
(φ2

x + φ2
y)dxdydz which represents the corresponding per-

turbation kinetic energy. The basic flow Ψ0 is asymptotically stable (in the

mean) if limt→∞K(t) = 0. It is stable in the mean if
dK

dt
< 0.

In order to deduce criteria for asymptotic stability, we need inequalities of

the form
dK

dt
+ aK<b|g(t)|, (6)

where a > 0 and b < 0 are constants and g is a bounded function. For stability

criteria we have a = 0, that is,
dK

dt
<b|g(t)|. (7)

In the next sections we shall obtain criteria for asymptotic stability exploit-

ing three ideas. The first is to retain terms as small as possible on the left-hand

side of (6). This will imply larger negative terms in b. The second concerns

a better correlation between the Schwarz and imbedding inequalities and the

general form of the Young inequality; the third is to use, instead of (6) and

(7), inequalities of the form
dK

dt
+ aK<b1

(
g(t)

)2 + 2b2|g(t)h(t)|+ b3

(
h(t)

)2
, (8)
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where a > 0, b1 < 0, b2 and b3 are real constants. In this case the asymptotic

stability criterion follows from the condition of negative definiteness of the

quadratic form from the right-hand side of (8).

3. LINEAR STABILITY CRITERIA

Let us start with the most general inequality for
dK

dt
. In the hypothesis

that

φ(x, y, t) = B(y, t)eikx (9)

where k ∈ R is the x wavenumber, we have

K(t) =
1
2

∫

Ω
(φxφ∗x + φyφ

∗
y)dxdydz

=
1
2
DL(‖By‖2 + k2‖B‖2) (10)

where ∗ stands for the complex conjugate and ‖.‖2 =
∫ y2

y1

(|.|)2dy.

Therefore, the evolution equation for K follows by multiplying (4) by φ∗,

integrating the result over Ω and taking into account (5). It reads:

1
DL

dK

dt
+ r(‖By‖2 + k2‖B‖2) + A(‖Byy‖2 + 2k2‖By‖2 + k4‖B‖2) =

= −k

∫ y2

y1

qoIm(B∗By)dy (11)

and Im indicates the imaginary part.

By using the Schwarz inequality, the most general inequality for
dK

dt
follows

1
DL

dK

dt
+ r(‖By‖2 + k2‖B‖2) + A(‖Byy‖2 + 2k2‖By‖2 + k4‖B‖2)<

<µ2|k|‖B‖‖By‖, (12)

where µ2 = maxy∈[y1,y2]|q0(y)|. Inequality (12) implies that

1
DL

[dK

dt
+ 2(r + k2A)K

]
<µ2|k|‖B‖‖By‖ − k2A‖By‖2, (13)

the inequality (13) is equivalent to

1
DL

[dK

dt
+2(r+k2A)εK

]
+(r+k2A)(1−ε)(‖By‖2+k2‖B‖2)<µ2|k|‖B‖‖By‖−k2A‖By‖2,

(14)
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where 0 < ε<1 is an arbitrary number. Thus (14) has the form (8) where

a = (r + k2A)ε, b1 = −
[
Ak2(2− ε) + r(1− ε)

]
,

b2 = µ2|k|
2 , b3 = −k2(r + k2A)(1− ε).

(15)

So, (14) is negatively defined if

−4k4A2(1− ε)(2− ε)− 4k2Ar(3− 2ε)(1− ε) + µ2
2 − 4r2(1− ε)2 < 0. (16)

This occurs if

µ2 < 2r(1− ε) (17)

or if

µ2 ≥ 2r(1−ε) and k2 ≥ −(3− 2ε)r +
√

r2 + µ2
2(2− ε)(1− ε)−1

2A(2− ε)
. (18)

Inequalities (17) represent criteria for asymptotic stability. They do not

depend on k or the Reynolds number R (which is proportional to A ). As will

be shown in the next Section, they are the best for large R and µ3, where

µ3 = maxy∈[y1,y2]|q0y|. (19)

When ε → 0, the asymptotic stability criteria (17) become better and better

and tend to the limit criterion:

µ2 < 2r. (20).

For ε = 0, the above reasonings shows that among the criteria (17)

µ2<2r (21)

is the best criterion for stability only.

Criteria (18) depend on k. In order to obtain k-independent criteria, oppo-

site inequalities for k are needed, such sufficient conditions will be obtained in

the following by using the opposite inequalities.

Let us write (14) in the equivalent form

1
DL

(dK

dt
+2k2AεK

)
<µ2|k|‖B‖‖By‖−‖By‖2

[
r+k2A(2−ε)

]
−k2

[
r+k2A(1−ε)

]
‖B‖2,

(22)
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where 0 < ε<1. If in (22) we neglect all terms in ‖B‖2 and use the Poincaré

inequality ‖B‖<α−1‖By‖, where α = π(y2−y1)−1, we get an inequality of the

form
1

DL
(
dK

dt
+ a′K)<b′‖By‖2, (23)

where

a′ = 2k2Aε, b′ = |k|µ2α
−1 − r − k2A(2− ε). (24)

Therefore b′ in (24) is negative for all k2 either if

1) α−1µ2 < 2
√

(2− ε)rA (25)

or if

2) α−1µ2 ≥ 2
√

(2− ε)rA and |k|< 1
2A(2− ε)

[
α−1µ2−

√
α−2µ2

2 − 4(2− ε)rA
]
.

(26)

The inequalities (25) are criteria independent of k; the best criteria correspond

to ε → 0. Among the criteria (25), the limit inequality

α−1µ2 < 2
√

2rA (27)

represents the limit of criteria of asymptotic stability and is the best criterion

of stability.

For ε = 0 the inequality

α−1µ2<2
√

2rA (28)

is, among (25), the best criterion for stability.

For ε = 1, we obtain the criteria of Crisciani and Mosetti [24]

α−1µ2 < 2
√

rA.

Multiplying (4) by B∗
yy−k2B∗ and integrating over Ω, Crisciani and Mosetti

[24] obtained the following criteria:

|k| ≥ µ3

r
, (29)

|k| ≥ 3

√
µ3

A
. (30)

From (26)2 and (29) it follows that

µ3

r
<

1
2A(2− ε)

[
α−1µ2 −

√
α−2µ2

2 − 4(2− ε)rA
]
, (31)
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which, in the plane (µ3, α
−1µ2), represents a region of asymptotic stability.

The inequality (31) is equivalent to:

α−1µ2 −
2A(2− ε)

r
µ3 ≥

√
α−2µ2

2 − 4(2− ε)rA, (31)′

which shows that the left hand side of (31)’ must be positive. However, in the

(µ3, α
−1µ2) plane, the stability region is above the straightline bε

α−1µ2 =
2(2− ε)A

r
µ3. (32)

Moreover, taking the square of (31)′ we find that the stability region is under

the curve Cε:

α−1µ2 =
2A

r
µ3(2− ε)− r2

µ3

. (33)

At the intersection of the curve (33) with the straightline (32), there is the

point Pε =
( 1√

(2− ε)
r

√
r

A
, 2

√
(2− ε)rA

)
which is the minimum of the curve

(33).Therefore, the region of asymptotic stability corresponding to (25) and

(31) is the union of the part of the (µ3, α
−1µ2)-plane located between the

curves (33), (32) and the α−1µ2axis, with that situated between the µ3-axis

and the straightline rε:

α−1µ2 = 2
√

(2− ε)rA (34)

The largest such region is obtained for ε = 0 and it is bounded by the curve

C0 and the straightline r0

α−1µ2 =
2A

r
µ3 +

r2

µ3

, 0 < µ3<
1√
2
r

√
r

A
(35)

α−1µ2 = 2
√

2rA, µ3 ≥
1√
2
r

√
r

A
. (36)

The criterion defined by (35), (36) is independent of k2, because, if (31) is

satisfied, k2 must verify at least one of (26)2 or (29).

From (26)2 and (30) it follows that

3

√
µ3

A
<

1
2A(2− ε)

[
α−1µ2 −

√
α−2µ2

2 − 4(2− ε)rA
]
, (37)

which, in the plane (µ3, α
−1µ2), represents a region of asymptotic stability.

As above, it follows that the asymptotic stability region corresponding to (37)
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is located between the curves C′ε

α−1µ2 = (2− ε) 3
√

µ3A
2 + r 3

√
A

µ3

, (38)

and C′′ε
α−1µ2 = 2(2− ε) 3

√
µ3A

2 (39)

that have the intersection point Pε =
( 1

(2− ε)
√

(2− ε)
r

√
r

A
, 2

√
(2− ε)rA

)
.

Let us note that the ordinate of Pε is the same for both cases (31) and (37) and,

for the points whose abscissa is less than that of Pε, (38) is above (39),which,

in the same interval, is under the straightline (34). Therefore, the region of

asymptotic stability is the union of the region delimited by the curve (38)

and the α−1µ2 axis, with the part of the (µ3, α
−1µ2)-plane which is situated

between the µ3-axis and the straightline (34). The largest such region is

obtained for ε = 0 and it is bounded by the curves C′0 and r0

α−1µ2 = 2 3
√

µ3A
2 + r 3

√
µ3

A
, µ3<

1
2
√

2
r

√
r

A
, (40)

α−1µ2 = 2
√

2rA, µ3 ≥
1

2
√

2
r

√
r

A
. (41)

Crisciani and Mosetti [24] treated only the case ε = 1, obtaining the curves

C′1 and C′′1 As above, the criterion provided by (40), (41), is independent on

k2 because from (37) it follows that k2 must satisfy at least one of (26)2 and

(30).

If we associate, for ε = 0, (26) with (18), we obtain:

1
16A2

[
α−1µ2 −

√
α−2µ2

2 − 8rA
]2
≥ −3r +

√
r2 + 2µ2

2

4A
. (42)

Inequality (42) is valid for

µ2 ≥ 2r, α−1µ2 ≥ 2
√

2rA, (43)

and leads to the following asymptotic stability criterion

α−1µ2 <
1
α

√
2r2 + rAα2 + α4A2 +

√
(2r2 + rAα2 + α4A2)2 + 4Ar3α2 = α−1µ∗2

(44)
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which must be considered together with (43) and the restrictions

r

α2A
≥ 7 +

√
41

4
. (45)

In the next section we will clarify, in physical terms, the inequality (45).

4. DISCUSSION AND CONCLUDING REMARKS

We shall summarize our main results in mathematical and physical terms.

In this paper we obtained some wavenumber independent stability criteria,

namely (21) and (28), which are in terms of the maximum shear of the basic

flow. The criterion (28) is better than (21) for r/Aα2<2 and worse for r/Aα2 ≥
2.

Let us assume a typical interval for the oceanic values (in S.I. units) of

lateral vorticity diffusion

102<A<104, (46)

for bottom dissipation r the value 10−7 and for L the value 106; therefore, we

have: (α =
π

2L
)

r

Aα2
= 0

(
4
102

π2

)
(47)

and thus the criterion (21) is better than (28).

The criterion (28) is obtained from the inequality (19) when ε = 0, from the

same inequality, when ε = 1, we recover the criterion of Crisciani and Mosetti

µ2<2
√

rA.

Moreover, from (47) it follows that the asymptotic stability criterion (44)

holds for

µ2 ≥ 2r,

since, in physical terms, the typical values of r/Aα2 satisfy (45) and (43)2.

Some other asymptotic stability regions are defined in terms of the maxi-

mum shear of the basic flow and of the maximum of its meridional derivative,

namely, in the (µ3, α
−1µ2)-plane, the region

α−1µ2 = 2A
r µ3 + r2

µ3
, if 0 < µ3<

1√
2
r
√

r
A ,

α−1µ2 = 2
√

2rA, if µ3 ≥ 1√
2
r
√

r
A .
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and the region

α−1µ2 = 2 3
√

µ3A
2 + r 3

√
µ3
A , if µ3<

1
2
√

2
r
√

r
A ,

α−1µ2 = 2
√

2rA, if µ3 ≥ 1
2
√

2
r
√

r
A .

which are independent from k2. We again find , from the asymptotic stability

region defined from (35)-(36) and (40)-(41),the curves C1 and C′1 obtained

from Crisciani and Mosetti [24], corresponding to the case ε = 1. We note

that the curve Cε1 is below the curve Cε2 if ε1 > ε2. So, for 0<ε<1, the family

Cε is situated between the disjoint curves C0 and C1.Similarly, the curve C′ε1 is

below the curve C′ε2 if ε1 > ε2 and, for 0<ε<1, the family C′ε is situated between

C′0 and C′1. In addition, the curve C1 is above the curve C′0 and they do not

intersect each other. Thus the best asymptotic stability region, bounded by

the curves C0 and r0,namely the first of the two previous regions, is given by

(35), (36) and becomes better and better for large R and µ3.

If we assume [2] [4], the basic flow in nondimensional form, is :

U0 =
1
2
(1 + cosπy) (48)

where U0 = u0/V , u0 = ∂Ψ0
∂y , V being a typical velocity. Our criterion (21)

becomes:

π<4r′ (49)

where r′ = L
V r is the non dimensional bottom friction coefficient.

The asymptotic stability region given by (35)-(36), in the specific case of

the basic flow (48), takes the form

1 ≤ π2

Rr′ + 2r′2
π2 if π2

2 ≤ r′
√

Rr′
2 ,

1 ≤ 2
√

2r′
R if π2

2≥r′
√

Rr′
2

(50)

where R = V L
A is the Reynolds number.

We observe that the inequality (50)1 is satisfied for

R<8r′ (51)

and (51) is equivalent to (50)2. Therefore, in the plane (r′, R), (51) gives the

region for which the asymptotic stability is ensured. A necessary condition
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for instability can be obtained, of course, by reversing the inequality (51). In

this case, from (31), for ε = 0, it follows that the wavenumbers k which give

instability belong to the interval

1
4A

[
α−1µ2 −

√
α−2µ2

2 − 8rA
]
<k<

µ3

r
, (52)

which, in nondimensional form, for the basic flow (48) becomes:

R

4
− 1

4

√
R(R− 8r′)<k<

π2

2r′
. (53)

We observe that the left hand side of (53) is greater than r′, that is, the interval

defined by (53) is a proper subset of the interval (28) from [24]. Moreover , to

clarify the effect of the dissipation on the instability of the basic flow (48), we

can compare (53) with the interval obtained in [2]:

0<k<
π
√

3
2

(54)

to which the wavenumbers giving instability for (48) belong, as demonstrated

by Kuo with numerical calculations.

Finally, we underline that a better linear stability criterion is of interest

because, generally, these criteria are feeble and their values are considerably

under the true linear stability limits (neutral curves). In this way they differ

greatly from the global (energy) criteria.

Thus, the proof of subcritical situations is not possible for very weak stabil-

ity criteria but becomes possible if stronger linear stability results are available.

Our methods are generally applicable and lead to considerable improvement

of the linear stability domain for cases where functional inequalities at hand

are very weak. However all our considerations were limited by the fact that

the terms in the second meridional derivative of basic flow was disregarded.

Its consideration is of further concern.
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Abstract Petri nets are used to describe graphically the structure of the distribute sys-

tems that need some representations of the concurrent or parallel activities. It

represents a modelling language that is applicable to a wide variety of systems

thanks to their generality and permissiveness. There are many types of Petri

nets; more studied in this paper are CEN(Condition Event Nets), PTN(Place

Transition Nets) and CPN (Coloured Petri Nets).

This paper aims to reveal the differences between these three types of Petri

nets using an application on a mobile phone. From the several processes that

the mobile phone can be used for, it is presented the action of sending the data

using infrared or bluetooth system.

Keywords:Petri nets, distribute systems.

2000 MSC: 94C99.

1. INTRODUCTION

A Petri network is a mathematical representation for the discrete distribute

systems. As a modelling language, it can describe graphically the structure of

a distribute system using a direct graph with labels. This network contains

nodes which can determine the places, nodes that can determine the transitions

and direct arcs that are connecting the places with the transitions.

A Petri network is a 5-tuple PN=(P, T, F, W, M0), where

P = {p1, p2, ..., pm} is a finite set of places,

T = {t1, t2, ..., tm} is a finite set of transitions,

F ⊆ (P × T ) ∪ (T × P ) is a set of arcs,

W : F → {1, 2, 3, ...} is the weight function,

M0 : P → {0, 1, 2, 3, ...} is the initial marking,

77
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P ∩ T = ® and P ∪ T 6= ®.

The Petri networks are using graphical symbols to represent states (usually

represented by circles), transitions (usually represented by squares) and arrows

from the states to the transitions and from the transitions to the states. ©→
2 →©. The states can be called places or conditions, and the transitions are

also referred like events.

The condition event networks (CEN) represent the base type for the Petri

nets. A CEN is formed through conditions (states), events (transitions) and

connections (arrows) from the conditions to the events and from the events to

the conditions.

A simple extension of the condition event network is to allow a marking to

have more then one token for the conditions. These networks are known as

place transition network (PTN). The conditions are now called places and the

events transitions. In a PTN the places are labelled with a positive number

that represents the capacity. This means the maximum number of tokens

that can be in one place. The arrows can be labelled with a positive number

representing the weight.

In the colored Petri nets (CPN) there is a difference between the tokens.

The term colored is referring to the fact that the tokens are distinct through

the value, that is called color. In a CPN to any place it is associated a colored

set that is specifying the set of the colors for that place. A transition may

have a sequence of guard expressions that will be evaluated to a Boolean value.

The arrows from the places to the transitions and from the transitions to the

places are called arcs.

2. SENDING THE DATA USING INFRARED

AND BLUETOOTH SYSTEM

Sending the data using infrared or bluetooth system needs to proceed the

following steps:

1 select the file that have to be sent;

2 select the type of the sending (infrared or bluetooth);

3 - bluetooth
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- looking for the available mobile phones;

- selecting the mobile phone for sending;

- infrared

- connecting using infrared system to the other mobile phone;

4 sending the file to the mobile phone;

5 receiving the file from the first mobile phone;

6 receiving the message about the successful sending.

The special cases of this process are of interest. Such is the moment when

it is possible to send a file through infrared or the moment when it is possible

to send through bluetooth, and all the settings that are included.

We suppose that it is not possible to send from a mobile phone one file

through infrared and bluetooth system at the same time. Thus, the first rule

is that for sending one file through infrared it is necessary that the phone not

to send files using bluetooth. Similarly for the bluetooth not sending the file

through infrared. In the same time it is not possible to send more than one

file using any of the two systems. For sending the second file it means waiting

for the finishing process of sending the first file.

The preconditions for the event sending through infrared are:

system for sending through infrared free;

system for sending though bluetooth free;

ready for sending through infrared.

The postcondition for this event is ready to receive through infrared.

In the same time for occurring bluetooth event sending through bluetooth there

are preconditions:

system for sending through infrared free;

system for sending through bluetooth free;

ready for sending through bluetooth.
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The postcondition for this event is ready to receive through bluetooth.

For a PTN we suppose that for sending the data through infrared we need

the same resources as for sending the data through the bluetooth system. The

number of the available resources is three. One process that doesn’t get the

necessary number of resources for running will wait until the resources will

become free. The place Keys will show through a token each resource that is

in use. When one process of sending the data is finished, the used resources are

being returned in the place Keys and proceed to the other actions which don’t

need the critical resources. For representing using CPN the number of places

Fig. 1. CEN for Sending the File

will be reduced. It is not necessary to have representation for sending the file

through the infrared and a separate one for sending through the bluetooth.

Previously there were three preconditions for each case, now there is just one

place, and the marking with colors will make the difference between the two

cases. The function S(x) is making the connection between the case of sending

the data using one system and the possibility of realizing this process.

Further we study the properties of this system. For this we use just the

PTN diagrams. The networks above are bounded, because there are no places

in which the number of the tokens become infinity. As noted from above the
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Fig. 2. PTN for Sending the File

Fig. 3. CPN for Sending the File
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Fig. 4. Figure 2 with the Places and the Transitions Numbered

liveness property, we can say there are no dead transition, so the networks

are 3-live. In the same time the networks above are reversible, coverable and

persistent.

For getting the coverability tree for fig. 2, we numbered the places and the

transitions. Thus the initial marking will be M0=(1,0,0,0,3,1,0,0,0). Here two

transitions t1 and t5 occur.

If t1 will fire we get the marking M1=(0,1,0,0,3,1,0,0,0), then two transitions

t2 and t5 can occur.

If t2 will fire we get the marking M2(0,0,4,0,0,1,0,0,0). For M3 there are

two transition that can occur, t3 and t5.

If t3 will fire we get M3(0,0,0,4,0,1,0,0,0) then can occur t4 and t5.

If t4 will fire we get M4(1,0,0,0,3,1,0,0,0)=M0, so the node M4 will

become ”old”.

If t5 will fire in M3 we get the marking M5(0,0,0,4,0,0,1,0,0) then

it can occur the transition t4. If t4 will fire we get M6(1,0,0,0,3,0,1,0,0)

then t1 and t6 can occur.

If t1 will fire, then we get M7(0,1,0,0,3,0,1,0,0) and t2 and t6

can occur.

If t2 will fire, we get the marking M8(0,0,4,0,0,0,1,0,0), then

the transition t3 can occur. After firing the transition t3 we
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Fig. 5. The Coverability Tree for the Figure 2
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get M9(0,0,0,4,0,0,1,0,0). For this marking it can occur t4.

After firing t4 we’ll get M10=(1,0,0,0,3,0,1,0,0)=M6,

so the node M10 is ”old”.

If for M7 will fire t6 we get the marking M11=(0,1,0,0,0,0,0,4,0)

for which it can occur t7.

The firing of t7 is getting the marking M12=(0,1,0,0,0,0,0,0,4).

For this marking the transaction t8 can occur. After firing

this transition we get the marking M13=(0,1,0,0,3,1,0,0,0)=M1,

so the node will be labeled ”old”.

If for M6 will fire t6 we get the marking M14=(1,0,0,0,0,0,0,4,0)

then it can occur t1 and t7.

If t1 will fire we get the marking M15=(0,1,0,0,0,0,0,4,0) =

M11 so the node will be ”old”.

If for M14 will fire t7 we get the marking M16=(1,0,0,0,0,0,0,0,4)

then it can occur t1 and t8.

If t1 will fire we get M17=(0,1,0,0,0,0,0,0,4) = M12, so the

node M17 will be labeled ”old”.

If for M16 the transaction t8 will fire we get the marking

M18=(1,0,0,0,3,1,0,0,0)=M0, so the node will be ”old”.

If for M2 will fire t5 we get the marking M19=(0,0,4,0,0,0,1,0,0)=M8, so

the node M19 will be ”old”.

If for M1 will fire t5 we get the marking M20=(0,1,0,0,3,0,1,0,0)=M7, so M20

will become ”old”.

If for M0 will fire t5 we get the marking M21=(1,0,0,0,3,0,1,0,0)=M6, so the

node M21 become ”old”.

The coverability tree that result is in Figure 5.
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1. PRELIMINARIES

Denote by RF the class of fuzzy subsets of the real axis satisfying the fol-

lowing properties:

(i) ∀u ∈ RF, u is normal, i.e. there exists s0 ∈ R such that u(s0) = 1;

(ii) ∀u ∈ RF, u is fuzzy convex set;

(iii) ∀u ∈ RF, u is upper semicontinuous on R;

(iv) cl{s ∈ R|u(s) > 0} is compact, where cl denotes the closure of a subset.

Then RF is called the space of fuzzy numbers.

The metric structure is given by the Hausdorff distance D : RF × RF →
R+ ∪ {0}, D(u, v) = supα∈[0,1] max{|uα − vα|, |uα − vα|}.
2. GENERALIZED DIFFERENTIABILITY

In [1] a more general definition of derivative for fuzzy-number-valued func-

tions is introduced. Using this differentiability concept we have the following

definition.
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Definition 2.1. Let F : I → RF and m,n = 1, 2. We say that F is (m)-

differentiable on I if F is differentiable as in Definition 5(m)[1] and its deriva-

tive is denoted by D1
mF. Also, if D1

mF is (n)-differentiable as a fuzzy function,

D2
m,nF denotes its second derivative on I.

Theorem 2.1. Let D1
1F : I → RF and D1

2F : I → RF be fuzzy functions.

(i) If D1
1F is (1)-differentiable, then f

′
α and g

′
α are differentiable functions and

[D2
1,1F (t)]α = [f

′′
α(t), g

′′
α(t)].

(ii) If D1
1F is (2)-differentiable, then f

′
α and g

′
α are differentiable functions

and [D2
1,2F (t)]α = [g

′′
α(t), f

′′
α(t)].

(iii) If D1
2F is (1)-differentiable, then f

′
α and g

′
α are differentiable functions

and [D2
2,1F (t)]α = [g

′′
α(t), f

′′
α(t)].

(iv) If D1
2F is (2)-differentiable, then f

′
α and g

′
α are differentiable functions

and [D2
2,2F (t)]α = [f

′′
α(t), g

′′
α(t)].

3. SOLVING FUZZY DIFFERENTIAL

EQUATIONS

Consider the Cauchy problem for the second-order fuzzy differential equa-

tions

y
′′
(t) + ay

′
(t) + by(t) = σ(t), y(0) = γ0, y

′
(0) = γ1, (1)

where a, b ∈ R and σ(t) is a fuzzy function on some interval I. The interval I

can be [0, A] for some A > 0 or I = [0,∞).

Our strategy of solving (1) is based on the choice of the derivative in the fuzzy

differential equation. In order to solve (1) we have three steps: first we choose

the type of derivative and change problem (1) to a system of ODE by using

Theorem (2.2) and considering initial values. Second we solve the obtained

ODE system. The final step is to find such a domain in which the solution and

its derivatives have valid level sets. In view of these we propose the following

definition.

Definition 3.1. Let y : I → RF be a fuzzy function such that D1
my and D2

m,ny

exist for m,n = 1, 2 on I. If y, D1
my and D2

m,ny satisfy problem (1) we say

that y is a (m,n)-solution of problem (1).
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We have the following alternatives for solving problem (1):

(1,1)-Solution: If we consider y′(t) using the (1)-derivative and then its

derivative, y′′(t) using the (1)-derivative we have

[y′′(t)]α = [y
′′
(t; α), y

′′
(t; α)] and [y′(t)]α = [y

′
(t; α), y

′
(t; α)].

Now we proceed as follows:

(i) solve the differential system




y′′(t;α) + ay′(t; α) + by(t; α) = σ(t; α),

y′′(t;α) + ay′(t; α) + by(t; α) = σ(t; α),

y(0) = γ0, y(0) = γ0, y
′(0) = γ1, y

′(0) = γ1,

for y and y.

(ii) ensure that [y(t; α), y(t; α)], [y
′
(t;α), y

′
(t;α)] and [y

′′
(t;α), y

′′
(t; α)] are valid

level sets.

Other cases are similar to (1,1)-solution.

Remark 3.1. The solution of FDE (1) depends upon the selection of deriva-

tives, in the first or second form.

Example 3.1. Consider the second order fuzzy initial value problem

y′′(t) = σ0, y(0) = γ0, y′(0) = γ1 t > 0,

where σ0 = γ0 = γ1 = [α− 1, 1− α]. It possesses 4 different solutions.

In order to extend the results to Nth-order fuzzy differential equations, we

can follow the proof of Theorem 2.2 to get the same results for derivatives

of an arbitrary order N. We have at most 2N solutions for a Nth-order fuzzy

differential equation by choosing the different types of derivatives.
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Abstract The economic procedures and phenomena are characterized by the fact that

their manifestation is very complex, having a wide range of aspects. This

feature essentially distinguishes them from the phenomena from other areas.

The remarkable complexity of economic phenomena has as causes lots of fac-

tors whose specificity depends on the context. This complexity of the social-

economic area also has a cause of informational nature. The informational

tides from this area have an heterogeneous nature and a relatively low degree

of accuracy and relevance, because of the imperfections characteristic to the

measuring process. In the decisional act is used a lot of information which has

to be registered, analyzed and interpreted. The paper stresses upon the impor-

tance of the financial analysis as a tool of appreciating the performances and

the financial potential of a company, cooperative statistics and new solutions

of tackling with financial analysis.

Keywords: financial analysis, economic models, indicators, financial diagnosis, function,

interpreting.
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1. INTRODUCTION

Due to a dynamic development of communication means during the past

decades, the concept of information is assimilated, in the economic environ-

ment, as a signal that can appear at one moment on one of the communication
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channels and that can be exploited in the benefit of the society or can be ig-

nored, being considered as irrelevant.

When it comes to defining the concept of information, a relevant example

is presented by F. Heylighen, on the website entitled “Web Dictionary of

Cybernetics and Systems”, where he states that the answer to a question

can be considered as a carrier of information as long as it diminishes the

interlocutor’s degree of uncertainty.

2. A SYSTEMIC APPROACH TO THE

ECONOMIC ENVIRONMENT

In the context of information systems, data are considered as a tangible

object, being represented by numeric or alphanumeric symbols and can be

memorised by a variety of storing mediums.

In order for financial accounting information to be useful to the users, it is

necessary that they meet certain qualitative characteristics. According to the

IASB general arrangement, for the elaboration and presentation of financial

reports, the four main qualitative characteristics are: intelligibility, relevance,

credibility and comparability.

Intelligibility refers to the easy understanding of information by the

users. The IASB general arrangement explicitly requires that informa-

tion about complex issues, that should be included in financial reports,

should not be excluded based only on the fact that they can be dif-

ficult to comprehend by certain users, because of their importance in

decision-making.

Relevance represents the ability of information to allow users to evalu-

ate past, present or future events and, through their content, to facilitate

the decisional activity.

Credibility regards the lack of errors amidst information and their

ability to present no deformities or subjective points of view, so that

they can illustrate a faithful representation of reality.
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Comparability assumes that the financial information is compared in

time and space. This objective can be accomplished by the permanency

of accounting methods that evaluate, classify and present the elements

described in financial reports. Any modification of these methods must

allow users to identify the differences between the applied accounting

methods.

The IASB [3] accounting arrangement also defines the limits of relevant and

credible information. Among these we mention:

- the opportunity (referring to obtaining the information in useful time, so

that it can be used in the decisional processes).

- the balance between benefit and cost (the benefits that can be quantified

as a result of using information need to be bigger that the cost of supplying

that information).

Attempting to develop a terminology both simple and rigorous, the initia-

tors of the system theory defined the system as en “ensemble of interacting

elements”. An abstract concept that has been developed in the economic and

informatics field is that which represents systems as structures with input and

output. Based on these approaches, the mathematical theory of systems was

developed.

Starting with the hypothesis that elements in the system are formed from

other elements, and these are organized on hierarchic levels, we can conclude

that a system (also called a higher system) consists of a number of several

sub-systems.

One principle stated in systems theory claims that, in time, systems evolve

and have the ability of integrating in more and more complex systems. In the

economic field, integrations have a complex typology.

Therefore, we can speak about:

- a genetic integration in the case of sub-systems that are part of a certain

system, because they were created in a certain environment and because of

certain dependencies which can not exist outside the system;

- a second type of integration is integration by coercing. In an economic

system the integration by coercing assumes forcing the elements to integrate
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in a certain organizational scheme and can be clearest exemplified by the fiscal

regulations that impose certain restrictive norms in the financial accounting

field;

- another type of integration among economic systems is the integration

by dependence, that refers to certain elements’ necessity to remain inside a

system, because of the fact that, directly or indirectly, they have relations of

dependence with other elements. Therefore, in a society with a production

activity, the productive units are dependent on the supplying service that

ensures their raw material;

- a form of integration manifesting especially on capital markets, in the

economic field, is the integration on choice. This offers to elements (the sub-

systems) the possibility of choosing the system they will integrate in.

In the perspective of a hierarchic model proposed by Dumitru Oprea [1] the

main components of the economic system are:

X the institutions (institutions of the state, but also large enterprises);

X the organisations (sub-systems of institutions, by example, the produc-

tion units of enterprises);

X the units (base elements of the economic system that can not be further

divided).

During the design of informatics systems, one resorts to specific shaping

methods that are supposed to capture the component units and the activities

taking place in an enterprize, in an integrated vision, identifying the informa-

tion flows.

The classic model of presentation of information flows in an enterprize high-

lights the main role of the accounting department (sub-system).

Fig. 1. The information flow in an economic enterprize.
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3. CATEGORIES OF ACCOUNTING

INFORMATION

According to accounting treaties [2], the accounting informations can be

classified in four categories:

X operational information;

X information supplied by the financial accounting;

X information supplied by the administrative accounting;

X accounting information regarding the satisfaction of fiscal needs.

Accounting epistemology refers to the way the accounting is organized, in

the sense of separating the organization of financial accounting and that of

the administrative accounting, thorough the notions of accounting monism

and dualism.

In a formal definition, monism or the single-circuit accounting system is the

organization form through which the administrative accounting is completely

integrated in the accounting system. Formal monism can manifest integrally,

where accounting is held entirely by means of accounts or attenuated, where

parts of the administrative accounting are treated without using the accounts

system, through a number of separate tables.

Accounting dualism is the form of organization that assumes the net dis-

sociation between the financial accounting and the administrative accounting,

that is exclusively assigned to the supply of information for the internal envi-

ronment of the enterprize.

In Romania, the organization of the accounting system is made according

to the dualist concept, so that, at the enterprize level, one can distinguish two

separate sections of accounting: financial and administrative (or managerial).

4. THE IMPORTANCE OF THE

ECONOMICAL-FINANCIAL ACCOUNTING

ANALYSIS AND DIAGNOSIS

The economical-financial analysis represents an ensemble of concepts, tech-

niques and tools that ensure the handling of internal and external information,

in order to formulate pertinent opinions regarding an economic agent’s situa-
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tion, the level and quality of his performance, the degree of risk imposed by

the evolution in a dynamic competition environment.

The process of reporting finances imposes on the enterprize that they com-

plete a full set of financial informing situations. The balance sheet, the loss

and gain account, the presentation situations of financial modifications (the

treasury flow situation) and the explicative notes are compulsory elements of

these reports.

The approach of the economic systems, in the sense of diagnosing them,

assumes a specific measure, that integrates the classic vision, based on the

knowledge of causality relations and the internal laws of the formation and

evolution of phenomena. The practical usefulness of financial analysis meets

difficulties in approaching the problem in an accurate and unique manner.

The reason for these difficulties resides, most of the time, in the fact that

the ensemble of tools and methods required by the financial analysis do not

represent a theoretical discipline, but have a specific content.

The results of the economic activities run by an enterprize must be analyzed

not only as values, but also with respect to a reference criterion. Analysis

methods, as noticeable in the regression analysis method, are methods that use

mathematical formulas to enable their definition. Therefore, the interpretation

of the results obtained will take into account the mathematical interpretation,

in correlation with the economical facts described by the results.

The method of regression analysis. Also know as correlation method,

this method can be used when the phenomenon and the factors that are being

analyzed are of the stochastic type. Applying this method assumes:

performing a qualitative analysis in order to establish the economic

content of the analyzed phenomenon (y) and of the influence factors (x1,

x2, . . . xn);

identifying the causality relations between the phenomenon and the fac-

tors, followed by the mathematical formalization (regression equation).

A regression equation can be fit into one of these categories:

linear, y = a + bx; hyperbolic, y = a + b
x ; parabolic, y = a + bx + cx2;

exponential, y = a ∗ bx;
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determining, by calculation, the value of the regression equation param-

eters (you apply the least squares method);

establishing the intensity of the relation between the analyzed phe-

nomenon and the influence factors, by means of the correlation ratio

(rxy) or the correlation rapport, according to the formula

rxy =
n

∑
yx−∑

x ∗∑
y√

[n
∑

x2 − (
∑

x)2] ∗
√

[n
∑

y2 − (
∑

y)2]
;

quantifying the factors’ influence over the analyzed phenomenon through

the determined coefficients (dyx);

There is a series of indicators that can be grouped into:

I indicators calculated on the basis of the accounting balance sheet:

- net patrimony;

- revolving fund;

- necessary capital;

- net treasury;

- cash flow;

I indicators calculated on the basis of the results account:

- turnover;

- commercial margin;

- production of the year;

- the added value;

- gross operating surplus;

- the capacity of auto-financing;

- profit/loss.

The aggregation of data, in a first step, can refrain to cumulating as future

“facts” in the data deposit scheme. We must mention that, for the “time”

dimension, the aggregation by cumulating will only be done for income and

expenses accounts.
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5. CONCLUSION

The concept of shaping an enterprise’s financial accounting activity assumes

a systemic approach that will allow the identification of all the elements that

are interacting and are generating influences over the enterprize.

Following a detailed study of the decisional processes characteristic to the

financial accounting field and analyzing the activities in the Business Intelli-

gence category that circumscribe to these on different managerial levels, we

can classify these activities as:

- activities of report on the information regarding the situation of the indi-

cators that reflect the evolution of the organization;

- the creation of predictions based the historic data extracted from the trans-

actional systems of the enterprize and the external sources data, organized,

most of the cases, in the shape of Data Warehouse or Data Mart;

- data analysis activities that, in the field of informatics systems dedicated

to assisting the decision based on the Data Warehouse and OLAP technology,

are gradually replaced by the multidimensional analysis, which opens new

perspectives on exploring the data and has the role of permanently supplying

new information to the decision factors;

- identification of correlations between the factors that influence the activ-

ities run by the enterprize.
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1. INTRODUCTION

The ocean currents are real rivers of water (cold or hot) moving in the

oceans and seas. They are the result of some forces which act upon the oceans

water: the wind, the force due the density gradients, the gravity, the Coriolis

force. The ocean currents are very important for the life on our planet. They

have a very great influence the earth’s energy distribution and hence influence

the climate. The ocean currents may be divided into two major circulation

systems: surface circulation and deep-water circulation.

The stress of the wind takes action to the sea surface and the energy is

transferred from wind to sea, inducing a momentum exchange. Ekman was

the first to study the effect of the frictional stress of the wind at the ocean

surface. That is why the surface currents due to the wind stress were named

Ekman currents. Under some assumptions, the velocity and the direction of

the current, the water transport and its direction can be calculated. The mo-

tion is relatively steady-state. For eddy friction stress, the kinematic viscosity

97



98 Angela Muntean, Mihai Bejan

is used estimating vertical shear. The Ekman currents were calculated in the

case when the ocean is infinite and in the case of finite constant depth [1].

The Ekman current is a motion obtained under the effect of two forces:

Coriolis force and friction. This motion takes place only in a region named

Ekman layer. The width of the Ekman layer is a number named Ekman depth

or depth of frictional influence. The Ekamn current, obtained by wind blowing

over the sea, has the maximum speed at the surface. Its speed decreases with

the depth increase and its direction changes gradually to the right of the wind

direction in the northern hemisphere, describing a kind of spiral. The Ekman

mass transport is at right angles to the wind direction. When the waters move

away from the coast, water below the surface comes up to replace it. It is the

so-called upwelling phenomenon. If the waters move towards the coast it must

move down and the downwelling phenomenon appears [2].

In the Black Sea basin there is a surface water circulation due to the winds

which blow along the sea surface. The Ekman currents have a small speed

and variable direction. The most important wind direction during all the year

round is north-western one, but the wind blow also from north, west, south,

south-west, north-east [3].

On the Romanian Black Sea shore there is a great difference in the Ekman

currents development on the account of the small depth of the water for a very

large region. That is why the Ekman currents can be studied in the case when

the basin depth is not infinite, the wind direction is variable, the wind is not

uniform [5].

For each such motion, there are many specific conditions which must be

taken into consideration and there are different approximations used in every

case.

2. EQUATIONS OF MOTION

In oceanography the system of equations of motion is obtained from the

Navier-Stokes ones. The components of motion velocity are: u, v, w. The

third equation is used in hydrostatic form. The vertical component of the

velocity can be neglected. The equations for horizontal motion are written in
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the presence of two forces only: Coriolis force and frictional force

du

dt
= f v +

1
ρ

∂p

∂x
+ Ah

(
∂2u

∂x2
+

∂2u

∂y2

)
+ Az

∂2u

∂z2
, (1a)

dv

dt
= −f u +

1
ρ

∂p

∂y
+ Ah

(
∂2v

∂x2
+

∂2v

∂y2

)
+ Az

∂2v

∂z2
, (1b)

g = −1
ρ

∂p

∂z
. (1c)

Here f is the Coriolis coefficient (assumed constant), p the pressure, Ah, Az eddy

viscosities in horizontal and vertical directions. The coordinate system Ox y z,

used is a rectangular one, with Ox pointing to the east, Oy to the north and

Oz up. It be used only because it was concerned with vertical shear [3].

The effect of the frictional stress at the sea surface due to the wind blowing

over it, must be studied under the assumptions:

- no boundaries;

- finite depth H, depending on the horizontal position x, y;

- a steady wind blowing for a long time under a constant angle relatively

north direction, with the magnitude of wind stress;

- homogeneous water and barotropic condition;

- f is constant, i. e. the f -plane approximation [1], [2].

For Ekman currents it can be used the system of horizontal equations of

motion

0 = f v + Az
∂2u

∂z2
, (2a)

0 = −f u + Az
∂2v

∂z2
, (2b)

The boundary conditions are

ρwAz
∂u

∂z
= τx, (3)

ρwAz
∂v

∂z
= τy; (4)

on the water surface, for z = 0, where ρ is the water density;

u = v = 0, (5)

on the bottom of the basin.
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3. SOLUTIONS FOR A BASIN WITH

CONSTANT DEPTH

If the basin has a constant depth H, the boundary conditions for the bottom

are

u = v = 0, for z = −H.

By the Gougenheim and Saint-Guilly method, using complex analysis, the

two equations for horizontal motion lead to the equation

Az
∂2

∂z2
(u + iv)− i f (u + i v) = 0. (6)

with which we associate the suitable boundary conditions at the sea surface

Az

∣∣∣∣
∂

∂z
(u + iv)

∣∣∣∣
z=0

=
τ

ρw

(sinα + i cosα) (7)

and on the bottom

u + i v = 0, for z = −H. (8)

It is assumed that at the surface a wind blows up with a constant stress τ

and its direction is given by an angle α with the north direction. The solution

of equation (6) is

u + i v =

√
2 Az

f

τ

ρw Az
exp

(
i

(π

4
− α

))
tanh

[√
f

2 Az
(1 + i) (z + H)

]
.

(9)

The horizontal components of current speed are:

u =
τ

ρw

√
2

f Az

cos
(

π
4 − α

)
sinh (2 a H) − sin

(
π
4 − α

)
sin (2 a H)

cos (2 a H) + cosh (2 a H)
,

(10)

v =
τ

ρw

√
2

f Az

sin
(

π
4 − α

)
sinh (2 a H) + cos

(
π
4 − α

)
sin (2 a H)

cos (2 a H) + cosh (2 a H)
,

(11)

where

a =
√

f

2 Az
. (12)
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4. THE MAGNITUDE OF EKMAN CURRENT

VELOCITY

The magnitude of current velocity V =
√

(u + i v) (u + i v) follows

V =
τ

ρw

√
2

f Az

√√√√√√
cosh

(√
2 f
Az

(z + H)
)
− cos

(√
2 f
Az

(z + H)
)

cosh
(√

2 f
Az

H
)

+ cos
(√

2 f
Az

H
) .

At the surface we have

V =
τ

ρw

√
2

f Az

√√√√√√
cosh

(√
2 f
Az

H
)
− cos

(√
2 f
Az

H
)

cosh
(√

2 f
Az

H
)

+ cos
(√

2 f
Az

H
) ·.

With

DE = π

√
2 Az

f
,

the magnitude of current velocity becomes

V =
τ

ρw

Dz

π

√√√√√√
cosh

(√
2 f
Az

(z + H)
)
− cos

(√
2 f
Az

(z + H)
)

cosh
(√

2 f
Az

H
)

+ cos
(√

2 f
Az

H
) . (13)

Dz is an important length called Ekman depth or frictional influence. In

the case of the basin with great depths, the assumption used is H - infinite.

For the Romanian Black Sea shore this depth is greater than the basin depth.

That is why the influence of the wind can be felt for all the basin depth.

The wind stress magnitude can be expressed by τ = ρair CD (U10)
2 ,

where CD is the drag coefficient CD ' 1.4 × 10−3. and U10 is the wind

speed ( in m/s). The eddy viscosity Az ranges from 10−5 to 10−1m2s−1. For

Az = 10−1 m2s−1, f = 10−4 s−1, ρair = 1.3 kg/m3 , ρw = 1025 kg/m3 ,

the magnitude of current velocity is

V = 0.79415×10−2 (U10)
2

√
cosh (0.04472 (z + H))− cos (0.04472 (z + H))

cosh (0.04472 H) + cos (0.04472 H)
.

(14)

We used f = 10−4 s−1, because f = 2 Ω sinφ where Ω is the magnitude

of the angular velocity of the rotation of the earth, Ω = 7.29 × 10−5rad/s
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Fig. 1. The variation of surface current magnitude with the wind speed for a) H = 25 m;

b)H = 50 m; c) H = 75 m; d)H = 100 m (wind speed in m/s, current speed in cm/s).

and φ is the latitude. For the Romanian Black Sea shore, φ ' 450. With all

those assumptions, the Ekman surface current has the speed

V = 0.79415× 10−2 (U10)
2

√
cosh (0.04472 H)− cos (0.04472 H)
cosh (0.04472 H) + cos (0.04472 H)

(15)

It can be seen that the surface current speed depends on H and U10.

The variation of surface current magnitude with the wind speed for some

values of basin depth can be seen in Fig. 1.

It can be seen that the maximum value for the current speed is reached for

H = 50 m. The variation of surface current magnitude with the basin depth

for a constant wind speed can be seen in Fig. 2.

For H one can use functions like:
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Fig. 2. The variation of surface current magnitude with the basin depth for: a) U10 = 5

m/s; b) U10 = 10 m/s; c) U10=15 m/s; d) U10=20 m/s (wind speed in m/s, current speed

in cm/s).
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- H = s · x;

- H = s · x + t · y;

- H = s1 x, for 0 < x < l1 and h1 + s2 (x − l1) , for l1 ≤ x ≤ l2.

5. CONCLUSIONS

The Black Sea water circulation on the Romanian sea-shore is a very dif-

ficult problem. There are many elements which determine and influence this

circulation. In this paper we studied the influence of only one element: the

wind blowing up the surface of the basin on the current magnitude. We shall

continue our study with the investigation of the influence the same element

has on the current direction, the magnitude of the water transport and the

direction of this transport. We must complete the study with the influence of

density variation, bottom friction, surface level variation.
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2005.



TRANSVERSALITY CONDITIONS FOR INFINITE
HORIZON OPTIMIZATION PROBLEMS: THREE
ADDITIONAL ASSUMPTIONS

ROMAI J., 5, 1(2009), 105–112

Ryuhei Okumura, Dapeng Cai, Takashi Gyoshin Nitta

Graduate School of Economics, Nagoya University, Japan

Institute for Advanced Research, Nagoya University, Japan

Department of Mathematics, Faculty of Education, Mie University, Japan

cai@iar.nagoya-u.ac.jp

Abstract We consider the transversality condition for the optimization problem:

max
y(t),u(t)

∫∞
0

v (y (t) , u (t) , t) dt, subject to ẏ = f (y (t) , u (t) , t). In economics,

different forms of transversality conditions have been proposed to solve the

problem. We show that the most general form of transversality condition

can be derived under three additional assumptions following Chiang (1994)’s

approach. We also reconsider the famous counterexamples of Halkin (1974)

and Shell (1969), in the light of our transversality condition.

Keywords: transversality condition; dynamic optimization; infinite horizon.

JEL Classification Numbers: C61, D90.

1. INTRODUCTION

This note studies the transversality conditions for the model





max
y(t),u(t)

∫∞
0 v (y (t) , u (t) , t) dt subject to

y (0) = y0, ẏ = f (y (t) , u (t) , t) , ∀t > 0, u (t) ∈ U,
(1)

where v and f are real-valued continuously differentiable functions. Letting

λ (t) be the co-state variable associated with the constraint in (1), the corre-

sponding Hamiltonian is given by:

H (y (t) , u (t) , λ (t) , t) ≡ v (y (t) , u (t) , t) + λ (t) f (y (t) , u (t) , t) .

The following equation is generally referred to as the transversality condition

to (1):

105
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lim
T→∞

[λ (T ) y(T )] = 0, (2)

for any optimal path {y(t)}. By using an elementary perturbation argument,

Michel (1982) provides a proof of the necessity of (2). However, the pertur-

bation he considers is rather specific and his results are later generalized in

Kamihigashi (2001). In this paper, we aim to provide a straightforward proof

of this result, using Chiang (1994)’s approach, which is incorrect without cer-

tain assumptions. We show that three additional assumptions that are either

implicitly assumed, or entirely overlooked, are required. We also investigate

the famous counterexamples, Halkin (1974) and Shell (1969). They have been

argued by Caputo (2005) as valid counterexamples, which would disqualify

transversality condition in the form of limT→∞ λ (T ) = 0 as a necessary con-

dition. We show that both of them satisfy the three assumptions and hence

our transverality condition, limT→∞ λ (T )∆y (T ) = 0. However, since they

have implicit fixed terminal states, limT→∞ λ (T ) = 0 cannot be applied to

the two examples.

2. TRANSVERSALITY CONDITIONS FOR

FINITE HORIZON PROBLEMS (CHIANG,

1992)

Following Chiang (1992), we first consider the finite horizon version of (1):

{
max

∫ T
0 v (y (t) , u (t) , t) dt subject to

y (0) = y0, ẏ = f (y (t) , u (t) , t) ,∀t > 0, u (t) ∈ U.
(1a)

We introduce a new functional

V ≡ v +
∫ T
0 [λ (t) f (y (t) , u (t) , t)− ẏ]dt

=
T∫
0

{v (y (t) , u (t) , t) + [λ (t) f (y (t) , u (t) , t)− ẏ]}dt.
(3)

As in Chiang (1992, pp. 177-181), when we vary V infinitesimally by ε,

from the standard variational methods, we have
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dV

dε
=

∫ T

0

[(
∂H

∂y
+ λ̇

)
q (t) +

∂H

∂u
p (t)

]
dt+ [H]t=T ∆T − λ (T )∆y (T ) = 0,

(4)

that leads to the transversality conditions for the following three cases, with

y (T ), λ (T ) and [H]t=T denoting the optimal values

(i) free terminal state (∆y (T ) 6= 0) and a fixed T (∆T = 0)

λ (T ) = 0; (5)

(ii) fixed terminal point (T , yT given)

y (T ) = yT ; (6)

(iii) fixed-end point (fixed terminal state (∆y (T ) = 0) and a free T (∆T 6= 0))

[H]t=T = 0. (7)

3. INFINITE HORIZON TRANSVERSALITY

CONDITIONS AND THE THREE

ASSUMPTIONS

We proceed to consider the infinite horizon case. As in most works, we

assume that the objective functional converges for all admissible paths.

Assumption (i). V =
∫∞
0 v (y (t) , u (t) , t) dt is finite.

The objective functional in (1) can then be restated as

V =
∫ ∞

0
v (y (t) , u (t) , t) dt = lim

T→∞

∫ T

0
v (y (t) , u (t) , t) dt (8)

. We have

V =
∫ ∞

0
(v + λ (f − ẏ))dt (9)

= lim
T→∞

∫ T

0
(v + λ (f − ẏ))dt

= lim
T→∞

(∫ T

0
(v + λf + ẏ) dt− [λy]T0

)

=
∫ ∞

0
(v + λf + ẏ) dt− [λy]∞0
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=
∫ ∞

0

(
H + λ̇f

)
dt− (λ (∞) y (∞)) + (λ (0) y (0)) .

Note that the last equality of (9) will be invalid if either
∫∞
0

(
H + λ̇y

)
dt

or (λ (∞) y (∞)) is infinite. Therefore, we consider

Assumption (ii). Both
∫∞
0

(
H + λ̇y

)
dt and (λ (∞) y (∞)) are finite.

Then (9) can be further stated as

Vε =
∫∞
0

[
H (t, y∗ + εq, u∗ + εp, λ) + λ̇ (y∗ + εq)

]
dt−

−λ (∞) (y∗ (∞) + εq (∞)) + λ (0) (y∗ (0) + εq (0)) .
(10)

In general, ∂
∂y

(∫∞
0 v (x, y)dx

)
=

∫∞
0

∂v(x,y)
∂y dx only when lim

T→∞

[∫ T
0

∂v(x,y)
∂y dx

]

converges uniformly for y (Theorem 3.4 (p. 289), Lang, 1983). Hence, we im-

pose

Assumption (iii). lim
T→∞

∫ T
0

[(
∂H
∂y + λ̇

)
q + ∂H

∂u p
]
dt converges uniformly

for y.

When Assumptions (i)∼(iii) are satisfied, setting

dVε

dε
=

∫ ∞

0

[(
∂H

∂y
+ λ̇

)
q (t) +

∂H

∂u
p (t)

]
dt

︸ ︷︷ ︸
(I)

+ lim
T→∞

H∆T
︸ ︷︷ ︸

(II)

− lim
T→∞

λ (T )∆y (T )
︸ ︷︷ ︸

(III)

= 0,

(11)

the first-order condition requires that each of the three component terms in

(11) to be set equal to zero, respectively.

Again here we only consider the perturbation around the optimal values.

This gives rise to the general transversality conditions for the infinite horizon

problems:

lim
T→∞

H (T )∆T = 0 and lim
T→∞

λ (T )∆y (T ) = 0. (12)

Remark limT→∞H (T )∆T = 0 vanishes if the time horizon is assumed to

be fixed at ∞.

Our general transversality condition is derived by directly following Chiang

(1994)’s approach. It thus constitutes a straightforward proof of Kamihigashi

(2001)’s fundamental results. Moreover, if the perturbation is to shift the

entire optimal path downward by a small fixed proportion ε ∈ [0, 1), as is in
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Kamihigashi (2001), then ∆y(t) = εy(t). Substituting εy(t) into the second

equation in (12) leads to

lim
T→∞

λ (T ) εy(T ) = ε lim
T→∞

λ (T ) y(T ) = 0. (13)

Dividing both sides of (13) by ε, we then have (2).

Moreover, for problems with a free terminal state, as both the terminal

time and the terminal state are not fixed (∆T 6= 0 and ∆y (T ) 6= 0), the

transversality conditions comprise two conditions

lim
T→∞

[H (T )] = 0 and lim
T→∞

λ (T ) = 0 (12′)

.

Note that the necessity of the second equation of (12’) is derived by Michel

(1982), who considers a specific perturbation that shifts the entire optimal

path downward by a fixed value.

On the other hand, for problems with a fixed terminal state (∆y (T ) = 0),

the transversality condition is

lim
T→∞

[H (T )] = 0. (12′′)

Furthermore, from the definition of the Hamiltonian, we have

Remarks. 1.When T → ∞, if the objective function converges to zero

and the state equation is nonzero, then limT→∞ [H (T )] = 0 is equivalent to

limT→∞ λ (T ) = 0. Obviously, as the objective function for most discounted

cases does approach zero when T → ∞, either one of the two conditions in

(12) can function as the transversality condition for such cases.

2. Sydster et al.’s necessary condition for an infinite horizon optimization

problem with discounting (Theorem 9.11.2, 2005), can be readily derived from

the Assumptions 2 and 3. Moreover, the “normal” transversality condition,

limT→∞ [λ (T ) · y (T )] = 0, being redundant, remains valid.

3. Although economically intuitive, (2) can only be directly derived by

variational approach that considers specific perturbations. However, it has to

be noticed that there is no need to assume that the present value of the stock

at the infinity should be zero.
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4. For systems with steady-states, “inefficient overaccumulation of capi-

tal stock” does not necessarily imply that the present value of the stock ap-

proaches zero when t approaches infinity, limt→∞ [λ (t) · y (t)] = 0, as argued

in Weitzman (2003). It only requires that limT→∞ λ (T )∆y (T ) = 0, i.e., the

variations in the values of the capital stock should approach zero.

Note that Chiang’s (1992) derivation of the transversality conditions for the

infinite horizon case is imprecise as the above three assumptions have not been

explicitly stipulated, although it can be easily verified that for most discounted

problems, Assumptions (i)∼(iii) are satisfied. Next, we consider the famous

counterexamples of Halkin (1974) and Shell (1969).

4. APPLICATIONS

Several writers (Caputo (2005), for example) argue that there exist coun-

terexamples that would disqualify transversality condition in the form of

limT→∞ λ (T ) = 0 as a necessary condition. We shall demonstrate, however,

these are not valid counterexamples, because they have implicit fixed terminal

states.

4.1. HALKIN’S EXAMPLE (1974)

We first consider Halkin’s example:

{
max

∫∞
0 (1− y) udt subject to

y (0) = 0, ẏ = (1− y) u, u (t) ∈ [0, 1] .
(14)

From the equation of motion for y, we see that the definite solution is

y (t) = 1− e−
∫ t
0 udt. (15)

Hence, problem (14) can be reformulated as

max
∫ ∞

0
e−

∫ t
0 udtudt (16)

Let
∫ t
0 udt = v (t), we see that udt = dv, and

∫∞
0 udt = v (∞). Now (16) can

be restated as
∫ v(∞)

0
e−vdv = −e−v

∣∣v(∞)

0
= −e−v(∞) + 1. (17)
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Obviously, (17) is maximized when v (∞) = ∞, with the maximum being

1. In other words, the objective function in (14) is maximized if and only if
∫∞
0 u (t) dt = ∞.

Caputo (2005) incorrectly argues that Halkin’s problem is a valid coun-

terexample. He defines the control as u (t) =

{
k ∈ [0, 1] ∀t ∈ [0, τ ] , τ < ∞,

0 ∀t ∈ (τ ,∞) ,

and argues that since the value of
t→∞ y (t) depends on k, the problem does

not has a fixed terminal state. However, his choice of the control, although

feasible, is not optimal as under such a case
∫∞
0 udt < ∞.

Moreover, as u (t) ∈ [0, 1], we see that e−
∫ t
0 udt ∈ (0, 1]. Consequently,

y (t) ∈ [0, 1). It follows that

t→∞ y (t) = 1. (18)

On the other hand, as

H = (1− y)u + λ (1− y) u = (1 + λ) (1− y) u, (19)

from the condition ∂H/∂u = 0, we have (1 + λ) (1− y) = 0, and the optimal

co-state variable λ∗ (t) = −1 inasmuch as y is always less than 1. Therefore,

H = 0. Note that
T→∞

λ∗ (T ) 6= 0.

It is easy to verify that Assumption (i)∼(iii) are satisfied for this problem.

Moreover, from (18), we see the problem has an implicit fixed terminal state,

(12”) applies and
T→∞

λ (T ) = 0 does not apply.

5. THE SHELL PROBLEM (1969)

The Shell problem is a modified version of Ramsey’s (1928) model, which

maximizes the deviation from a “bliss level”. Let c̄ be the steady-state con-

sumption level:

{
max

∫∞
0 (c (t)− c̄) dt subject to

k (0) = k0, k̇ = φ (k (t))− c (t)− (n + δ) k, 0 6 c (t) 6 φ (k (t)) .
(20)

It is easy to verify that Assumption (i)∼(iii) are satisfied. Hence, (12) ap-

plies. However, as pointed in Chiang (1992), the Shell problem contains an
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implicit fixed terminal state as c → c̄ when t → ∞. Therefore, the transver-

sality condition should be (12”).

Conclusions

As shown above, the dispute over the transversality condition for the infinite

horizon problems, especially the interpretation concerning the “counterexam-

ples”, arises because the transversality conditions vary according to terminal

states. Chiang correctly points out that both examples are not valid counterex-

amples as they all have implicitly fixed terminal states. However, a correct

derivation of this result requires three additional assumptions to be explicitly

stipulated, although it can be easily verified that Assumptions (i)∼(iii) are

satisfied for most discounted problems.
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Abstract The methods most used to estimate the cavitation erosion resistance pay a

special attention to the velocity erosion curve. Depending on the nature and

condition of eroded materials, other kind of the volume loss rate curve of erosion

cavitations progress is proposed. This model gives a new vision of the volume

loss rate curve and generalize some previous mathematical models.

Keywords: erosion, cavitation, loss curve, mathematical model.
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1. INTRODUCTION

The cavities are formed into a liquid when the static pressure of the liquid

is reduced below the vapor pressure of the liquid in current temperature. If

the cavities are carried to higher-pressure region they implode violently and

very high pressures can occur. The cavitation phenomenon may cause se-

rious changes in the microstructure and intrinsic stress level of the material.

Macroscopically, the change in hardness is often observed; microscopically, the

slip bands and deformation twins appear, and the phase transformations may

occur in unstable alloys.

Cavitation erosion is a progressive loss of material from a solid due to the

impact action of the collapsing bubbles or cavities in the liquid near the ma-

terial surface. The models describing the mathematical relations between the

volume loss and time in the cavitation erosion was intensely studied but the

problem of the analytical description of the characteristic curves for cavitation

erosion remained open.
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We propose a mathematical model, which permits to define the volume loss

curve of material and volume loss rate curve of cavitation erosion.

Usually, the volume loss curve [3], [4], [5], [6] is described by the formula

V (t) = A · = · U(k, t), (1)

or formula

V (t) = A · U(k,=t), (2)

with A-the eroded surface area; =-measure of cavitations intensity; U - ero-

sion progress function resulting out of applied phenomenological model; k- a

set of real parameters (usually 3 parameters are quite sufficient) determined

by fitting the erosion curve to the experimental data; t-cumulative exposure

duration.

For the volume loss curve V and for volume loss rate curve v = dV
dt , for

unity eroded surface area, usually [4], [5], [6] the pictures from fig. 1, fig. 2

are proposed.

Fig. 1. The volume loss rate curve.

The volume loss rate curve (fig. 2) can be divided into four typical periods:

- incubation period I, is an initial period of damage in which volume loss

of material is nearly zero (non-measurable). During the incubation period, a

considerable plastic deformation occurs, without any apparent weight loss. In

this time interval, the material accumulates energy;

- acceleration period A. In this time interval, the intensification of damage

is observed, distinguished by violent increase of volume loss rate of erosion

and the volume loss rate reaches the maximal value;
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Fig. 2. The volume loss rate curve

- deceleration period D. In this time interval, volume loss rate decreases;

- steady state erosion period S, characterized by almost constant volume

loss rate of erosion.

2. A“DAMPED” MODEL OF CAVITATION

EROSION

In [1] the volume loss curve is given by formula

V (t) = A[vst− f(t)], (3)

where A is the eroded surface area, vs is the ultimate value of the volume loss

rate and f(t) is the solution of the second-order homogenous linear ordinary

differential equations of with constant coefficients

d2y

dt2
+ 2β

dy

dt
+ β2 = 0 (4)

which describes the “damped” oscillations with an “infinite period”. Solving

the ODE (4) and using (3) it follows that the volume loss is given by formula

V (t) = A[vst− λte−βt], (5)

and the volume loss rate curve is given by formula

v(t) = A[vs − λe−βt + λβe−βt]. (6)

The real parameters vs , λ and β will be determined by fitting the erosion

curve to the experimental data (by using the least squares method or another

numerical method).
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3. A GENERALIZATION OF “DAMPED”

MODEL OF CAVITATION EROSION

Remark. The standard curve presented in fig. 2., is acceptable mathemat-

ically but it is not very good. During the incubation period, the volume loss

V , and the volume loss rate v = dV
dt are null. At the end of the incubation pe-

riod, the volume loss rate curve v(t) can have a point of discontinuity, because

the volume rate curve, may be not smooth at the end point of the incubation

period.

Let (t0, 0) be the end point of the incubation period. If θ is the angle

between the time axis and the tangent to the volume loss curve at (t0, 0), and

tan θ 6= 0 (fig. 3), then we have a discontinuity point for the volume loss rate

curve v(t), as in fig. 4.

Fig. 3. The volume loss curve near of the end point of the incubation period.

Fig. 4. The volume loss rate curve with a possible discontinuity at the end point of the

incubation period.
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During the incubation period, the volume loss and the volume loss rate

curves are null and the our study is superfluous. In order to simplify the

calculations, we choose the time interval [−ε, 0] as the incubation period and

we study the volume loss and the volume loss rate curves for t > 0 (t0 = 0 is

the end point of the incubation period)

In most of situations (e.g. in the case of damped vibrations) the volume

loss rate curve v(t) can look as in fig. 5 (the incubation period was chosen to

be the time interval [−ε, 0]).

Fig. 5. New model of the volume loss rate curves.

Like in [1], for v(t) we get

v(t) =
dV (t)

dt
= A[vst− df

dt
(t)],

but now, df
dt must satisfy the ODE

d2y

dt2
+ α

dy

dt
+ βy = 0, (7)

where α and β are real constants, depending on the eroded material; α ≥ 0,

β > 0. Equation (7) has a physical interpretation like in the case of damped

vibrations.

Since the eroded material, tested in Hydraulic Machinery Laboratory by

using a vibratory device with a nickel tube, is subject to a frictional force and

to a damping force, Newton’s second law reads

m
d2y

dt2
= dampingforce + restoringforce = −p

dy

dt
− qy. (8)
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Putting in (8) α = p
m and β = q

m , we obtain the equation (7), which is a

second-order linear ordinary differential equation. Its auxiliary equation reads

r2 + αr + β = 0. (9)

and has the roots r1,2 = −α±
√

α2−4β
2 .

Case I. If α = 2
√

β, the roots of equation (9) are r1 = r2 = −√β, and the

equation (7) is, like (4), discussed in [1]. Taking into account that f(0) = 0,

lim
t→∞f(t) = 0 and lim

t→∞
df(t)
dt = 0 we have the volume loss curve

V (t) = A[vst− λte−
√

βt] (10)

and the volume loss rate curve is

v(t) = A[vs − λe−
√

βt + λ
√

βte−
√

βt]. (11)

Typical graphs of v as a function of t are shown in fig. 4.

Case II. If α2−4β < 0, then the roots of auxiliary equation (9) are complex:

r1 = −α
2 + γi, r2 = −α

2 − γi, where γ =
√

4β − α2.

Since df
dt is the general solution of equation (7) we have:

df

dt
(t) = e

−α
2

t(C1 cos γt + C2 sin γt), (12)

and

f(t) =
2e

−α
2

t

α2 + 4γ2
(2C1γ sin γt− C2α sin γt− 2C2γ cos γt− C1α cos γt). (13)

Obviously, the conditions: lim
t→∞ f(t) = 0 and lim

t→∞
df(t)
dt = 0 are satisfied.

Using formula (13), the condition f(0) = 0 implies

2C2γ + C1α = 0. (14)

Then, using formulae (10) and (14), the volume loss curve is given by

V (t) = A

[
vst +

2e
−α
2

t

α2 + 4γ2
C2

(
4γ2

α
sin γt + α sin γt

)]
(15)

and the volume loss rate curve is

v(t) = A[vs − e
−α
2

tC2(sin γt− 2γ

α
sin γt). (16)]
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Fig. 6. The volume loss rate curve for case II.

Typical graphs of v as a function of t are shown in fig. 6.

Case III. If α2 − 4β > 0, then auxiliary equation (11) has distinct real

roots r1, r2. Then we have: df
dt (t) = C1e

r1t +C2e
r2t and f(t) = C1

r1
er1t + C2

r2
er2t.

Since α, β are positive and
√

α2 − 4β < α, the roots r1, r2 must both be

negative and the conditions lim
t→∞ f(t) = 0 and lim

t→∞
df(t)
dt = 0 are satisfied. The

condition f(0) = 0 implies C2
r2

= −C1
r1

. Then, the volume loss curve is

V (t) = A(vst− C1

r1
er1t +

C1

r1
er2t) (17)

and the volume loss rate curve reads

V (t) = A(vs − C1e
r1t +

C1r2

r1
er2t).

Typical graphs of v as a function of t are shown in fig. 4.

CONCLUSIONS

The advantage of using ODEs for theoretical analytical erosion curves is

that the parameters appear in a natural way in the solution of ODEs and

it is often not necessary to decide a priori the number of these parameters.

Usually, the real parameters which appear in the expressions of V (t) or v(t)

can be determined by fitting the erosion curve to the experimental data, using

the least squares method or another numerical method.

Depending on nature and condition of eroded material, we have presented a

new possible image of the erosion curves according to the experimental data.

Practically, the experimental data may suggest the best mathematical model

selection for a given material subject to erosion.
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Abstract A result regarding the classification of the cubic differential systems with seven

real invariant straight lines is presnted.

Keywords:cubic differential systems, invariant lines.
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We consider the cubic differential system

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P, Q ∈ R[x, y], max{deg(P ), deg(Q)} = 3 and GCD(P,Q) = 1.

The straight line Ax+By+C = 0 is said to be invariant for (1) if there exists

a polynomial K(x, y) such that the identity A ·P +B ·Q ≡ (Ax+By +C) ·K
holds. Let K(x, y) ≡ (Ax + By + C)m ·K∗(x, y), where m ∈ N, K∗ ∈ R[x, y]

and Ax+By+C = 0 does not divide K∗(x, y). Then we say that the invariant

straight line has the degree of invariance m + 1.

A set of invariant straight lines can be infinite, finite or empty. In the cases,

the number of invariant straight lines is finite, this number is at most eight.

A qualitative investigation of cubic systems with exactly eight and exactly

seven invariant straight lines was carried out in [1-3]. In this paper a similar

qualitative investigation is done for cubic differential systems with exactly

seven real invariant straight lines. It is proved

Theorem. Any cubic differential system possessing real invariant straight

lines with total degree of invariance seven via affine transformation and time

rescaling can be written as one of the following seven systems
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ẋ = x(x + 1)(x− a),

ẏ = y(y + 1)(y − a),

a > 0, a 6= 1;





ẋ = x(x + 1)(x− a),

ẏ = y(y + 1)((2 + a)x− (1 + a)y − a),

a > 0, a 6= 1;




ẋ = x3,

ẏ = y2(dx + (1− d)y),

d(1− d)(d− 3)(2d− 3) 6= 0;





ẋ = x(x + 1)(x− a),

ẏ = y(y + 1)((1− a)x + ay − a),

a > 0, a 6= 1;




ẋ = x2(bx + y),

ẏ = y2((2 + 3b)x− (1 + 2b)y),

b(b + 1)(2 + 3b)(1 + 2b) 6= 0;





ẋ = x(x + 1)(a + (2a− 1)x + y),

ẏ = y(y + 1)(a + (3a− 1)x + (1− a)y),

a(2a− 1)(1− a)(3a− 1)(3a− 2) 6= 0;
{

ẋ = x2(x + 1),

ẏ = y2(y + 1).

For the obtained cubic systems the qualitative investigation was performed.
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Abstract

This paper reviews some of the methods used in practice for object classifica-

tion and studies the possibility of combining a well-known object classification

technique with other image processing methodologies such as edge detection.

An application of this proposed process may be the classification of galaxies,

based upon the Hubble classification. The feature taken into consideration is

the galaxy shape.

Keywords: object classification, PCA, Hubble galaxy classification.
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1. INTRODUCTION

The need of automated object recognition is of great importance nowadays

not only because of the practical impact in almost all fields of information

manipulation, but also because of the large quantity of data available for

processing.

Many approaches have been proposed in this purpose. There are different

types of artificial neural network architectures taken into consideration as well

as statistical methods to discriminate between classes of objects. Also, there

are efficient methods that use fractal dimensions of objects to be classified in

order to assign them to a certain class.

The large amount of data received from satellites nowadays makes very dif-

ficult their analysis by the human factor manually. That is why there are

many attempts to automate this process, to develop ways in order to obtain

processed elements out of the information provided by observatories or satel-

lites.
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For example, Institut d’Astrophysique & Observatoire de Paris has devel-

oped a software [9] to able create catalogues of objects by analyzing images

that contain different surfaces of the sky. The main feature of this package is

the use of neural networks applied in classification techniques.

Other example of this type of software is YODA (Yet another Object Detec-

tion Application) [10]. This type of software represents an important method-

ology of astronomical image processing. It computes different shape parame-

ters and classifies objects according to more than one approach.

There are a few developing directions regarding the classification of objects

in astronomy images. First, there is the need of pre-processing the raw in-

formation received from the information capturing device (such as satellites,

terrestrial and extra-terrestrial telescopes or NASA spacecrafts). The results

of astronomical observations are sometimes one dimensional signals that need

to be transformed into digital images. The following step is to process the

image obtained, so that the result emphasizes the objects appearance. This is

done taking into consideration some of object features in the picture, among

which shape plays an important part. The last step is the actual classification.

2. CLASSIFICATION OF GALAXIES

There are several types of features relevant to the classification (of galaxies).

They can be divided into: photometry, profile and shape features [2]. The

photometric features (which represent the central concentration of light index)

and the profile features (the radial distribution of surface brightness, otherwise

representing asymmetry) can be used [1] to morphologically classify galaxies.

The shape features are more attractive when dealing with morphology of

galaxies because the morphology itself is a visual context for classification.

Here are some important shape features which are successfully used in clas-

sification techniques: elongation (the measure of flatness of an object), a form

factor which is the ratio between the area and the square perimeter of the

galaxy (this is important because elliptical galaxies are more luminous while

spiral ones have much broader areas and less luminosity), convexity (which is

very large in spiral galaxies and very small for elliptical ones) [2]. As seen in

fig. 1, there are a few main types of galaxies according to shape classification:
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Fig. 1. Hubble’s classification scheme.

elliptical galaxies (denoted by E), spiral galaxies (denoted by S). According

to the shape of the spiral, the spiral galaxies can be subdivided into three

subclasses: spherical or barred-like; lenticular (denoted by S0 and character-

ized by a bright center); and irregular, which can not be assigned to any class

mentioned above.

3. ARTIFICIAL NEURAL NETWORKS AND

GALAXY CLASSIFICATION

Artificial neural networks have been successfully used in automation of

galaxy classification. Both supervised (back propagation method) and un-

supervised (self organizing maps such as Kohonen networks) types of neural

networks were brought to light by researchers.

The first attempts used the raw image data to train the classifiers, leading

to high error rates.

Nielsen and Odewahn (1995) emphasize the idea of using parameters char-

acterizing galaxies instead of straightforward pixels of the source image. Their

results showed that the use of profile features-based classifier is the most ef-

ficient (as compared to other feature-based methods or raw pixel use) [2]. A

description of a back propagation application with two hidden layers is found

in [4]. The method assumes the use of some parameters in order to com-
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pute the weight vectors of the neural network; first, photometric parameters

(such as surface brightness, concentration index and color) are used for clas-

sification. Then, parameters are switched to profile-like features (brightness

profiles in two band passes [2]). The last experiment was made on raw pixel

data obtained from images.

Another approach in this field of research is presented in [5] and it uses an

algorithm called DBNN (Difference Boosting Neural Network).

Although this architecture is closely related to the naive Bayesian classifier,

it gives some degree of freedom regarding the correlation of the data attributes.

The instrument used to this purpose is the association of a threshold window

with every attribute. This window influences the decision coefficients of the

classifier. The classification system contains a boosting technique, which em-

phasizes the difference between training data elements.

There are other more recent papers which point to the idea of using also

other mathematical tools such as the fractal signature of classified objects [6].

Another approach is the one presented in [3]. It implies the classifier Ran-

dom Forrest and involves a number of decision tree classifiers. The individual

decisions are combined to give the final classification result. The algorithm

proposed in [3] is an efficient tool for the galaxy classification problem. The

preprocessing part implies geometric transformations of the image, such that

shape features of the galaxies are enhanced.

These transformations are:

1 a threshold, in order to extract the the bright part of the image and

eliminate some background irrelevant elements;

2 rotation of the image with an angle given by the first principal component

of the image, so that the galaxy is brought into a horizontal position (the

standard position for all images, in order for the classifier to have higher

efficiency);

3 then, the image is resized to standard dimension, in order to be included

into the training sample matrix.
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The use of the pixel information would be very expensive in terms of re-

sources because of the dimension of the data (e. g. if all images would be stan-

dard 128x128, the training matrix would be Nx16384, where N is the number

of images taken into consideration). That is why in order to reduce dimen-

sionality, the authors propose the use PCA (Principal Component Analysis).

As experimental results show, this is a very effective method which enables

significant reduction of computation time and resources use.

The next step is represented by the actual classification, which is done by

a classifier that assumes the use of decision trees.

4. PROCESSING DATA

The algorithm reviewed above was implemented as follows:

1 preprocessing techniques described above;

2 result images were resized in standard dimension;

3 application of PCA techniques and use of them in classification at dif-

ferent values;

4 training of the artificial neural network by a number of N digital images.

The original algorithm is using RF techniques for classification;

5 testing of the weight matrix by presenting to it new images yet to be

classified.

The experimental results presented below were obtained by applying the

above algorithm with the following changes:

1 in order to enhance optimally the shape and brightness distribution of

the galaxies, preprocessing techniques described above were used, at

different values of the threshold;

2 result images were resized in dimension 24x24 (and not 128x128, as the

original algorithm suggested).

3 application of PCA techniques and use of them in classification at differ-

ent values. Improvement of efficiency relative to the increasing number
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Fig. 2. Classification on training data set.

Fig. 3. Classification on 5 new images.

of principal components used in training of the artificial neural network

was noticed, as it can be noticed from the results below.

4 training of the artificial neural network by a number of N digital images

(N=33) in order to obtain a minimum error rate for classifying the

images given to training. The experimental results presented below are

obtained by using a standard classifier.

5. EXPERIMENTAL RESULTS

The images used were downloaded from [11]. The implementation was writ-

ten in Matlab, version 7.6.0.324 and tested on configuration including a 2Ghz

processor and 1G of RAM.
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6. CONCLUSIONS

In automated galaxy classification good results were obtained by using sev-

eral types of artificial neural networks. Experimental results show that even

on a reduced dimension of space of training samples, the efficiency of the al-

gorithm is satisfying. Future directions in this domain may include the use of

different algorithms such as adaptive algorithms for different neural networks,

boosting algorithms or combinations of methods generally used in object clas-

sification.
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Abstract The asynchronous systems are the non-deterministic models of the asynchronous

circuits from the digital electrical engineering. In the autonomous version, such

a system is a set of functions x : R → {0, 1}n called states (R is the time set).

If an autonomous asynchronous system is defined by making use of a so called

generator function Φ : {0, 1}n → {0, 1}n, then it is called regular. The regular

autonomous asynchronous systems compute in real time the iterates of Φ when

these are not made, in general, on all the coordinates Φ1, ..., Φn simultaneosly.

The property of universality means the greatest in the sense of the inclusion.

The purpose of the paper is that of defining and of characterizing the fixed

points, the equivalencies and the dynamical bifurcations of the universal regu-

lar autonomous asynchronous systems. We use analogies with the dynamical

systems theory.

Keywords: asynchronous system, fixed point, dynamical bifurcation.
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1. INTRODUCTION

Switching theory, more precisely: what we mean by switching theory, has

been practiced in the 50’s and the 60’s by many mathematicians, in dialogue

with engineers. The last book from this series was published by Moisil in 1969

??. After 1970, the theory of modeling the asynchronous circuits from the

digital electrical engineering has developed in a manner suggesting that the

main interest of the researchers is to keep away their works from publication.

In this context, we have started some years ago the construction of a theory of

modeling the asynchronous circuits under the name of asynchronous systems
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132 Şerban E. Vlad

theory. A part of this theory, related with the universal regular autonomous

asynchronous systems is presented in this paper. The bibliography that we

indicate consists in works on dynamical systems (written as usual on real

numbers, we use binary numbers here) that create analogies. They are not

relevant to the readers that are familiar with the concepts of orbit, nullclin,

dynamical bifurcation etc, except for showing the source of inspiration of the

construction. The paper is obviously self-contained.

2. PRELIMINARIES

Definition 2.1. We denote by B = {0, 1} the binary Boole algebra, en-

dowed with the discrete topology and with the usual laws.

Definition 2.2. Let be the Boolean function Φ : Bn → Bn,Φ = (Φ1, ...,Φn)

and ν ∈ Bn, ν = (ν1, ..., νn). We define Φν : Bn → Bn by ∀µ ∈ Bn,

Φν(µ) = (ν1 · µ1 ⊕ ν1 · Φ1(µ), ..., νn · µn ⊕ νn · Φn(µ)).

Remark 1. Φν represents the function resulting from Φ when this one is not

computed, in general, on all the coordinates Φi, i = 1, n : if νi = 0, then Φi is

not computed, Φν
i (µ) = µi and if νi = 1, then Φi is computed, Φν

i (µ) = Φi(µ).

Definition 2.3. Let be the sequence α0, α1, ..., αk, ... ∈ Bn. The functions

Φα0α1...αk
: Bn → Bn are defined iteratively by ∀µ ∈ Bn,∀k ∈ N,

Φα0α1...αkαk+1
(µ) = Φαk+1

(Φα0α1...αk
(µ)).

Definition 2.4. The sequence α0, α1, ..., αk, ... ∈ Bn is called progressive if

∀i ∈ {1, ..., n}, the set {k|k ∈ N, αk
i = 1} is infinite.

The set of the progressive sequences is denoted by Πn.

Remark 2.1. Let be µ ∈ Bn. When α = α0, α1, ..., αk, ... is progressive,

each coordinate Φi, i = 1, n is computed infinitely many times in the sequence

Φα0α1...αk
(µ), k ∈ N.

Definition 2.5. The initial value, denoted by x(−∞+0) or lim
t→−∞x(t) ∈ Bn

and the final value, denoted by x(∞− 0) or lim
t→∞x(t) ∈ Bn of the function
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x : R → Bn are defined by

∃t′ ∈ R, ∀t < t′, x(t) = x(−∞+ 0),

∃t′ ∈ R, ∀t > t′, x(t) = x(∞− 0).

Definition 2.6. The function x : R → Bn is called (pseudo)periodical with

the period T0 > 0 if

a) lim
t→∞x(t) does not exist and

b) ∃t′ ∈ R, ∀t ≥ t′, x(t) = x(t + T0).

Definition 2.7. The characteristic function χA : R → B of the set A ⊂ R

is defined in the following way:

χA(t) =

{
1, if t ∈ A

0, otherwise
.

Notation 2.1. We denote by Seq the set of the real sequences t0 < t1 < ... <

tk < ... which are unbounded from above.

Remark 2.2. The sequences (tk) ∈ Seq act as time sets. At this level of

generality of the exposure, a double uncertainty exists in the real time itera-

tive computations of the function Φ : Bn → Bn : we do not know precisely

neither the coordinates Φi of Φ that are computed, nor when the computation

happens. This uncertainty implies the non-determinism of the model and its

origin consists in structural fluctuations in the fabrication process, the varia-

tions in ambiental temperature and the power supply etc.

Definition 1. A signal (or n−signal) is a function x : R → Bn of the form

x(t) = x(−∞+ 0) · χ(−∞,t0)(t)⊕ x(t0) · χ[t0,t1)(t)⊕ ... (1)

...⊕ x(tk) · χ[tk,tk+1)
(t)⊕ ...

with (tk) ∈ Seq. The set of the signals is denoted by S(n).

Remark 2. The signals x ∈ S(n) model the electrical signals from the digital

electrical engineering. They have by definition initial values and they avoid

’Dirichlet type’ properties (called Zeno properties by the engineers) such as

∃t ∈ R,∀ε > 0, ∃t′ ∈ (t− ε, t), ∃t′′ ∈ (t− ε, t), x(t′) 6= x(t′′),
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∃t ∈ R, ∀ε > 0,∃t′ ∈ (t, t + ε),∃t′′ ∈ (t, t + ε), x(t′) 6= x(t′′)

because these properties cannot characterize the inertial devices.

We can interpret now Definition 2.6 of (pseudo)periodicity in the situation

when x ∈ S(n). If at b) we would have had ∀t ∈ R, x(t) = x(t + T0), then the

existence of x(−∞ + 0) implies that x is constant. Similarly, if a) would be

false, then x would be constant. In other words Definition 2.6 was formulated

in a way that makes us work with non-constant functions, a request of non-

triviality.

Notation 2.2. We denote by P ∗ the set of the non-empty subsets of a set.

Definition 2.8. The autonomous asynchronous systems are the non-

empty sets X ∈ P ∗(S(n)).

Example 2.1. We give the following simple example that shows how the au-

tonomous asynchronous systems model the asynchronous circuits. In Figure

1 we have drawn the (logical) gate NOT with the input u ∈ S(1) and the state

Fig. 1. Circuit with the logical gate NOT.

(the output) x ∈ S(1). For λ ∈ B and

u(t) = λ,

the state x represents the computation of the negation of u and it is of the

form

x(t) = µ · χ(−∞,t0)(t)⊕ λ · χ[t0,t1)(t)⊕ λ · χ[t1,t2)(t)⊕ ...⊕ λ · χ[tk,tk+1)
(t)⊕ ...

= µ · χ(−∞,t0)(t)⊕ λ · χ[t0,∞)(t),

where µ ∈ B is the initial value of x and (tk) ∈ Seq is arbitrary. As we can

see, x depends on t0, µ, λ only and it is independent on t1, t2, ...
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Fig. 2. Circuit with feedback with the logical gate NOT.

In Figure 2, we have

x(t) = µ · χ(−∞,t0)(t)⊕ µ · χ[t0,t1)(t)⊕ µ · χ[t1,t2)(t)⊕ ...

⊕µ · χ[t2k,t2k+1)
(t)⊕ µ · χ[t2k+1,t2k+2)

(t)⊕ ...

thus this circuit is modeled by the autonomous asynchronous system

X = {µ · χ(−∞,t0)(t)⊕ µ · χ[t0,t1)(t)⊕ µ · χ[t1,t2)(t)⊕ ...

⊕µ · χ[t2k,t2k+1)
(t)⊕ µ · χ[t2k+1,t2k+2)

(t)⊕ ...|µ ∈ B, (tk) ∈ Seq} ∈ P ∗(S(1)).

Definition 2.9. The progressive functions ρ : R → Bn are by definition

the functions

ρ(t) = α0 · χ{t0}(t)⊕ α1 · χ{t1}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ... (2)

where (tk) ∈ Seq and α0, α1, ..., αk, ... ∈ Πn. The set of the progressive func-

tions is denoted by Pn.

Definition 2.10. For Φ : Bn → Bn and ρ ∈ Pn like at (2), we define Φρ :

Bn ×R → Bn by ∀µ ∈ Bn, ∀t ∈ R,

Φρ(µ, t) = µ ·χ(−∞,t0)(t)⊕Φα0
(µ) ·χ[t0,t1)(t)⊕ ...⊕Φα0...αk

(µ) ·χ[tk,tk+1)
(t)⊕ ...

Remark 2.3. The previous equation reminds the iterations of a discrete time

real dynamical system. The time is not exactly discrete in it, but some sort

of intermediate situation occurs between the discrete and the real time; on the

other hand the iterations of Φ do not happen in general on all the coordinates

(synchronicity), but on some coordinates only, such that any coordinate Φi is
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computed infinitely many times, i = 1, n (asynchronicity) when t ∈ R. This

is the meaning of the progress property, giving the so called ’unbounded delay

model’ of computation of the Boolean functions.

3. DISCRETE TIME

Notation 3.1. We denote by

N = N ∪ {−1}

the discrete time set.

Definition 3.1. Let be Φ : Bn → Bn and α ∈ Πn, α = α0, ..., αk, ... We define

the function Φ̂α : Bn ×N → Bn by ∀(µ, k) ∈ Bn ×N ,

Φ̂α(µ, k) =

{
µ, k = −1,

Φα0...αk
(µ), k ≥ 0

.

Notation 3.2. Let us denote

Π̂n = {α|α ∈ Πn, ∀k ∈ N, αk 6= (0, ..., 0)}.

Definition 3.2. The equivalence of ρ, ρ′ ∈ Pn is defined by: ∃(tk) ∈ Seq,∃(t′k) ∈
Seq, ∃α ∈ Π̂n such that (2) and

ρ′(t) = α0 · χ{t′0}(t)⊕ α1 · χ{t′1}(t)⊕ ...⊕ αk · χ{t′k}(t)⊕ ...

are true.

Definition 3.3. The ’canonical surjection’ s : Pn → Π̂n is by definition the

function ∀ρ ∈ Pn,

s(ρ) = α

where α ∈ Π̂n is the only sequence such that (tk) ∈ Seq exists, making the

equation (2) true.

Remark 3.1. The relation between the continuous and the discrete time is

the following: for any µ ∈ Bn and any ρ ∈ Pn, the sequences α ∈ Π̂n and

(tk) ∈ Seq exist making the equation (2) true and we have

Φρ(µ, t) = Φ̂α(µ,−1) · χ(−∞,t0)(t)⊕ Φ̂α(µ, 0) · χ[t0,t1)(t)⊕ ...
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...⊕ Φ̂α(µ, k) · χ[tk,tk+1)
(t)⊕ ...

Equivalent progressive functions ρ, ρ′ ∈ Pn (i.e. s(ρ) = s(ρ′)) give ’equivalent’

functions Φρ(µ, t), Φρ′(µ, t) in the sense that the computations Φ̂α(µ, k), k ∈
N− are the same ∀µ ∈ Bn, but the time flow is piecewise faster or slower in

the two situations.

4. REGULAR AUTONOMOUS ASYNCHRONOUS

SYSTEMS

Definition 4.1. The universal regular autonomous asynchronous sys-

tem ΞΦ ∈ P ∗(S(n)) that is generated by the function Φ : Bn → Bn is defined

by

ΞΦ = {Φρ(µ, ·)|µ ∈ Bn, ρ ∈ Pn}.

Definition 4.2. An autonomous asynchronous system X ∈ P ∗(S(n)) is called

regular, if Φ exists such that X ⊂ ΞΦ. In this case Φ is called the generator

function of X.

Remark 4.1. 1. The terminology of ’generator function’ is also used in [1],

meaning the vector field of a discrete time dynamical system. In [3] the termi-

nology of ’generator’ (function) of a dynamical system is mentioned too. Moisil

called Φ ’network function’ in a non-autonomous, discrete time context; for

Moisil, ’network’ means ’system’ or ’circuit’.

2. In the last two definitions, the attribute ’regular’ refers to the existence

of a generator function Φ and the attribute ’universal’ means maximal relative

to the inclusion.

For a regular system, Φ is not unique in general.

Example 4.1. For any µ0 ∈ Bn and ρ∗ ∈ Pn, the autonomous systems

{Φρ∗(µ0, ·)}, {Φρ(µ0, ·)|ρ ∈ Pn}, {Φρ∗(µ, ·)|µ ∈ Bn} and ΞΦ are regular.

For Φ = 1Bn , the system Ξ1Bn = {µ|µ ∈ Bn} = Bn is regular and we have

identified the constant function x ∈ S(n), x(t) = µ with the constant µ ∈ Bn.

Another example of universal regular autonomous asynchronous system is

given by Φ = µ0, the constant function, for which Ξµ0 = {x|xi = µi ·χ(−∞,ti)⊕
µ0

i · χ[ti,∞), µi ∈ B, ti ∈ R, i = 1, n}.
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Remark 4.2. These examples suggest several possibilities of defining the sys-

tems X ⊂ ΞΦ which are not universal. For example by putting appropriate

supplementary requests on the functions ρ, one could rediscover the ’bounded

delay model’ of computation of the Boolean functions. If ρ is fixed, we get the

’fixed delay model’ of computation of the Boolean functions.

5. ORBITS AND STATE PORTRAITS

Definition 5.1. Let be ρ ∈ Pn. Two things are understood by orbit, or (state,

or phase) trajectory of ΞΦ starting at µ ∈ Bn:

a) the function Φρ(µ, ·) : R → Bn;

b) the set Orρ(µ) = {Φρ(µ, t)|t ∈ R} representing the values of the previous

function.

Sometimes the function from a) is called the motion (or the dynamic) of

µ through Φρ.

Definition 5.2. The equivalent properties

∃t ∈ R, Φρ(µ, t) = µ′

and

µ′ ∈ Orρ(µ)

are called of accessibility; the points µ′ ∈ Orρ(µ) are said to be accessible.

Remark 5.1. The orbits are the curves in Bn, parametrized by ρ and t. On

the other hand ρ ∈ Pn, t′ ∈ R imply ρ · χ(t′,∞) ∈ Pn and we see the truth of

the implication

µ′ = Φρ(µ, t′) =⇒ ∀t ≥ t′, Φρ(µ, t) = Φρ·χ(t′,∞)(µ′, t).

Definition 5.3. The state (or the phase) portrait of ΞΦ is the set of its

orbits.
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Example 5.1. The function Φ : B2 → B2 is defined by the following table

(µ1, µ2) Φ(µ1, µ2)

(0, 0) (0, 0)

(0, 1) (1, 0)

(1, 0) (1, 1)

(1, 1) (1, 1)

The state portrait of ΞΦ is:

{(0, 1) · χ(−∞,t0) ⊕ (0, 0) · χ[t0,∞)|t0 ∈ R}∪

∪{(0, 1) · χ(−∞,t0) ⊕ (1, 0) · χ[t0,t1) ⊕ (1, 1) · χ[t1,∞)|t0, t1 ∈ R, t0 < t1}∪
∪{(0, 1) · χ(−∞,t0) ⊕ (1, 1) · χ[t0,∞)|t0 ∈ R}∪

∪{(1, 0) · χ(−∞,t0) ⊕ (1, 1) · χ[t0,∞)|t0 ∈ R} ∪ {(0, 0)} ∪ {(1, 1)}.
This set is drawn in Figure 3,

Fig. 3. The state portrait of the system from Example 5.1.

where the arrows show the increase of time. One might want to put arrows

from (0, 0) to itself and from (1, 1) to itself.

6. NULLCLINS

Definition 6.1. Let be Φ : Bn → Bn. For any i ∈ {1, ..., n}, the nullclins of

Φ are the sets

NCi = {µ|µ ∈ Bn, Φi(µ) = µi}.
If µ ∈ NCi, then the coordinate i is said to be not excited, or not enabled,

or stable and if µ ∈ Bn \ NCi then it is called excited, or enabled, or

unstable.
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Remark 6.1. Sometimes, instead of indicating Φ by a table like previously,

we can replace Figure 3 by Figure 4,

Fig. 4. The state portrait of the system from Example 5.1, version.

where we have underlined the unstable coordinates. For example in Figure

4, (0, 1) means that Φ(0, 1) = (1, 0), (1, 0) means that Φ(1, 0) = (1, 1) etc.

In fact Figure 4 results uniquely from Figure 3, one could know by looking

at Figure 3 which coordinates should be underlined and which should be not.

For example the existence of an arrow from (0, 1) to (1, 0) shows that in (0, 1)

both coordinates are enabled.

7. FIXED POINTS. REST POSITION

Definition 7.1. A point µ ∈ Bn that fulfills Φ(µ) = µ is called a fixed point

(an equilibrium point, a critical point, a singular point), shortly an

equilibrium of Φ. A point that is not fixed is called ordinary.

Theorem 7.1. The following statements are equivalent for µ ∈ Bn :

Φ(µ) = µ, (3)

∃ρ ∈ Pn,∀t ∈ R, Φρ(µ, t) = µ, (4)

∀ρ ∈ Pn,∀t ∈ R, Φρ(µ, t) = µ, (5)

∃ρ ∈ Pn, Orρ(µ) = {µ}, (6)

∀ρ ∈ Pn, Orρ(µ) = {µ}, (7)

µ ∈ NC1 ∩ ... ∩NCn. (8)
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Proof. (3)=⇒(4) We take ρ ∈ Pn in the following way

ρ(t) = (1, ..., 1) · χ{t0}(t)⊕ ...⊕ (1, ..., 1) · χ{tk}(t)⊕ ...

with (tk) ∈ Seq. For the sequence

∀k ∈ N, αk = (1, ..., 1)

from Πn we can prove by induction on k that

∀k ∈ N, Φα0...αk
(µ) = µ (9)

wherefrom

Φρ(µ, t) = µ · χ(−∞,t0)(t)⊕ µ · χ[t0,t1)(t)⊕ ...⊕ µ · χ[tk,tk+1)
(t)⊕ ... = µ (10)

(4)=⇒(3) From (4) we have the existence of α ∈ Πn and (tk) ∈ Seq with

the property that (10) is true, thus (9) is true. We denote

I0 = {i|i ∈ {1, ..., n}, α0
i = 1},

I1 = {i|i ∈ {1, ..., n}, α1
i = 1},

...

Ik = {i|i ∈ {1, ..., n}, αk
i = 1},

...

and we have from (9):

∀i ∈ {1, .., n},

Φα0

i (µ) =

{
Φi(µ), i ∈ I0

µi, i ∈ {1, ..., n} \ I0

= µi;

∀i ∈ {1, .., n}, Φα0α1

i (µ) = Φα1

i (Φα0
(µ)) =

= Φα1

i (µ) =

{
Φi(µ), i ∈ I1

µi, i ∈ {1, ..., n} \ I1

= µi;

...

∀i ∈ {1, .., n}, Φα0α1...αk

i (µ) = Φαk

i (Φα0...αk−1
(µ)) =

= Φαk

i (µ) =

{
Φi(µ), i ∈ Ik

µi, i ∈ {1, ..., n} \ Ik

= µi;
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...

with the conclusion that

∀k ∈ N, ∀i ∈ I0 ∪ I1 ∪ ... ∪ Ik,Φi(µ) = µi.

As α is progressive, some k′ ∈ N exists with the property that

I0 ∪ I1 ∪ ... ∪ Ik′ = {1, ..., n},

thus (3) is true.

(3)=⇒(5) Let be

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ... (11)

with α0, ..., αk, ... ∈ Πn and (tk) ∈ Seq arbitrary. It is proved by induction on

k the validity of (9) and this implies the truth of (10).

(5)=⇒(3) This is true because (5)=⇒(4) and (4)=⇒(3) are true.

(4)⇐⇒(6) and (5)⇐⇒(7) are obvious.

(3)⇐⇒(8) Φ(µ) = µ ⇐⇒ Φ1(µ) = µ1 and...and Φn(µ) = µn ⇐⇒ µ ∈ NC1

and...and µ ∈ NCn ⇐⇒ µ ∈ NC1 ∩ ... ∩NCn.

Definition 2. If Φ(µ) = µ, then ∀ρ ∈ Pn, the orbit Φρ(µ, t) = µ is called rest

position.

8. FIXED POINTS VS. FINAL VALUES OF THE

ORBITS

Theorem 8.1. ([8], Theorem 49) The following fixed point property is true

∀µ ∈ Bn,∀µ′ ∈ Bn,∀ρ ∈ Pn, lim
t→∞Φρ(µ, t) = µ′ =⇒ Φ(µ′) = µ′.

Proof. Let µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn be arbitrary and fixed. Some t′ ∈ R exists

such that ∀t ≥ t′,

µ′ = Φρ(µ, t) Remark 5.1= Φρ·χ(t′,∞)(µ′, t).

Because ∀t < t′,

Φρ·χ(t′,∞)(µ′, t) = Φ(0,...,0)(µ′, t) = µ′,

from Theorem 7.1, (4)=⇒(3) we have that Φ(µ′) = µ′.
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Remark 3. Theorem 8.1 shows that the final values of the states of the system

ΞΦ are fixed points of Φ.

Theorem 8.2. ([8], Theorem 50) We have ∀µ ∈ Bn, ∀µ′ ∈ Bn, ∀ρ ∈ Pn,

(Φ(µ′) = µ′ and ∃t′ ∈ R, Φρ(µ, t′) = µ′) =⇒ ∀t ≥ t′, Φρ(µ, t) = µ′.

Proof. For arbitrary µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn we suppose that Φ(µ′) =

µ′ and Φρ(µ, t′) = µ′. We have ∀t ≥ t′,

Φρ(µ, t) Remark 5.1= Φρ·χ(t′,∞)(µ′, t)
Theorem 7.1, (3)=⇒(5)

= µ′.

Remark 4. As resulting from Theorem 8.2, the accessible fixed points are

final values of the states of the system ΞΦ.

The properties of the fixed points that are expressed by Theorems 7.1, 8.1,

8.2 give a better understanding of Example 5.1.

9. TRANSITIVITY

Definition 9.1. The system ΞΦ (or the function Φ) is transitive, or mini-

mal if one of the following non-equivalent properties holds true:

∀µ ∈ Bn, ∀µ′ ∈ Bn, ∃ρ ∈ Pn, ∃t ∈ R, Φρ(µ, t) = µ′, (12)

∀µ ∈ Bn, ∀µ′ ∈ Bn, ∀ρ ∈ Pn, ∃t ∈ R, Φρ(µ, t) = µ′. (13)

Remark 9.1. The property of transitivity may be considered one of surjectivity

or one of accessibility.

If Φ is transitive, then it has no fixed points. For example 1Bn is not

transitive since all µ ∈ Bn are fixed points for this function.

Example 9.1. The property (12) of transitivity is exemplified in Figure 5

and the property (13) of transitivity is exemplified in Figure 6.

10. THE EQUIVALENCE OF THE SYSTEMS

Notation 10.1. Let h : Bn → Bn and x : R → Bn be some functions. We

denote by h(x) : R → Bn the function

∀t ∈ R, h(x)(t) = h(x(t)).
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Fig. 5. Transitivity.

Fig. 6. Transitivity.

Remark 10.1. If h : Bn → Bn and x ∈ S(n) is expressed by

x(t) = x(−∞+ 0) · χ(−∞,t0)(t)⊕ x(t0) · χ[t0,t1)(t)⊕ ...⊕ x(tk) · χ[tk,tk+1)
(t)⊕ ...

then

h(x)(t) = h(x(−∞+ 0)) · χ(−∞,t0)(t)⊕ h(x(t0)) · χ[t0,t1)(t)⊕ ...

...⊕ h(x(tk)) · χ[tk,tk+1)
(t)⊕ ...

Notation 10.2. For h : Bn → Bn and α = α0, ..., αk, ... ∈ Bn, we denote by

ĥ(α) the sequence h(α0), ..., h(αk), ... ∈ Bn.

Notation 10.3. Let be k ≥ 2 arbitrary and we denote for µ1, ..., µk ∈ Bn,

µ1 ∪ ... ∪ µk = (µ1
1 ∪ ... ∪ µk

1, ..., µ
1
n ∪ ... ∪ µk

n).

Notation 10.4. We denote by Ωn the set of the functions h : Bn → Bn that

fulfill

i) h is bijective;

ii) h(0, ..., 0) = (0, ..., 0), h(1, ..., 1) = (1, ..., 1);
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iii) ∀k ≥ 2,∀µ1 ∈ Bn, ...,∀µk ∈ Bn,

µ1 ∪ ... ∪ µk = (1, ..., 1) ⇐⇒ h(µ1) ∪ ... ∪ h(µk) = (1, ..., 1).

Theorem 10.1. a) Ωn is group relative to the composition ′◦′ of the functions;

b) ∀h ∈ Ωn, ∀α ∈ Πn, ĥ(α) ∈ Πn;

c) ∀h ∈ Ωn, ∀ρ ∈ Pn, h(ρ) ∈ Pn.

Proof. a) We can prove the fact that 1Bn ∈ Ωn, ∀h ∈ Ωn, ∀h′ ∈ Ωn, h◦h′ ∈ Ωn

and ∀h ∈ Ωn, h−1 ∈ Ωn. For example let be h ∈ Ωn, k ≥ 2 and ν1, ..., νk ∈ Bn

arbitrary, for which we denote µ1 = h−1(ν1), ..., µk = h−1(νk). We have:

h−1(ν1 ∪ ... ∪ νk) = (1, ..., 1) ⇐⇒ ν1 ∪ ... ∪ νk = h(1, ..., 1) = (1, ..., 1)

⇐⇒ h(µ1) ∪ ... ∪ h(µk) = (1, ..., 1) ⇐⇒ µ1 ∪ ... ∪ µk = (1, ..., 1)

⇐⇒ h−1(ν1) ∪ ... ∪ h−1(νk) = (1, ..., 1),

thus h−1 fulfills iii) from Notation 10.4.

b) Let h ∈ Ωn and α = α0, ..., αk, ... ∈ Bn be arbitrary. We denote for p ≥ 1

{µ1, ..., µp} = {µ|µ ∈ Bn, {k|k ∈ N, αk = µ} is infinite}

and we remark that

α ∈ Πn ⇐⇒ µ1, ..., µp, µ1, ..., µp, µ1, ... ∈ Πn ⇐⇒

⇐⇒
{

µ1 = (1, ..., 1), p = 1

µ1 ∪ ... ∪ µp = (1, ..., 1), p ≥ 2
,

ĥ(α) ∈ Πn ⇐⇒ h(µ1), ..., h(µp), h(µ1), ..., h(µp), h(µ1), ... ∈ Πn ⇐⇒

⇐⇒
{

h(µ1) = (1, ..., 1), p = 1

h(µ1) ∪ ... ∪ h(µp) = (1, ..., 1), p ≥ 2
.

Case p = 1,

α ∈ Πn =⇒ µ1 = (1, ..., 1) =⇒ h(µ1) = (1, ..., 1) =⇒ ĥ(α) ∈ Πn.

Case p ≥ 2,

α ∈ Πn =⇒ µ1 ∪ ... ∪ µp = (1, ..., 1) =⇒ h(µ1) ∪ ... ∪ h(µp) = (1, ..., 1) =⇒
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=⇒ ĥ(α) ∈ Πn.

c) Let us take arbitrarily some h ∈ Ωn and a function ρ ∈ Pn,

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ...

where α ∈ Πn and (tk) ∈ Seq. We have

h(ρ)(t) = h(ρ(t)) =

= h((0, ..., 0) · χ(−∞,t0)(t)⊕ α0 · χ{t0}(t)⊕ (0, ..., 0) · χ(t0,t1)(t)⊕ ...

...⊕ αk · χ{tk}(t)⊕ (0, ..., 0) · χ(tk,tk+1)
(t)⊕ ...)

= h(0, ..., 0) · χ(−∞,t0)(t)⊕ h(α0) · χ{t0}(t)⊕ h(0, ..., 0) · χ(t0,t1)(t)⊕ ...

...⊕ h(αk) · χ{tk}(t)⊕ h(0, ..., 0) · χ(tk,tk+1)
(t)⊕ ...

= h(α0) · χ{t0}(t)⊕ ...⊕ h(αk) · χ{tk}(t)⊕ ...

Because ĥ(α) ∈ Πn, taking into account b), we conclude that h(ρ) ∈ Pn.

Theorem 10.2. Let be the functions Φ, Ψ : Bn → Bn and the bijections

h : Bn → Bn, h′ ∈ Ωn. The following statements are equivalent:

a) ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

h ↓ ↓ h

Bn Ψh′(ν)→ Bn

is commutative;

b) ∀µ ∈ Bn, ∀α ∈ Πn,∀k ∈ N ,

h(Φ̂α(µ, k)) = Ψ̂ĥ′(α)(h(µ), k);

c) ∀µ ∈ Bn, ∀ρ ∈ Pn, ∀t ∈ R,

h(Φρ(µ, t)) = Ψh′(ρ)(h(µ), t). (14)

Proof. a)=⇒b) It is sufficient to prove that ∀µ ∈ Bn,∀α ∈ Πn, ∀k ∈ N,

h(Φα0...αk
(µ)) = Ψh′(α0)...h′(αk)(h(µ)) (15)

since this is equivalent with b).
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We fix arbitrarily some µ and some α and we use the induction on k. For

k = 0 the statement is proved, thus we suppose that it is true for k and we

prove it for k + 1:

h(Φα0...αkαk+1
(µ)) = h(Φαk+1

(Φα0...αk
(µ))) = Ψh′(αk+1)(h(Φα0...αk

(µ))) =

= Ψh′(αk+1)(Ψh′(α0)...h′(αk)(h(µ))) = Ψh′(α0)...h′(αk)h′(αk+1)(h(µ)).

b)=⇒c) For arbitrary µ ∈ Bn and ρ ∈ Pn,

ρ(t) = ρ(t0) · χ{t0}(t)⊕ ...⊕ ρ(tk) · χ{tk}(t)⊕ ...

with (tk) ∈ Seq, ρ(t0), ..., ρ(tk), ... ∈ Πn, we have that

h′(ρ)(t) = h′(ρ(t)) = h′(ρ(t0)) · χ{t0}(t)⊕ ...⊕ h′(ρ(tk)) · χ{tk}(t)⊕ ... (16)

is an element of Pn (see Theorem 10.1 c)) and

h(Φρ(µ, t)) = h(µ · χ(−∞,t0)(t)⊕ Φρ(t0)(µ) · χ[t0,t1)(t)⊕ ...

...⊕ Φρ(t0)...ρ(tk)(µ) · χ[tk,tk+1)
(t)⊕ ...) =

= h(µ) · χ(−∞,t0)(t)⊕ h(Φρ(t0)(µ)) · χ[t0,t1)(t)⊕ ...

...⊕ h(Φρ(t0)...ρ(tk)(µ)) · χ[tk,tk+1)
(t)⊕ ... =

(15)
= h(µ) · χ(−∞,t0)(t)⊕Ψh′(ρ(t0))(h(µ)) · χ[t0,t1)(t)⊕ ...

...⊕Ψh′(ρ(t0))...h′(ρ(tk))(h(µ)) · χ[tk,tk+1)
(t)⊕ ...

(16)
= Ψh′(ρ)(h(µ), t).

c)=⇒a) Let ν, µ ∈ Bn be arbitrary and fixed and we consider ρ ∈ Pn,

ρ(t) = ν · χ{t0}(t)⊕ ρ(t1) · χ{t1}(t)⊕ ...⊕ ρ(tk) · χ{tk}(t)⊕ ...

with (tk) ∈ Seq fixed too. We have

h(Φρ(µ, t)) = h(µ ·χ(−∞,t0)(t)⊕Φν(µ) ·χ[t0,t1)(t)⊕Φνρ(t1)(µ) ·χ[t1,t2)(t)⊕ ...) =

= h(µ) · χ(−∞,t0)(t)⊕ h(Φν(µ)) · χ[t0,t1)(t)⊕ h(Φνρ(t1)(µ)) · χ[t1,t2)(t)⊕ ...

But

h′(ρ)(t) = h′(ρ(t)) = h′(ν) · χ{t0}(t)⊕ h′(ρ(t1)) · χ{t1}(t)⊕ ...,
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Ψh′(ρ)(h(µ), t) =

= h(µ) · χ(−∞,t0)(t)⊕Ψh′(ν) · χ[t0,t1)(t)⊕Ψh′(ν)h′(ρ(t1)) · χ[t1,t2)(t)⊕ ...

and from (14), for t ∈ [t0, t1), we obtain

h(Φν(µ)) = Ψh′(ν)(h(µ)).

Definition 10.1. We consider the functions Φ,Ψ : Bn → Bn. If two bijec-

tions h : Bn → Bn, h′ ∈ Ωn exist such that one of the equivalent properties a),

b), c) from Theorem 10.2 is satisfied, then ΞΦ,ΞΨ are called equivalent and

Φ, Ψ are called conjugated. In this case we denote Φ
(h,h′)→ Ψ.

Remark 10.2. The equivalence of the universal regular autonomous asyn-

chronous systems is indeed an equivalence and it should be understood as a

change of coordinates. Thus Φ and Ψ are indistinguishable.

Example 10.1. Φ, Ψ : B2 → B2 are given by, see Figure 7

Fig. 7. Equivalent systems.

∀(µ1, µ2) ∈ B2,Φ(µ1, µ2) = (µ1 ⊕ µ2, µ2),

∀(µ1, µ2) ∈ B2, Ψ(µ1, µ2) = (µ1, µ1 · µ2 ∪ µ1 · µ2)

and the bijection h : B2 → B2 is

∀(µ1, µ2) ∈ B2, h(µ1, µ2) = (µ2, µ1).

The diagram
B2 Φν→ B2

h ↓ ↓ h

B2 Ψν′→ B2
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commutes for ν = ν ′ = (0, 0) and on the other hand for ν = ν ′ = (1, 1) we

have the assignments

(0, 0) Φ→ (0, 1)

h ↓ ↓ h

(1, 1) Ψ→ (0, 1)

,

(0, 1) Φ→ (1, 0)

h ↓ ↓ h

(0, 1) Ψ→ (1, 0)

,

(1, 0) Φ→ (1, 1)

h ↓ ↓ h

(1, 0) Ψ→ (0, 0)

,

(1, 1) Φ→ (0, 0)

h ↓ ↓ h

(0, 0) Ψ→ (1, 1)

.

We denote πi : B2 → B, ∀(µ1, µ2) ∈ B2,

πi(µ1, µ2) = µi, i = 1, 2.

For ν = (0, 1), ν ′ = (1, 0) we have

(0, 0)
(π1,Φ2)→ (0, 1)

h ↓ ↓ h

(1, 1)
(Ψ1,π2)→ (0, 1)

,

(0, 1)
(π1,Φ2)→ (0, 0)

h ↓ ↓ h

(0, 1)
(Ψ1,π2)→ (1, 1)

,

(1, 0)
(π1,Φ2)→ (1, 1)

h ↓ ↓ h

(1, 0)
(Ψ1,π2)→ (0, 0)

,

(1, 1)
(π1,Φ2)→ (1, 0)

h ↓ ↓ h

(0, 0)
(Ψ1,π2)→ (1, 0)

,

and for ν = (1, 0), ν′ = (0, 1) the assignments are

(0, 0)
(Φ1,π2)→ (0, 0)

h ↓ ↓ h

(1, 1)
(π1,Ψ2)→ (1, 1)

,

(0, 1)
(Φ1,π2)→ (1, 1)

h ↓ ↓ h

(0, 1)
(π1,Ψ2)→ (0, 0)

,

(1, 0)
(Φ1,π2)→ (1, 0)

h ↓ ↓ h

(1, 0)
(π1,Ψ2)→ (1, 0)

,

(1, 1)
(Φ1,π2)→ (0, 1)

h ↓ ↓ h

(0, 0)
(π1,Ψ2)→ (0, 1)

,

respectively. Φ and Ψ are conjugated.
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Example 10.2. The functions h, h′ : B2 → B2 are given in the following

table
(µ1, µ2) h(µ1, µ2) h′(µ1, µ2)

(0, 0) (0, 1) (0, 0)

(0, 1) (1, 1) (1, 0)

(1, 0) (0, 0) (0, 1)

(1, 1) (1, 0) (1, 1)

and the state portraits of the two systems are given in Figure 8. ΞΦ and ΞΨ

are equivalent.

Fig. 8. Equivalent systems.

Theorem 10.3. If Φ and Ψ are conjugated, then the following possibilities

exist:

a) Φ = Ψ = 1Bn ;

b) Φ 6= 1Bn and Ψ 6= 1Bn .

Proof. We presume that Φ
(h,h′)→ Ψ. In the equation

∀ν ∈ Bn, ∀µ ∈ Bn, h(Φν(µ)) = Ψh′(ν)(h(µ))

we put Ψ = 1Bn and we have

∀ν ∈ Bn,∀µ ∈ Bn, h(Φν(µ)) = h(µ)

thus ∀ν ∈ Bn, Φν = 1Bn and finally Φ = 1Bn .

Theorem 10.4. We suppose that ΞΦ and ΞΨ are equivalent and let be h, h′

such that Φ
(h,h′)→ Ψ.

a) If µ is a fixed point of Φ, then h(µ) is a fixed point of Ψ.

b) For any µ ∈ Bn and any ρ ∈ Pn, if Φρ(µ, t) is periodical with the period

T0, then Ψh′(ρ)(h(µ), t) is periodical with the period T0.
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c) If ΞΦ is transitive, then ΞΨ is transitive.

Proof. a) We suppose that Φ(µ) = µ. The commutativity of the diagram

Bn Φν→ Bn

h ↓ ↓ h

Bn Ψh′(ν)→ Bn

for ν = (1, ..., 1) gives

h(µ) = h(Φ(µ)) = h(Φ(1,...,1)(µ)) = Ψh′(1,...,1)(h(µ)) =

= Ψ(1,...,1)(h(µ)) = Ψ(h(µ)).

b) Let be µ ∈ Bn and ρ ∈ Pn. The hypothesis states that ∃t′ ∈ R,∀t ≥ t′,

Φρ(µ, t) = Φρ(µ, t + T0)

and in this situation

Ψh′(ρ)(h(µ), t) = h(Φρ(µ, t)) = h(Φρ(µ, t + T0)) = Ψh′(ρ)(h(µ), t + T0).

c) Let µ, µ′ ∈ Bn be arbitrary and fixed. The hypothesis (12) states that

∃ρ ∈ Pn, ∃t ∈ R, Φρ(h−1(µ), t) = h−1(µ′),

wherefrom

Ψh′(ρ)(µ, t) = Ψh′(ρ)(h(h−1(µ)), t) = h(Φρ(h−1(µ), t) = h(h−1(µ′)) = µ′.

The situation with (13) is similar.

11. DYNAMICAL BIFURCATIONS

Definition 11.1. We consider the case when the generator function Φ :

Bn × Bm → Bn, Bn × Bm 3 (µ, λ) → Φ(µ, λ) ∈ Bn of ΞΦ(·,λ) depends

on the parameter λ ∈ Bm. We fix λ and let be λ′ ∈ Bm. If Φ(·, λ) and

Φ(·, λ′) are conjugated, then Φ(·, λ′) is called an admissible (or allowable)

perturbation of Φ(·, λ).

Remark 11.1. Intuitively speaking (Ott, [2]) a dynamical bifurcation is a

qualitative change in the dynamic of the system ΞΦ(·,λ) that occurs at the vari-

ation of the parameter λ.
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Definition 11.2. If for any parameters λ, λ′ ∈ Bm the systems ΞΦ(·,λ) and

ΞΦ(·,λ′) are equivalent, then Φ is called structurally stable; the existence of

λ, λ′ such that ΞΦ(·,λ) and ΞΦ(·,λ′) are not equivalent is called a dynamical

bifurcation.

Equivalently, let us fix an arbitrary λ ∈ Bm. If ∀λ′ ∈ Bm, Φ(·, λ′) is an

admissible perturbation of Φ(·, λ), then Φ is said to be structurally stable,

otherwise we say that Φ has a dynamical bifurcation.

Remark 11.2. If ∀λ ∈ Bm, ∀λ′ ∈ Bm the bijections h : Bn → Bn, h′ ∈ Ωn

exist such that ∀ν ∈ Bn, the diagram

Bn Φν(·,λ)→ Bn

h ↓ ↓ h

Bn Φh′(ν)(·,λ′)→ Bn

commutes, then Φ is structurally stable, otherwise we have a dynamical bifur-

cation.

Example 11.1. In Figure 9 (n = 2,m = 1),

Fig. 9. Structural stability.

Φ is structurally stable and the bijections h, h′ are defined accordingly to the

following table:
(µ1, µ2) h(µ1, µ2) h′(µ1, µ2)

(0, 0) (0, 1) (0, 0)

(0, 1) (1, 1) (1, 0)

(1, 0) (0, 0) (0, 1)

(1, 1) (1, 0) (1, 1)

Example 11.2. In Figure 10 (n = 2,m = 1),

Φ has a dynamical bifurcation.
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Fig. 10. Dynamical bifurcation.

Definition 11.3. The bifurcation diagram is a partition of the set of sys-

tems {ΞΦ(·,λ)|λ ∈ Bm} in classes of equivalence given by the equivalence of the

systems, together with representative state portraits for each class of equiva-

lence.

Example 11.3. Figure 10 is a bifurcation diagram.

Definition 11.4. The bifurcation diagram ([2], page 5) is the graph that

gives the position of the fixed points depending on a parameter, such that a

bifurcation exists.

Remark 11.3. Such a(n informal) definition works for calling Figure 10 a

bifurcation diagram, since there fixed points exist. However for Figure 11

Fig. 11. Dynamical bifurcation.

this definition does not work, because a bifurcation exists there, but no fixed

points.

Definition 11.5. Let be Φ, Ψ : Bn × Bm → Bn. The families of systems

(ΞΦ(·,λ))λ∈Bm and (ΞΨ(·,λ))λ∈Bm are called equivalent if there exists a bijec-

tion h′′ : Bm → Bm such that ∀λ ∈ Bm,ΞΦ(·,λ) and ΞΨ(·,h′′(λ)) are equivalent

in the sense of Definition 10.1.
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mariana trifan@yahoo.com, cgeorge@univ-ovidius.ro, lascudan@gmail.com

Abstract This paper represents a continuation of our previous study [1] on the epi-

demic model of Kermack and McKendrick involving two individuals popula-

tions, namely the susceptible and the infective. The normal form for the double

zero singularity when some parameter vanishes is deduced by using the method

in [2]. The phase portrait for this case is sketched.

Keywords: epidemic model, normal form, degenerated singularity.

2000 MSC: 37G05.

1. INTRODUCTION

Some of the first written references about infectious diseases (considered in

those times as natural phenomena) are back dated in the fifth century B.C. At

the beginning of the XVII’s century, as a result of the population migration,

the humankind was faced with a large number of epidemic diseases. Even

now, despite the progress made in medicine, infectious diseases are still a ma-

jor health problem throughout the world. Each year, infectious diseases, such

as tuberculosis, hepatitis, malaria, HIV, causes the death of millions of people

(e.g. tuberculosis - 2 mil./year, HIV - 3 mil./year). For this reason a better

knowledge of symptoms, steady states and treatments is necessary. Tracking

down the disease in its initial phase leads to a larger number of possible applied

treatments and also their efficiency. Since there exist many complicated fac-
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tors, only the mathematical models may be able to provide information about

the dynamics of epidemics. The number of mathematical models developed

to describe and interpret patterns of transmission of infectious diseases ”ex-

plodes” in recent years. Some of them are described by ordinary differential

equations (ode’s) or by partial differential equations (pde’s).

2. MATHEMATICAL MODEL

In this paper we consider the Cauchy problem x(0) = x0, y(0) = y0 for the

following ode’s governing the evolution of two classes of the populations [3]

{
ẋ = −µxy + ρ,

ẏ = µxy − νy,
(1)

where x, y are the state functions, x are susceptible individuals, y are infected

individuals; µ, ρ, ν are nonnegative parameters; µxy represent new infected

individuals when the populations x and y are combined, ρ are new suspected

individuals, νy being some individuals from y which die or are in quarantine or

are immune, t is the independent variable and the dot over quantities stands

for the derivative with respect to t.

In [2] are presented the equilibria for the ode’s (1) when some parameters

are vanishing. Namely, in the cases 1) ρ = 0, µ, ν 6= 0, µx0 − ν 6= 0; 2)

ρ = µ = 0, ν 6= 0; 3) ρ = ν = 0, µ 6= 0, x0, y0 6= 0 the nonhyperbolic equilibria

are degenerated saddle-nodes, while for 4) ρ = 0, µ, ν 6= 0, µx0 − ν = 0; 5)

ρ = ν = 0, µ 6= 0, x0 = 0 and/or y0 = 0 and 6)ρ = µ = ν = 0 they are double

zero. In Section 3 we deduce the normal form of the governing equations only

at these singularities. This is the first step in deducing the corresponding

miniversal unfolding about the singularities.

3. NORMAL FORM ”AT THE POINT”

In the cases 5) and 6) the linearized system around 0 has the matrix A

= 02. Accordingly, we can not speak about degeneracy or nondegeneracy of
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the equilibria with double zero eigenvalues. For case 4) the following theorem

takes place.

Theorem 3.1. The ode’s (1) are topologically equivalent, for ρ = 0, µ, ν 6=
0, ν = µx0, to the ode’s





ṙ1 = r2 + r2
1

(
µ0
2 + µ0

6x0
r1 − µ2

0
12x0

r2
1

)
+ O(r3

1),

ṙ2 = O(r4
1)

(2)

and, so, the equilibrium point e = (x0, 0) is a degenerated Bogdanov-Takens

singularity.

Proof. For ρ = 0, µ, ν 6= 0, ν = µx0, system (1) becomes
{

ẋ = −µxy,

ẏ = µxy − µx0y.
(3)

System (3) possesses two equilibria: e0 = (0, 0) and e = (x0, 0), where x0 is

given and µ is the parameter. As these equilibria exist for an infinity of values

of the parameter µ, we choose one of them. Let it be µ0. Then ”at the point”

µ0 system (3) has the form

{
ẋ = −µ0xy,

ẏ = µ0xy − µ0x0y.
(3’)

By the change of coordinates u1 = x − x0, u2 = y , the equilibrium point

e = (x0, 0) is carried at the origin of coordinates u0 = (u01, u02) = (0, 0). In

the (u1, u2)-plane ode’s (3’) read

{
u̇1 = −µ0x0u2 − µ0u1u2,

u̇2 = µ0u1u2.
(4)

The matrix A1(0)=

(
0 −µ0x0

0 0

)
, associated with the linearized system

around (u01, u02) = 0, has the eigenvalues λ1 = 0, λ2 = 0, hence the equilib-

rium u0 is a double zero singularity.

Bringing of matrix A1(0) to canonical form implies the transformation of

the canonical base (e1, e2) of R2 to the base {v+,v−} where v+ = (1, 0),
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v− = (0,−µ0x0) and A1v+ = 0, A1v− = v+, < v+,v− >= 0 (hence v+ is

an eigenvector while v− is an associated eigenvector of A1). By the change of

coordinates u → Pn, where P = {v+,v−}, the system (4) in (0,0) becomes

{
ṅ1 = n2 + n1n2/x0,

ṅ2 = µ0n1n2.
(5)

In (5), X(n) =

(
n1n2/x0

µ0n1n2

)
(in [4] notation) and represents the nonlinear

part of (5) while the matrix of the first order terms reads An =

(
n2 0

0 0

)
.

Elimination of the second order nonresonant terms from (5)

Proposition 3.1. The dynamical system associated with (5) is topologically

equivalent to the dynamical system associated with
{

q̇1 = q2 + µ0q
2
1/2 + q2

1q2/(2x2
0) + O

(|q1, q2|4
)
,

q̇2 = µ0q
2
1q2/(2x2

0) + O
(|q1, q2|4

)
.

(6)

Proof. Denote n = (n1, n2),q = (q1, q2). In order to determine the trans-

formation which carries (5) in (6) we apply the method described in [1], [4],

briefly presented in the following.

Let Hk
n be the Hilbert space of n-dimensional vector homogeneous polyno-

mials of degree k. Then dimHk
n = n(k + 1).

Let B = {u1,u2,u3,u4, u5,u6} be a base for H, where u1 = n2
1e2, u2 =

n1n2e2, u3 = n2
2e2, u4 = n2

1e1, u5 = n1n2e1, u6 = n2
2e1, e1 = (1, 0) and

e2 = (0, 1). Obviously, dimH2
2 = 6. Denote by L2

A the Lie parenthesis of the

operator defined by A.

Let ImL2
A be the range of L2

A and denote by KerL2
A the null space of L2

A.

Then the splitting H2
2 = ImL2

A

⊕
KerL2

A holds. Since

Lk
A(ui) = (k − i + 1)ui+1 − ui+k+1, 1 ≤ i ≤ k + 1

and

L2
A(u1) = 2u2 − u4, L

2
A(u2) = u3 − u5, L

2
A(u3) = u6 = L2

A(u5),

L2
A(u4) = 2u5, L

2
A(u6) = 0,
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a basis for ImL2
A is B1 = {L2

A(u1), L2
A(u2), L2

A(u3), L2
A(u4)}.

By the above algebra it reads B1 = {2u2 − u4,u3 − u5,u6, 2u5}. Choose

B2 = {u1,u4} as a basis of KerL2
A. Thus, every vector from basis B can be

expressed in terms of the vectors from B1 and B2.

Let ξ1 = {ξ1, ξ2}T =
∑6

i=1 αiui be an arbitrary element of H2
2 and take

into account that

2u2 − u4 = L2
A(u1),u3 − u5 = L2

A(u2),u6 = L2
A(u3), 2u5 = L2

A(u4),

implying

u2 =
u4 + L2

A(u1)
2

, u3 = L2
A(u2) +

1
2
L2

A(u4), u5 =
1
2
L2

A(u4).

Then ξ1 can be written in the form

ξ1 = L2
A

(
α2

2
u1 + α3u2 +

α3 + α5

2
u4 + α6u3

)
+ [α1u1 + (α4 +

α2

2
)u4],

i.e. as a sum of a vector from B1 and a resonant term from B2.

Let us take as ξ1 the nonlinear term from (5), i.e.

ξ1 =

(
n1n2/x0

µ0n1n2

)
=

1
x0

n5 + µ0n2.

Hence α1 = α3 = α4 = α6 = 0, α5 = 1
x0

, α2 = µ0, therefore the resonant

term is µ0
2 n4 while the preimage of ξ1 through the operator L̃2

A : H2
2 →

ImL2
A, L̃2

A(n) = L2
A(n), reads µ0

2 n1+ 1
2x0

n4. In order to eliminate the second

order nonresonant terms we use the transformation n = q + h(q), where

h2(q) = µ0
2 n1+ 1

2x0
n4 =

(
1

2x0
n2

1
µ0
2 n2

1

)
, ξ1 = L̃2

A(h(q)). In other words, this

transformation has the form

n1 = q1 +
1

2x0
q2
1, n2 = q2 +

µ0

2
q2
1 (7)

implying ṅ1 = q̇1(1 + q1

x0
), ṅ2 = q̇2 + µ0q1q̇1. Taking into account (5) and (7)

and using the asymptotic expansion (1 + q1

x0
)−1 ∼ 1− q1

x0
+ q2

1

x2
0
− ..., we obtain

(6).
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Elimination of the third order nonresonant terms from (6)

Proposition 3.2. The system (6) is topologically equivalent to the system (2).

Proof. In this case the Hilbert space H3
2 has the dimension dimH3

2 = 8.

The basis of H3
2 is

B = {qi ∈ H3
2|qi = n4−i

1 ni−1
2 e2, i = 1, 4;qi = n8−i

1 ni−5
2 e1, i = 5, 8}.

Because H3
2 = ImL3

A

⊕
KerL3

A a basis of ImL3
A is

B1 = {3u2 − u5, 2u3 − u6,u4 − u7,−u8, 3u6, 2u7}

and a basis of KerL3
A is B2 = {u1,u5}.

Thus, the decompositions along B1 and B2 of vectors from B are

u1 = 0 + u1,u2 = (3u2 − u5)/3 + u5/3,u3 = (2u3 − u6)/2 + 3u6/6,

u4 = [(u4 − u7) + 2u7/2] + 0,u5 = 0 + u5,u6 = 3u6/3 + 0,

u7 = 2u7/2 + 0,u8 = −(−u8) + 0.

Similarly, for an arbitrary element ξ2 of H3
2, the succession of equalities

ξ2 = L3
A

(
α2

2
u1 +

α3

2
u2 + α4u3 − α8u4 +

α3 + 2α6

6
u5 +

α4 + α7

2
u6

)
+

[α1u2 +
α2 + 3α5

3
u5] = L3

A(H3
2) + [α1u2 +

α2 + 3α5

3
u5]

holds. For the ode’s (5) we have ξ2 =

(
q2
1q2/2x2

0

µ0q
2
1q2/2x0

)
, leading to

h3(r) =

(
r3
1/6x2

0

µ0r
3
1/6x0

)
. Therefore, by the transformation q = r + h3(r),

applied to the (5), we obtain (2).

Remark 3.1. The ode’s (2) represent the normal form up to order three for

ode’s (4).

Remark 3.2. If, in Proposition 1, B1 = {2u2 − u4,u3 − u5,u6, 2u5}, B2 =

{u1,u2} and, in Proposition 2, B1 = {3u2 − u5, 2u4 − u7,−u8, 3u6, 2u7} and

B2 = {u1,u2} then we obtain the normal form, equivalent to (2),
{

ṙ1 = r2 + O
(|r|3) ,

ṙ2 = µ0r1r2 + O
(|r|3) .

(8)
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In the literature it is this form which defines the equilibrium e as a degenerated

Bogdanov-Takens singularity.

4. CONCLUSIONS

The topological type of one nonhyperbolic singularity was investigated. In

the linear case the phase trajectories (fig. 1) are straight lines parallel to Ox-

axis without the attractive or repulsive directions while in the nonlinear case

they are curves limited by the Ox-axis.

Fig. 1. The phase portraits in the linear and nonlinear cases, for µ = 0.3, ν = 0.15 and

x0 = 0.5.

Fig. 2. The evolution in time of susceptible and infected populations for some parameter

values.
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The evolution of the x, y populations (fig. 2) shows the parameter variations

leads to decreasing number of susceptible individuals and one increasing of

infected individuals. This phenomenon is caused by the term y, i.e. by the

death or immunity of the individuals.
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