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Academician Caius Iacob – 

 
100 years from  birth 

 
 
     Caius Iacob was born on 29 martie 1912 in Arad. His parents were Lazăr and Cornelia 
Iacob. Lazăr Iacob, a well known personality of his époque, was Professor of Canon Law at 
university level (in Arad and in Oradea), and contributed to the realization of the Great Union 
from 1918, event that gave birth to the modern Romanian State. 
     Caius Iacob began attending  the primary school at the age of only 5 years,  in 1917. Then, 
from 1921 to 1924 he was pupil of the middle school hosted by  the High School Moise 
Nicoară. Between 1924 and 1928 he followed the classes of High School Emanoil Gojdu, 
Oradea.  
     When he was only 19 years old, he graduated the Faculty of Mathematics of Bucharest.  His 
mathematical thinking was formed by his remarkable Romanian Professors: Gheorghe Țițeica, 
Anton Davidoglu, David Emmanuel, Dimitrie Pompeiu, Nicolae Coculescu, Victor Vâlcovici. 
     Then he performed doctoral studies at the Faculty of Sciences of University of Paris, under 
the guidance of Prof. Henri Villat.   Here he had the privilege of receiving courses from great 
professors such as Ellie Cartan, Henri Lebesgue, Jean Leray, Emil Goursat, Paul Montel, 
Gaston Julia, and, obviously, Henri Villat.
      In 1935, at the age of only 23,  he defended his PhD Thesis, Sur la détermination des 
fonctions harmoniques conjugées par certaines conditions aux limites.  Applications à 
l'Hydrodynamique,  confirming thus the precocity of his intelligence and the talent for exact 
sciences shown in his infancy. 
      Returning in Romania, he began his academic activity  as Professor’s Assistant at the 
Polytechnical School of Timișoara. This was the first step on an academic pathway that lead 
him to the position of Professor at the University of Bucharest. 
     More specific, Caius Iacob was: 

• Professor’s Assistant at the Polytechnic School of Timișoara, between 1935-1938; 
• Professor’s Assistant at the Section of Mathematics of the Faculty of Sciences, between 

1938-1939; 
• Professor’s Assistant at the Laboratory of Mechanics of the University of Bucharest, 

between 1939-1942; 
• Lecturer (Conferențiar) at the Department of General Mathematics of the University of 

Cluj from 1942 to December 1943; 
• Professor at the Department of Mechanics of University of Cluj between December 

1943 and October 1950; 
• Since October 1950, Professor at the Department of Mathematics and Physics of the 

University of Bucharest.  He occupied this position until his retirement, in 1982. 
     Between 1952-1953 he was Vice-Rector  of University of Bucharest. 
     His pedagogical activity was doubled by a prodigious scientific activity. 
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     We make below a selective presentation of his domains of interest, in which he gained very 
important results [1]: 

- problems of the theory of complex  potential that occur in the study of Fluid 
Mechanics;  

- Dirichlet problem for plane multiple-connected domains; 
- modified Dirichlet problem (he introduced the modified Green function in the study of 

this problem); 
- Riemann and Hilbert problems with given singularities and Dirichlet problem (in the 

classical sense or modified) with given singularities, for important particular cases; 
- in the mechanics of perfect fluids:  the theory of jets, in particular, the deviation of jets 

in the presence of solid obstacles;  the movement of a fluid in the presence of some 
rotating body; the complex  potential of a movement with given singularities of a 
incompressible fluid, in a multiple connected domain;  the theory of thin wing; 

- for viscous fluids, the stationary Poiseuille flows in interesting particular cases; 
- in aerodynamics and gas dynamics, the exact solutions for some subsonic movements; 
- approximation methods – movements without circulation around obstacles; 

hodographic approximation relying on successive approximation ; 
- in the field of supersonic aerodynamics – the theory of the airfoil and the theory of 

conical movements in the case of conical low profile obstacles; 
- in the theory of elasticity – studies of the torsion of an elastic rod in certain specific 

conditions. 
(see also the List of Papers, taken from [2],  at page vii). 
 
     As a result of this impressing scientific activity, Professor Caius Iacob became in 1955 a 
Corresponding Member of the Romanian Academy and, in 1963, a Full Member of the 
Romanian Academy. 
     Academician Caius Iacob gained recognition of his work not only within our country, but 
also abroad. As Prof. St. I. Gheorghiță shows in [1], his works „were cited by H. Villat, Th. 
Karman,  D. Riabouchinsky, J. Leray, U. Cisotti, B. Demtchenko, Robert Sauer, J. 
Kravtchenko, L. I. Sedov, A. Weinstein, P. Germain, R. Bader, H. Cabannes, M. V. Keldis, D. 
Gaier, G. I. Dombrovski, N. I. Mushelisvili, A. Bunimovici, M. A. Lavrentiev, B. V. Savat, M. 
I. Gurevici, D. Gilbarg, M. Borelli, M. Schiffer, R. von Mises, K. Friedrichs, R. Finn, L. Bers, 
etc”. 
     All the aspects of his activity were developed at highest level. Concerning the teaching 
activities, his former students keep in their memory the high quality of his courses, in which 
not only he presented the subject of the lessons but also he used to place the subject in the 
framework of the history of science, opening large horizons of knowledge to his students. He 
encouraged students to perform research work and generously lead many PhD stages. 
     The list of  the mathematicians and/or mechaniciens that were guided by Acad. Caius Iacob 
during doctoral studies is posted on the webpage [2]. 
     As a Head of Department of Mechanics at Faculty of Mathematics in Bucharest,  Acad. 
Caius Iacob stimulated the study of many branches of Mechanics such as Mechanics of Fluids, 
Theory of Elasticity, Theory of Plasticity, Rock Mechanics, Rheology, so on. 
     Moreover, in 1977 with his contribution, the Section of Mechanics   was created at the 
Faculty of Mathematics in Bucharest. Students that attended the courses of this section studied 
five years (a cycle of studies equivalent to university plus master studies) and the best of them 
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could chose workplaces in research institutes. This situation lead to a strong development of 
the study of mechanics in our country, many specialists in this field being formed after 1977. 
     We must add that Acad. Caius Iacob was not a member of the communist party – as most of 
the persons  in the Academic medium were before 1989. Only his remarkable talent and 
achievements allowed him to  have such an academic career without accepting to be a member 
of the party that tried to control everyone and everything. More than that, he had the courage of 
facing the communist authorities in specific problems concerning university level education.    
As an example, while he was a Vice-Rector of the University of Bucharest, he fought for the 
right to bring documentation from Western countries in our universities. That happened in 
1952, in a period when  the policy of the leading (communist) party was that of isolationism 
(only scientific literature from Soviet Russia was allowed) [3]. 
     After the fall of the communism, he became member of the historical party “Partidul 
Național Țărănesc – Creștin și Democrat” (National Christian and Democrat Party of Paysans) 
and he represented  this Party in the Romanian Parliament from 1990. 
     In 1991, Acad. Caius Iacob, Professor  Adelina Georgescu and some other enthusiasts of 
Mathematics and Mechanics, founded The Institute of Applied Mathematics of the Romanian 
Academy, with Prof. Adelina Georgescu as Director.  By the union of this Institute and the 
Center of Mathematical Statistics, in 2001, the actual „G. Mihoc – C. Iacob” Institute of 
Mathematical Statistics and Applied Mathematics of the Romanian Academy was born. 
     Acad. Caius Iacob left this world on February 6, 1992. 
     His scientific heritage will remain as a value of the culture of the world. In our country he 
will be always remembered as a prominent Professor, Scientist and Citizen. He left behind a 
school of Mechanics that was very strong in the last two decades of the last century. Unhappily 
the evolution of economy and that of policies in Education in our country after 1989 lead to a 
weakening of this school.  Since the local industry was awakened and many research institutes 
disappeared, many young researchers in the field left the country while the young graduates of 
the High Schools did not feel encouraged to study Mechanics in University. 
     Academician’s Caius Iacob activity in the field of teaching and guiding scientific life in 
University of Bucharest must remain as a example of what should be done in order to 
strengthen again the  school of Mechanics in our country. It is obvious that such an  action 
must be supported by responsible policies, based on the national interest, in Education, 
Research, Economy. 
 
     Romanian Academy celebrated 100 years from Academician’s Caius Iacob birth on March 
29, 2012. 
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LIST OF PUBLISHED WORKS OF ACAD. CAIUS IACOB  [2] 
 
Boundary Value Problems, Theory of Complex Potential, Armonic functions 
 
1.Sur un problème mixte dans l'anneau circulaire,  C.R. Acad. Sc. Paris, 196, 1933,  91. 
2.Sur quelques problèmes mixtes dans une couronne circulaire, C.R. Acad. Sc. Paris, 196, 
1933, 1363.  
3.Sur le problème de Dirichlet pour les fonctions de plusieurs variables complexes, Bull. des 
Sc. Mathem., Paris, 2-e serie, 158, 1934, 108.  
4.Sur un problème de Dirichlet-Neumann pour les fonctions de deux variables complexes, C.R. 
du soixant septieme Congres des Sociétes Savantes, 1934, p. 21.  
5.Sur quelques problèmes generalises de Dirichlet-Neumann pour les aires multiplement 
connexes, C.R. Acad. Sc. Paris, 198, 1934, 2225.  
6. Sur la détermination des fonctions harmoniques conjugées par certaines conditions aux 
limites.  Applications à l'Hydrodynamique, presentée à la Faculté des Sciences de l'Université 
de Paris, 1935.  
7.Sur quelques propriétés de la solution générale d'un problème de MM. H. Villat et R. Thiery, 
C.R. Acad. Sc. Paris, 200, 1935, p. 1288.  
8.Sur le problème de Dirichlet à deux dimensions, C. R.  Acad. Sc. Paris,   205, 1937, p. 1363.  
9.Sur la formation du potentiel complexe de l'écoulement plan d'un liquide dans un domaine 
multiplement connexe, C.R. Acad. Sc. Paris,  207, 1938, 562.  
10.Sur quelques conditions aux limites susceptibles de determiner une fonction analytique, 
Bull. Mathem. de la Soc. Roum. des Sc., 40(1-2), București, 1936, 125-130.  
11.Conditions d'uniformité ou de multiformité dans le problème plan de Dirichlet, 
Mathematica,  XV, 1939, 12.  
12.Sur le probleme de Dirichlet dans un domaine plan multiplement connexe et ses 
applications a l'Hydrodynamique, Journal de Mathem. Pures et Appl., 18,  1939, 363-383.  
13.Asupra unor funcții armonice de două variabile, Revista de matematici "POZITIVA", Anul 
I,  nr. 3, 1940.  
14.Sur le problème de la derivée oblique de Poincaré et sa connexion avec le problème de 
Hilbert, Bull. Mathem. de la Soc. Roum. des Sc.,   42(2), 1941,  207-247.  
15.Sur un problème mixte pour le plan muni de coupures rectilignes alignées, C.R. Acad. Sc. 
Paris, 228, 1949, 335-357.  
16.Rezolvarea unei probleme la limită pentru planul cu tăieturi rectilinii aliniate, Studii și 
Cercet. Mat., 1, 2(1 950), 393-417.  
17.Generalizarea unei teoreme a lui Privalov, Comunicările Acad. R.P.R., I, 6(1951),  433-
437.  
18.Sur quelques propriétés de la fonction de Green, C.R. Acad. Sc. Paris, 245, 1957, p. 483.  
19.Sur la solution a singularités données du probleme de Dirichlet modifié, C.R. Acad. Sc. 
Paris,  245, 1957, p. 622.  
20.Asupra determinării potențialului complex al unor mișcări fluide cu singulărități date, Bull. 
Știint. Acad. R.P.R., Sect. Mat. Fiz., IX,  2(1957),  387-394.  

 vii



21.Observări asupra problemei lui Dirichlet modificată, Comunicările Acad. R.P.R., VIII, 
11(1958),  1107-1111. 
22.Asupra unei extinderi a teoremei cercului, Comunicările Acad. R.P.R., IX, 8(1959), 759-
762.  
23.Asupra soluțiilor cu singularități date ale problemei lui Riemann și Hilbert, Studii și 
Cercet. Mat., X,  2(1959), 255-272.  
24.Sur le problème de Dirichlet modifié, Atti del VI Congresso dell' Unione Matematica  
Italiana, Napoli, 1959, 309-311.  
25.Asupra soluțiilor cu singularități date ale unor probleme la limită, Studii și Cercet. Mat., 
XI,  2(1960),  293-303.  
26.Sur le problème de Dirichlet a singularités données, Journal de Mathem. Pures et Appl., 40, 
1961, 157-188.  
27.Rezolvarea problemei lui Dirichlet pentru cerc în unele cazuri particulare, Comunicările 
Acad. R.P.R., XII, 4(1962),  381-385.  
28.Sur la resolution du problème de Dirichlet pour le cercle dans quelques cas particuliers, 
C.R. Acad. Sc. Paris, 254, 1962, p. 3479.  
29.Asupra problemei biarmonice fundamentale, Comunicările Acad. R.P.R., XII, 5, 1962, 509-
511.  
30.Asupra problemei plane a lui Dirichlet pentru o clasă particulară de domenii. Aplicații la 
problema lui Saint- Venant, Comunicările Acad. R.P.R., XII, 10(1962),  1071-1075.  
31.Asupra dezvoltării în serie a funcției lui Green în vecinătatea punctului de la infinit, Studia 
Universitatis Babes-Bolyai, Series Mathematica-Physica, VII, 1(1962),  95-98.  
32.Sur quelques applications de la théorie des fonctions a l'aerodynamique subsonique, 
Applications of the theory of functions in continuum mechanics, Proceedings of the 
international symposium, Tbilisi, 1963, 252-264.  
33.Sur la résolution du problème biharmonique fondamental pour le cercle dans quelques cas 
particulières, Rev. Roum. Math. Pures et Appl., IX, 10, 1964, 925-928.  
34.Sur la résolution du problème plan de Dirichlet dans quelques cas particuliers, Journal de 
Mathem. Pures et Appl., 14, Paris, 1965, 279-285.  
35.Sur la résolution explicite du problème plan de Dirichlet pour certains domaines 
canoniques, Bull. Math. de la Soc. Sci. Mat. de la R. S. Roumanie, 10(58), 1-2, 1966, 13-26.  
36.Sur une interpretation des conditions de compatibilité dans le problème mixte de Volterra, 
Rev. Roum. Math. Pures et Appl., XII, 1, 1967, 87-92.  
37.Sur les théorèmes de la couronne circulaire, C.R. Acad. Sc. Paris, 267, 1968, 540.  
38.On some Extension of the Circle-Theorem and their Applications to Mechanics of Continua, 
ZAMM, 1968, 19-20.  
39.Sur quelques nouvelles extensions du théorème du cercle, Annali di Matematica Pura et 
Applicata, serie IV, LXXXIV, 1970, 263-278.  
40.Les théorèmes de la couronnne circulaire et quelques-unes de leurs applications, Fluid 
Dynamics Transactions, 5, Part. I, 1970, 117-127.  
41.Sur une extension des théorèmes de Koening et Vâlcovici, Rev. Roum. Sci. Tech. Mec. 
Appl., XXI, 3, 1976,  329-333.  
42.Sur le théorème du cercle dans le cas des singularités logarithmiques, Mathematica-Revue 
d'Analyse Numerique et de Theorie de l'Approximation. Mathematica, t. 23(46), nr. 2, 1981, 
357-369.  
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Theory of Fluid Jets  
1.Sur un problème concernant le jets gazeux, Mathematica, VIII, Cluj, 1934,  205-211.  
2.Sur un jet gazeux, C.R. Acad. Sc. Paris,  203, 1936,  423.  
3.Etude d'un jet gazeux, Bull.scient. de l'Ec. Polyt. de Timișoara, 7,  1-2, 46-59; 
4.Sur le coefficient de contraction des jets gazeux, Bull. Mathem. de la Soc.Roum. de Sc.,  40 
(1,2), București, 1938,  263.  
5.Sulla generalizzatione di una formula di Cisotti e sua applicazione allo studio dei movimenti 
lenti di un fluido comprimibile, Rendiconti della R. academia nzionale dei Lincei, XXVII, 4, 
(1938),  176-181.  
6.Sur la second approximation dans le problème des jets gazeux, C.R. Acad. Sc. Paris, 222, 
1946, 1427.  
7.Remarques sur la methode approchée de Tchapliguine, C.R. Acad. Sc. Paris, 223, 1946, p. 
714.  
8.Sur les jets gazeux subsoniques a parois données, Actes du IX-eme Congres International de 
Mécanique Appliquée, t.1, Bruxelles, 1956,  464-475.  
9.Mișcări subsonice cu suprafață liberă, Sesiunea Știintifică Jubiliară a Institutului de 
Mecanică Aplicată "Traian Vuia" al Acad. R.P.R., București 1960, 175-197.  
10.Sur quelques solutions exactes de la dynamique de gaz, Archiwum. Mech. Stos., 14 (3/4), 
1962,  603-619.  
11.O problemă de teoria jeturilor supersonice, Studii și Cercet. Matem., 27,  1(1975), 47-66.  
12.Sur l'expansion d'un jet supersonique dans l'atmosphère, C.R. Acad. Sc. Paris, 280, 1975, p. 
153.  
13.Asupra expansiunii unui jet supersonic axial simetric în atmosferă, Studii și Cercet. 
Matem., 27, 1975, 181-193.  
14.On some Extensions of the Prandtl Formula for the Wave Length of a Sonic Jet Expanding 
into the Atmosphere, Sympossium Transsonicum II, Gottingen, September 8-13, 1975, 
Springer, 217-226.  
15.Condiții de validitate fizică in aerodinamica liniară a jeturilor supersonice, Studii și Cercet. 
Matem., 29, 5(1977),  507.  
16.On a subsonic jet problem I, Rev. Roumaine Sci. Tech., Ser. Mec. Appl., 31(1986), 591-
601.  
17.On a subsonic jet problem II, Rev. Roumaine Sci. Tech., Ser. Mec. Appl., 32 (1987),  3-21.  
18.On gas jet with a prescribed compressible law, Proceedings of the Steklov Institute of 
Mathematics, 1991, issue 1. Supersonic Flow Range of validity of the formulae derived by 
linear aerodynamic theory for the Prandtl supersonic jet problem, in Recent Developments in 
Theoretical Fluid Mechanics. 
 
Compressible fluids  
1.Sur quelques problèmes concernant l'écoulement des fluides parfaits compressibles, C.R. 
Acad. Sc. Paris, 197, 1933, p. 125.  
2.Sur les mouvements lents des fluides parfait compressibles, Portugaliae Mathematica, 
Lisabona,  1,   3(1939), 209-257.  
3.Sur l'écoulement lent d'un fluid parfait, compressible autour d'un cylidre circulaire, 
Mathematica,   XVII, 1941,  1-18.  
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4.Sur quelques propriétés de la corespondance de M. Tchapliguine en dynamique des fluides 
compressibles, Bull. Mathem. de la Soc. Roum. des Sc.,   42, 1(1941),   19-31.  
5.Sur un problème de M. Slioskine, Bull. Sci. de l'Acad. Roumaine,   XXVIII,   6(1941), 263-
265.  
6.Sur le passage du regime infrasonore a celui ultrasonore au cas de la double-source, 
Comptes Rendus de l'Academie des Sciences de Roumanie, V, 1941, p. 24.  
7.Considerations elementaires sur la double source, Publicațiile Institutului Regal de Cercetări 
Știintifice al României, Disq. Math. et. Phys.,   1,   3-4, 1941,  369-390.  
8.Sur l'emploi de la methode hodographique en mécanique des fluides compressibles, 
Mathematica,   XXII, 1946,  170-181.  
9.Sur une méthode approchée de M. Lamla en dynamique des fluides compressibles, Bull. de la 
Sect. Scient. de l'Acad. Roum., XXVIII,   10(1946),   637-641.  
10.Sur une methode d'approximation en mecanique des fluides compressibles, C.R. Acad. Sc. 
Paris,   222, 1946,   1427.  
11.De l'influence de la compressibilité sur les écoulements fluides, Publicațiile Institului de 
Cercetari Științifice ale Republicii Populare Române, Disquisit. Math. et Phys., VI, 1-4(1947), 
193-223.  
12.Asupra mișcărilor subsonice, cu circulație ale fluidelor compresibile, Comunicările Acad. 
R.P.R., Sect. Mat. Fiz., III, 3(1951),  741-746.  
13.Cercetări asupra teoriei mișcărilor conice supersonice, Bul. Știint. Acad. R.P.R., Sect. Mat. 
Fiz., VI,  3(1954),   603-622.  
14.Determinarea celei de-a doua aproximații în mișcarea compresibilă subsonică in prezența 
unui profil Jukowschi simetric, Comunicările Acad. R.P.R., Sect. Mat. Fiz.,  XI,   8(1961),  
901-907.  
15.Sur quelques problèmes mathématiques de la dynamique des fluides compressibles, Atti 
della 2-a Riunione del Groupement de Mathematiciens d'Expression Latine, Firenze, Bologna, 
1961,  168-225.  
16.Détermination de la second approximation de l'écoulement compressible subsonique autour 
d'un profil donné, Arhivum Mech. Stos.,   16,  2(1964),  273-284.  
17.Determination du champ des vitesses de l'écoulement supersonique en présence d'un 
obstacle conique de faibles ouverture et incidence, C.R. Acad. Sc. Paris,  262, 1966, p. 56.  
18.Mișcări la mari viteze ale fluidelor compresibile în prezența unor obstacole date, Analele 
Universității București, seria Știintele Naturii, Matematică-Mecanică,  XVI, 1, 1967,  97-101.  
19.Sur l'écoulement supersonique autour d'un obstacle conique de faible ouverture, Fluid 
Dynamics Transactiones,  3, P.W.N. Warszawa, 1967,  63-74.  
20.Sur l'unicité de la determination de la seconde approximation de l'écoulement compressible 
subsonique autour d'un profil, Rev. Roum. Pures et Appl., XII,  9(1967),  1283-1287.  
21.Sur la determination en seconde approximation du potential complexe de 1'écoulement 
compressible subsonique autour de certains profils, Beitrage fur Analysis und angewandte 
Mathematik si Wissenschaftliches Beitrage der Martin-Luther Universitat Halle-Wittenberg, 
1968/9, M. 1,  65-70.  
22.Asupra unor proprietăți ale evantaiului lui Prandtl-Meyer, Studii și Cercet. Matem.,   32, 
6(1980),  641-647.  
23.Condiții de validitate în aerodinamica supersonică liniară plană, Studii și Cercet. Matem., 
32,  6(1980), 649-662.  
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24.Sur les mouvements rotatoires des fluides compressibles, Rev. Roum. Sci.Tech. - Mec. 
Appl., 26,  3, 1981, 211-215.  
25.Sur les mouvements rotatoires des fluides compressibles (II), Rev. Roum. Sci.Tech - Mec. 
Appl.,  29,  4(1984),  345-372.  
26.On fluid motions with a prescribed compressibility law, Rev. Roum. Sci. Tech. - Mec. 
Appl., 30, 1985, 135-147.  
 
Aerodynamics, fluid of mechanics 
1.Sur la problème d'unicité locale concernant l'écoulement des liquides pesants, C.R. Acad. 
Sc. Paris, 1923, 1934, p. 539.  
2.Sur un problème de la théorie des sillages, Proc. Fourth. Int. Congress for Appl. Mech., 
Cambridge, 1934, p. 194.  
3.Sulla biforcazione di una vena liquida dovuta a un ostacolo circolare, Rendiconti dei Lincei, 
24, serie 6, fasc. 11(1937), p. 439.  
4.Sur un problème au contour de la théorie des marées, Mathematica,   XVIII, Timișoara, 
1942,  151-158.  
5.Sur le mouvement fluide bidimensionnel produit par la rotation de deux lames en 
prolongement, Bull. Sci. de l'Acad. Roumanie,  XXV,   9(1943),  511-514.  
6.Sur l'écoulement fluide produit par la rotation d'un biplan "en tandem" autour d'un axe situé 
dans son propre plan, Mathematica, XIX, Timișoara, 1943,  106-118.  
7.Recherches sur les mouvements fluides engendrés par la rotation de plusieurs corps solides, 
Publicațiile Institutului Regal de Cercetări Științifice al României, Disq. Math. et. Phys.,  III, 
1943,  206-247.  
8.Sur le modérateur a ailettes, C.R. Acad. Sc. Paris,   219, 1943, p. 313.  
9.Sur une interpretation de l'équation de continuité hydrodynamique, Bull. Mathem. de la Soc. 
Roum. des Sc., 46 (1-2), 1944, 81-89.  
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Abstract We introduce the notion of Courant algebroid (E, h, [., .], ρ), in the category of Banach
vector bundles. A Dirac structure is defined as a subbundle of a Courant algebroid E
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1. INTRODUCTION

The notion of Lie algebroid was extended to the category of Banach vector bun-
dles by the present author [2], and independently by F. Pelletier [14]. In [2] it was
shown that the Lie algebroids form a category. In a different direction, C. Ida [8]
considers the coomology of Banach Lie algebroids and proves that if (M, π) is a
Banach Poisson manifold, the Banach Lie algebroid cohomology of (T ∗M, {., }, ♯π) is
the Lichnerowicz-Poisson cohomology of (M, π). Next steps are done by M.Anastasiei
and A. Sandovici [3], who introduced the Dirac structures on Banach manifolds and
related them to Lie algebroids.

Dirac structures on finite dimensional manifolds were introduced by T. Courant
and A. Weinstein (see [6]) and were systematically studied by T. Courant in [5].
They became an important tool in generalized geometry by studies of I. Vaisman (see
[18] and the references therein). Following the direction opened by S. Vacaru in [24],
certain applications of Dirac structures could appear in Theoretical Physics.

Dirac structures were used in the study of the mechanical systems described by
constraint Hamiltonian systems or implicit Lagrangian systems (see the consistent
work done by H. Yoshimura and J. E. Marsden in [19, 20]), while the reduction of
nonholonomic systems in terms of Dirac structures was formulated by M. Jotz and
T.S. Ratiu ([11]).

Another field where Dirac structures are useful is the study of the integrability
of the nonlinear evolution equations. In the monograph [7], I. Dorfman emphasized
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the necessity of considering Dirac structures on infinite dimensional spaces; she also
made a first step in this direction by developing an algebraic formalism independent
of dimension.

A first study of the concept of a Dirac structure within the framework offered by
infinite–dimensional smooth manifolds is due to the present author and A. Sandovici,
[3]. Here the well known result that an integrable Dirac structure defines a Lie alge-
broid is extended to Banach manifold category. Our main reference for the geometry
of infinite dimensional manifolds is a book by S. Lang, [12].

In Section 2 we define the Banach Lie algebroids and we show they form a cate-
gory. In Section 3 we introduce the notion of Banach Courant algebroid (E, h, [., .], ρ)
using three axioms and define a Dirac structure as a subbundle of E which is totally
isotropic with respect to h and its set of sections is closed with respect to [.,.]. Then
we prove that any Dirac structure has a Lie algebroid structure.

2. ANCHORED VECTOR BUNDLES

Let M be a smooth, i.e. C∞, Banach manifold modeled on Banach space M and
let π : E → M be a Banach vector bundle whose type fiber is a Banach space E. We
denote by τ : T M → M the tangent bundle of M.

Definition 1.1 We say that the vector bundle π : E → M is an anchored vector
bundle if there exists a vector bundle morphism ρ : E → T M. The morphism ρ will
be called the anchor map.

Let F(M) be the ring of smooth real functions on M.
We denote by Γ(E) the F(M)-module of smooth sections in the vector bundle

(E, π, M) and by X(M) the module of smooth sections in the tangent bundle of M
(vector fields on M).

The vector bundle morphism ρ induces an F(M)-module morphism which will be
denoted also by ρ : Γ(E)→ X(M), ρ(s)(x) = ρ(s(x)), x ∈ M, s ∈ Γ(E).

Examples.

1. The tangent bundle of M is trivially anchored vector bundle with ρ = I (iden-
tity).

2. Let A be a tensor field of type (1, 1) on M. It is regarded as a section of the
bundle of linear mappings L(T M,T M) → M and also as a morphism A :
T M → T M. In the other words, A may be thought as an anchor map.

3. Any subbundle of T M is an anchored vector bundle with the anchor the inclu-
sion map in T M.

4. Let now π : E → M be any submersion and π∗ be the differential (tangent
map) of π. The union of subspaces (π∗)−1(u), u ∈ E provides a subbundle of
the tangent bundle of E, τE : T E 7→ E, denoted by VE and called the vertical
subbundle. As a subbundle, by the Example 3), this is an anchored vector
bundle.
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5. Let τ∗ : T ∗M 7→ M be the cotangent bundle of M and the Whitney sum τ⊕τ∗ :
T M⊕T ∗M 7→ M called sometimes the big tangent bundle. This is an anchored
bundle with the anchor given by the projection pr1 : T M ⊕ T ∗M 7→ T M.

Theorem 1.1. The anchored vector bundles form a category.
Proof. The objects are the pairs (E, πE ,M, ρE) with ρE the anchor of E and the cate-
gory morphism ( f , ϕ) : (E, πE ,M, ρE) → (F, πH ,N, ρF) is a vector bundle morphism
( f , ϕ) : E → F which verifies the condition ρF ◦ f = ϕ∗ ◦ ρE , where ϕ∗ is the tangent
map of ϕ : M 7→ N.

Let π : E → M be an anchored Banach vector bundle with the anchor ρE : E →
T M and the induced morphism ρE : Γ(E)→ X(M).

Assume there exists defined a bracket [, ]E on the space Γ(E) that provides a struc-
ture of real Lie algebra on Γ(E).

Definition 2.1. The triplet (E, ρE , [, ]E) is called a Banach Lie algebroid if

(i) ρ : (Γ(E), [, ]E)→ (X(M), [, ]) is a Lie algebra homomorphism and

(ii) [ f s1, s2]E = f [s1, s2]E − ρE(s2)( f )s1, for every f ∈ F(M) and s1, s2 ∈ Γ(E).

Examples:

1. The tangent bundle τ : T M → M is a Banach Lie algebroid with the anchor
the identity map and the usual Lie bracket of vector fields on M.

2. For any submersion ζ : F → M, where F is a Banach manifold, the ver-
tical bundle VF over F is an anchored Banach vector bundle. As the Lie
bracket of two vertical vector fields is again a vertical vector field it follows
that (VF, i, [, ]VF), where i : VF → T F is the inclusion map is a Banach Lie
algebroid. This applies, in particular, to any Banach vector bundle π : E → M.

Let Ωq(E) := Γ(La
q(E)) be the F(M)− module of differential forms of degree q.

Its elements are sections of the vector bundle of alternating multilinear forms on E,
see [12], p.61. In particular, Ωq(T M) will be denoted by Ωq(M). The differential
operator dE : Ωq(E)→ Ωq+1(E) is given by the formula

(dEø)(s0, . . . , sq) =
∑

i=0,...,n(−1)iρE(si)ø(s0, . . . , ŝi, . . . , sq)
+

∑
0≤i< j≤q(−1)i+ j(ø([si, s j]E), s0, . . . ŝi, . . . , ŝ j, . . . , sq)

for s1, . . . , sq ∈ Γ(E), where hat over a symbol shows that symbol must deleted.
Definition 1.3. A vector bundle morphism f : E → E′ over f0 : M → M′ is a mor-

phism of the Banach Lie algebroids (E, ρE , [, ]E and (E′, ρE′ , [, ]E′) if the map induced
on forms f ∗ : Øq(E′) → Øq(E) defined by ( f ∗ø′)x(s1, . . . , sq) = ø′f0(x)( f s1, . . . , f sq),
s1, . . . , s2 ∈ Γ(E) commutes with the differential i.e.

dE ◦ f ∗ = f ∗ ◦ dE . (1)

Using this definition it is easy to prove
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Theorem 1.2. The Banach Lie algebroids with the morphisms defined in the above
form a category.

For applications of Lie algebroids we refer to [1].

3. BANACH COURANT ALGEBROIDS

The first definition of a Courant algebroid was given by Liu Z., Weinstein A. and
Xu P. in [10] using five axioms. An alternative definition, again with five axioms was
given by D. Roytenberg, [15].

In the paper [16], K. Uchino shows that in the both cases, two from those five
axioms are consequences of the other three. Thus he arrives at a definiton of a Courant
algebroid with three axioms, which definition was used in the seminal paper by Keller
F. and Waldman S., [9].

Definition 3.1. A Courant algebroid is an anchored vector bundle (E, ρ) together
with a nondegenerate symmetric bilinear form h, a bracket [·, ·] : Γ(E)×Γ(E)→ Γ(E)
on the sections of the bundle such that for all e1, e2, e3 ∈ Γ(E) and f ∈ F(M) the
following conditions hold:

(i) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],
(ii) [e1, e2] + [e2, e1] = Dh(e1, e2), where D : F(M) → Γ(E) is defined by

h(D f , e) = ρ(e) f ,
(iii) ρ(e1)h(e2, e3) = h([e1, e2], e3) + h(e2, [e1, e3]).
We notice that the bracket [·, ·] is not skew-symmetric.
An easy consequence of (i) − (iii) is
Proposition 3.1. Let (E, [·, ·]) be a Courant algebroid. Then we have
(i) ρ([e1, e2]) = [ρ(e1), ρ(e2)] where in the right side we have the usual bracket

of vector fields on M.
(ii) [e1, f e2] = f [e1, e2] + (ρ(e1) f )e2 (Leibniz’s rule).
The standard example of Courant algebroid is given by
Proposition 3.2. Let E = T M ⊕ T ∗M be the big tangent bundle over M. We take

h((X, α), (Y, β)) = α(Y)+β(X), where X, Y ∈ X(M) and α, β ∈ Λ1(M) together with the
bracket [(X, α), (Y, β)] = ([X,Y], L

X
β − i

Y
dα) and the anchor ρ defined by ρ(X, α) = X.

All these endow E with the structure of a Courant algebroid.
Proof. One verifies the axioms (i) − (iii) from the Definition 3.1.

Definition 3.2. A Dirac structure is a vector subbundle L of a Courant algebroid
(E, [·, ·], h, ρ) which coincides with its orthocomplement with respect to h i.e. L = L⊥

and is closed with respect to [·, ·], i.e. [Γ(E), Γ(E)] ⊆ Γ(E).
Now we show that any Dirac structure can be endowed with a structure of Lie

algebroid. To this aim we replace the operation [·, ·] with the following one:

˜[e1, e2] = [e1, e2] +
1
2
Dh(e1, e2)

and we prove
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Theorem 3.1. Let L be a Dirac structure. Then the triple (L, [̃ , ]|L, ρ|L) is a
Banach Lie algebroid.
Proof. The condition L = L⊥ is equivalent with h(e1, e2) = 0 for e1, e2 ∈ Γ(L). Thus
[̃·, ·]|L reduces to [e1, e2]|L and the bracket [·, ·]|L is skew-symmetric. It follows that (i)
from the Definition 3.1 becomes the usual Jacobi identity. Then, by the Proposition
3.1, ρ|L is a Lie algebras homomorphism and the Leibniz identity holds. The proof is
complete.

Example 3.1. In [4] one proves that if A is a Lie algebroid and A∗ is its dual (in
general not a Lie algebroid) then E = A ⊕ A∗ has a structure of a Courant algebroid.

Let ω be a nondegenerate 2-form in A. It defines a map ω : A→ A∗ by e→ ω(e) :
Γ(A) → R with ω(e) f = ω(e, f ), e, f ∈ Γ(A). We take L =graphω = {(e, σ)| e ∈
Γ(A), σ ∈ Γ(A∗) with σ = ω(e)}. If L is a vector subbundle and ω is closed, then L is
a Dirac structure. For details see [4].

Acknowledgemet. The author was partially supported by a grant of the Romanian National Author-
ity for Scientific Research, CNSS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0256.
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Abstract Boundary eigenvalue problem for the Laplace operator on an s-dimensional sphere with
the boundary condition on derivatives is considered. For this problem and adjoint to it
the eigenvalues with relevant eigen- and associated elements are found. It is proved that
the length of Jordan chains is not greater than 3.
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1. INTRODUCTION

In recent years the theory of nonlocal boundary value problems is developed inten-
sively. The present work is associated with research in this area [1]. The eigen- and
associated functions of the problems with boundary conditions on derivatives in areas
with spherical symmetry are found. In the present work, we consider the problem

(∆ + λ)Φ(x) = 0,
∂Φ

∂r
||x|=r0=

∂Φ

∂r
||x|=1,

where x ∈ Ω = {x ∈ Rs | |x| < 1}, r0 < 1.

2. CASE S = 2
First, we consider the case s = 2 of the above problem in cylindrical coordinates:

(∆ + λ)Φ =
1
r
∂

∂r

(
r
∂Φ

∂r

)
+

1
r2

∂2Φ

∂φ2 + λΦ = 0,

Φ ∈ C2+α(Ω), Ω = {r | r < 1}, (2.1)
∂Φ

∂r
|r=r0=

∂Φ

∂r
|r=1 .

By separating variables Φ(r, φ) = X(r)Y(φ) and by using the periodicity condition
Φ(r, φ + 2π) = Φ(r, φ) and boundedness at zero, we find

Y(φ) = C1 cos nφ +C2 sin nφ,

7



8 Artyom N. Andronov

X′′ +
1
r

X′ +
(
λ − n2

r2

)
X = 0, (the Bessel equation)

∥X(0)∥ < ∞, X′r(r0) = X′r(1).

The eigenfunctions, determined by X(1)(r) = Jn(αr), α2 = λ, (where Jn(·) are the
Bessel functions), correspond to the eigenvalues that are the roots of the equation

f (α) ≡ −J′n(αr0) + J′n(α) = 0. (∗)

According to the standard procedure of constructing of adjoint (in the Lagrange
sense) equation, using integration by parts of the bilinear form

∫
Ω1∪Ω2

(∆Φ)Ψrdrdφ,

where Ω1 = {r, φ | 0 ≤ r < r0}, Ω2 = {r, φ | r0 < r ≤ 1}, the second and the third
conditions in the system (2.1), we obtain the adjoint to (2.1) problem:

(∆ + λ)Ψ = 0, Ψ ∈ C2+α(Ω1) ∪C2+α(Ω2),

Ψr
′(r0 − 0, φ) = Ψr

′(r0 + 0, φ), Ψr
′(1, φ) = 0, (2.2)

Ψ(1, φ) + r0
[
Ψ(r0 − 0, φ) − Ψ(r0 + 0, φ)

]
= 0.

Since Ψ is bounded, the solution to (2.2) Ψ(r, φ) = X(1)(r)[C1 cos nφ +C2 sin nφ] has
the form

X(1)(r) =
{

C11Jn(αr), 0 ≤ r < r0,
C21Jn(αr) +C22Nn(αr), r0 ≤ r ≤ 1

(Nn(αr) is the Neumann function). From the conditions (2.2) we obtain the system
for determining C jk:

C11J′n(αr0) − C21J′n(αr0) − C22N′n(αr0) = 0,
C21Jn(αr) + C22Nn(αr) = 0,

C11r0Jn(αr0) + C21[Jn(α) − r0Jn(αr0)]
+ C22[Nn(α) − r0Nn(αr0)] = 0.

(2.3)

Its determinant is

∆0 = J′n(αr0)[J′n(α)Nn(α) − Jn(α)N′n(α)] + r0J′n(α) ×

×[Jn(αr0)N′n(αr0) − J′n(αr0)Nn(αr0)].

According to [3], Jν(z)N′ν(z) − Nν(z)J′ν(z) =
2
πz

, we obtain the equation (*) for deter-

mining the eigenvalues λ = α2:
2
πα

f (α) =
2
πα

[J′n(α) − J′n(αr0)] = 0. By virtue of the
inequality J′n(α)J′n(αr0) , 0 and from the first equation of the system (2.3) we get

C11 =
1

J′n(α)
[C21J′n(αr0) +C22N′n(αr0)].
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Then

X(1)(r) = C
{

[N′n(αr0) − N′n(α)]Jn(αr), 0 ≤ r < r0,
J′n(α)Nn(αr) − N′n(α)Jn(αr), r0 ≤ r ≤ 1. (2.4)

Theorem 2.1. Problem (2.1) has the eigenvalues λ = α2(n), determined by the equa-
tion (*) with the eigenfunctions Φn = Jn(αr)[Cn1 cos nφ+Cn2 sin nφ]. It corresponds
to the adjoint problem (2.2) with the same eigenvalues and eigenfunctions (2.4) cor-
responding to them.

We define now the conditions for absence of the Jordan chains. The condition for
presence of Jordan chains is ([6])

⟨X(1),X(1)⟩ =
1∫

0

rX(1)(r)X(1)(r)dr = I1
n(α) = 0.

Thus, the condition for absence of associated elements Φ(2) has the form

I1
n(α) =

1
πr0α3 [(n2 − α2)r0Jn(α) + (r2

0α
2 − n2)Jn(αr0)] =

1
απ

f ′(α) , 0. (2.5)

Actually, In(α) =
1∫

0
X(1)(r)X(1)(r)rdr gives the first equality of (2.5). Since

J′′n (α) = − 1
α

J′n(α) −
(
1 − n2

α2

)
Jn(α),

J′′n (αr0) = − 1
αr0

J′n(αr0) −
1 − n2

α2r2
0

 Jn(αr0),

then f ′(α) =
1

r0α2 [(n2 − α2)r0Jn(α) + (r2
0α

2 − n2)Jn(αr0)].

The inhomogeneous problem (the Bessel equation) with the right-hand side Jn(αr)
has the solution at 0 < r < 1

X(2)(r) = C1Jn(αr) +
r

2α
J′n(αr) +

Nn(αr)
2α(N′n(αr0) − N′n(α))

×

×
r0

1 − n2

α2r2
0

 Jn(αr0) −
(
1 − n2

α2

)
Jn(α)

 .
The condition for absence of associated elementsΦ(3) is determined by the integral

I2
n(α) =

1∫
0

X(2)(r)X(1)(r)rdr , 0, it can also be expressed by the relation f ′′(α) , 0.
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3. CASE S > 2
Let us now consider the general case s > 2, i.e. the problem

(∆ + λ)Φ =
1

rs−1

∂

∂r

(
rs−1 ∂Φ

∂r

)
+

1
r2∆θΦ + λΦ = 0,

Φ ∈ C2+α(Ω), Ω = {r, θ | r < 1, θ = (θ1, . . . , θn−1)}, (3.1)

∂Φ(r0, θ)
∂r

=
∂Φ(1, θ)
∂r

,

where ∆θ is the Laplace operator on the unit sphere S s−1 ⊂ Rs. Separating variables
Φ = X(r)Y(θ), we obtain the equation for the polyspherical functions

∆θYs,n − n(n + s − 2)Ys,n = 0

and, after substitution X(r) = r−
s
2+1x(r), the Bessel equation

x′′ +
1
r

x′ +

λ −
(
n +

s
2
− 1

)2

r2

 x = 0 (3.2)

At this, the last relation in (3.1) gives (under assumption that the solution is bounded)
the condition that determines the eigenvalues λ = α2 as the roots of the equation

f (α) ≡
≡ α[r

− s
2+1

0 J′n+ s
2−1(αr0) − J′n+ s

2−1] +
(
1 − s

2

)
× [r

− s
2

0 Jn+ s
2−1(αr0) − Jn+ s

2−1(α)] = 0. (∗∗)
The adjoint in the Lagrange sense problem:

(∆ + λ)Ψ = 0, Ω1 = {r | r < r0} ∪Ω2 = {r | r0 < r < 1},

Ψ′r(r0 − 0, θ) = Ψ′r(r0 + 0, θ), Ψ′r(1, θ) = 0, (3.3)

rs−1
0 [Ψ(r0 − 0, θ) − Ψ(r0 + 0, θ)] + Ψ(r0 − 0, θ) = 0,

Ψ(r, θ) = Xs,n(r)Ys,n(θ).

Xs,n(r) = r−
s
2+1

{
C11Jn+ s

2−1(αr), 0 ≤ r < r0,

C21Jn+ s
2−1(αr) +C22Nn+ s

2−1(αr), r0 ≤ r ≤ 1.
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For determining the constants in the solution, we use the system

C21

[(
1 − s

2

)
Jn+ s

2−1(α) + αJ′n+ s
2−1(α)

]
+

+C22

[(
1 − s

2

)
Nn+ s

2−1(α) + αN′n+ s
2−1(α)

]
= 0,

−C11

[(
1 − s

2

)
Jn+ s

2−1(αr0) + αJ′n+ s
2−1(αr0)

]
+

+C21

[(
1 − s

2

)
Jn+ s

2−1(αr0) + αJ′n+ s
2−1(αr0)

]
+

+C22

[(
1 − s

2

)
Nn+ s

2−1(αr0) + αN′n+ s
2−1(αr0)

]
= 0,

C11rs/2
0 Jn+ s

2−1(αr0) +C21
[
−rs/2

0 Jn+ s
2−1(αr0) + Jn+ s

2−1(α)
]
+

+C22
[
−rs/2

0 Nn+ s
2−1(αr0) + Nn+ s

2−1(α)
]
= 0

(3.4)

with the determinant −2
π

rs/2
0 f (α). The eigenfunctions of the adjoint problem are

X
(1)
s,n(r) =



{[(
1 − s

2

)
Nn+ s

2−1(αr0) + αr0N′n+ s
2−1(αr0)

]
r−s/2

0 −

−
(
1 − s

2

)
Jn+ s

2−1(αr0) + αr0J′n+ s
2−1(αr0)

}
×

×Jn+ s
2−1(αr), 0 ≤ r < r0,

−
[(

1 − s
2

)
Nn+ s

2−1(α) + αN′n+ s
2−1(α)

]
Jn+ s

2−1(αr)+

+Nn+ s
2−1(αr) r0 < r ≤ 1.

Theorem 3.1. The problem (3.1) has the eigenvalues λ = α2(n), determined by the
equality (**) with the eigenfunctions Φn(r, θ) = Jn(αr)Ys,n(θ). It corresponds to
the adjoint problem (3.3) with the same eigenvalues and eigenfunctions Ψ(r, θ) =
X

(1)
s,n(r)Ys,n(θ), corresponding to them.

The condition for absence of associated elements Φ(2) one can find by calculating

the integral Is,n(α) =
1∫

0
X(1)

s,n(r)X(1)
s,n(r)rs−1dr. As before, it is related with the condition

f ′(α) = 0. The conditions for absence of associated elements of successively higher
orders are f ′′(α) , 0, f ′′′(α) , 0, and on the associated elements of the third order
the Jordan chains break.
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Abstract A generally accepted way to facilitate understanding of large and complex data sets is
graph visualization. In this paper we present three different methods of visualization
for the citation networks, one based on hierarchical edge bundles algorithm, one imple-
menting dynamic layered drawing, and one utilizing a geometry-based edge bundling.
As test sets, we make extensive use of citation networks designed from the data sets of
Open Linked Data portals.
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1. INTRODUCTION

Due to the fast progress of Semantic Web and its new branch of Linked Open Data,
large amounts of structured information on various scientific fields are getting avail-
able. The main part of the content of scientific digital libraries and specialized portals
constitute research publications, the most reliable source of information dedicated to
any research area. The most active and influential researchers, organizations in which
they work, and geographic locations of the research units – all this information is
currently available in the rdf / xml format. This information evolves over time and
rapidly grows in volume. To optimize the science management, new tools for inves-
tigation and analysis of these data are needed. A generally accepted way to facilitate
understanding of large and complex data sets is graph visualization. The topic of our
paper consists in several visualization methods for citation networks. Previously, we
considered methods of visualization of information on scientific cooperation, repre-
sented by co-authorship networks derived from small information portals [1-2]. Our
current work is a further development of this research. The data under consideration
has significantly greater volume, and newly developed algorithms are presented to
analyze and visualize this data.

A citation network is a network in which the vertices represent documents and
the edges between them represent reference of one document to another. Citation
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networks are directed: citations go from one document to another. Citation networks
evolve over time as new documents are created. The citation network analysis started
with the paper of Garfield et al. [10] and has been studied by many authors [9, 12].
Force-directed methods of visualization used to be the main tool of investigation for
these networks.

In this paper we present three different methods of visualization for the citation
networks, one based on hierarchical edge bundles algorithm, one implementing dy-
namic layered drawing, and one utilizing a geometry-based edge bundling. As test
sets, we make extensive use of citation networks designed from the data sets of Open
Linked Data portals. The paper is organized as follows. Section II discusses ex-
tracting citation networks from the content of Linked Open Data portals. Section III
demonstrates some problems of the citation networks visualization by the hierarchi-
cal edge bundles method. Section IV describes some results of visualization of the
citation networks by a layered dynamic method. Section V demonstrates the cita-
tion networks visualization with a geometry-based edge bundling method. Finally,
section VI presents conclusion and perspectives for further work.

2. OPEN LINKED DATA AND CITATION
NETWORKS GENERATION

The datasets of Linked Open Data (LOD) portals such as DBLP, Citeseer, CORDIS,
NSF, EPSRC, ACM, IEEE, [4-7]. etc. have been used as a test data. These datasets
are described in RDF format and have a very impressive size. For example, the data
provided by the Citeseer portal consists of 8,146,852 triples, ACM portal data com-
prises 12,402,336 triples, and DBLP portal has granted 28,384,790 triples. A user
can either download the files in RDF format, or generate data using a sparql query.
All datasets of these portals are described according to a single ontology AKT Refer-
ence Ontology [5], which is the union of several ontologies (Support Ontology, Portal
Ontology, Extensions Ontology and RDF Compatibility Ontology).

Portal Ontology is the main one among these ontologies, it describes such concepts
as organizations, persons, projects, publications, geographic data, etc. AKT Ontol-
ogy has a rather deep hierarchical structure (Fig.1). For example, to describe the pub-
lications, there exist two root classes ”Information-Bearing-Object” and ”Abstract-
Information”. Subclasses of ”Information-Bearing-Object” are the classes ”Recorded-
Audio”, ”Recorded-Video”, ”Publication”, ”Edited-Book”, ”Composite-Publication”,
”Serial-Publication”, ”Periodical-Publication ”and ”Book”. All individuals of the
class ”Information-Bearing-Object” have a relationship ”has-publication-reference”,
pointing to an object of the class ”Publication-Reference”, which is a subclass of the
class ”Abstract-Information”. In turn, the class ”Publication-Reference” has as sub-
classes the classes ”Web-Reference”, ”Book-Reference”, ”Edited-Book-Reference”,
”Conference-Proceedings-Reference”, ”Workshop-Proceedings-Reference”, ”Book-
Section-Reference”, ”Article-Reference”, ”Proceedings-Paper-Reference”, ”Thesis-
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Reference” and ”Technical-Report-Reference”. The individuals of the class
”Publication-Reference” have such relationships as: ”has-date”, “has-title ”, ”has-
place-of-publication”, ”cites-publication-reference”, etc. There exists the class ”Or-
ganization”, which is a subclass of the class ”Legal-Agent”, and the class ”Legal-
Agent” is a subclass of the class ”Generic-Agent”. The class ”Person” is a subclass
of the class ”Generic-Agent”.

Fig. 1. AKT Reference ontology.

There are several problems of using the LOD datasets. Although all bibliographic
datasets of the LOD cloud use as common vocabulary AKT Ontology, the contents of
these sets are very heterogeneous and are based on very narrow subsets of this vocab-
ulary. To describe real objects, classes of the highest level of hierarchy are normally
used. For example, the classes ”Publication-Reference” and ”Article-Reference” are
used for the description of publications while such classes as ”Proceedings-Paper-
Reference” are not used at all. This feature makes difficult generation of the hierar-
chical structure needed for applying the hierarchical edge bundles method. Also, the
data sets are not complete and many attributes remain to be filled. Besides, the cita-
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tion relationship (akt: cites-publication-reference) existing in AKT Reference Ontol-
ogy, is described explicitly only for several datasets such as Citeseer and ACM [6].
However, the common mechanism of access simplifies working with these data. It is
easy enough to generate a simple citation network for any storage of the LOD cloud if
the publications described in these datasets have the relationship ”cites-publication-
reference”. An example of user interface and SPARQL 1.0 query intended for citation
networks generation from ACM dataset is shown in Fig. 2.

Fig. 2. An example of user interface and SPARQL 1.0 query intended for citation networks genera-
tion.

To select the desired volume of data, the query modifier LIMIT N was used. We
could relatively easy extract citation networks of 20-30 thousand vertices.

3. VISUALIZATION OF CITATION NETWORKS
USING THE HIERARCHICAL EDGES
BUNDLES

We have started our experiments by applying already implemented hierarchical
edge bundles method [11] for the citation networks visualization. This method al-
lows a drawing of a citation network to be combined with drawings of other elements
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of the portal content. It is implemented as follows. Some predefined hierarchical
structure is drawn as a tree whose leafs are research papers. Then each link of the ci-
tation network is modeled as a single B-spline [14] using the control points along the
shortest path in the tree layout from one leaf point to another. A test set of 561 pub-
lications on information visualization for 10 years is shown in Fig. 3. A three-level
hierarchy consisting of years, conferences, and publications is depicted with balloon
tree method (Fig 3(a)), and the citation links are drawn with hierarchical edge bun-
dles method. Research papers are shown as black circles. Scientific conferences and
periodical issues are shown as yellow circles. The paper’s publishing years constitute
the upper level of hierarchy and are shown as purple circles. The edges of the tree are
shown in blue (a year includes conferences, a conference includes publications). The
direction of a link from a citing publication to a cited publication is shown by pro-
gression of color from purple to green. When looking at this drawing we can easily
identify the years with the largest number of publications (the years 1995 and 1996).
We have slightly improved the drawing comprehensibility by depicting the citation
index of papers by the radius of nodes. Since we do not want the area of drawing to
grow up due to the node size enlargement, the nodes overlap is permitted. Hence the
nodes visibility also depends on the citation index, as it is shown in Fig. 3(b), where
the number of visible nodes and the number of the node overlaps has been reduced.
Further on, users can also change the width of reference links and their opacity as a
function of the citation index of the incident nodes.

Fig. 3. Hierarchical structure and citation network. (a) A three-level hierarchy consisting of years,
conferences, and publications. (b) Hierarchical edge bundles drawing of a citation network.
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Some possible functions for these parameters calculation are:

y = (omax − omin)
I − Imin

Imax − Imin
+ omin (1)

y = (omax − omin) ·
1 − √

Imax − I
Imax − Imin

 (2)

Where I – citation index, Imax and Imin – the largest and the smallest citation index in
the citation network under consideration, omax and omin – upper and lower bounds of
values for y.

The formula (1) helps to identify the group of the most cited publications, since
the node sizes are proportional to their citation indexes. The formula (2) helps to find
the most cited publication since it assigns a much larger radius to the node with the
highest citation index.

After the most cited papers are identified, user can choose such a node with a
mouse pointer and examine its name, list of its authors and all the papers citing it as
is shown in Fig. 4.

Fig. 4. The most cited paper and links citing it (shown in red).

When the size of citation network increases, the hierarchical edge bundles method
gets difficult to use. For example, a drawing of a citation network of 20 000 ver-
tices, retrieved from the Citeseer database is shown in Fig. 5. We have only managed
to create a two-level hierarchy for the Citeseer dataset: the year of publication – the
month of publication. That results in a drawing, rather sparse in the center (Fig. 5(a))
and very dense at the periphery (Fig. 5(b)). The time interval of these publications
dataset covers the period from 1993 to 2003. The drawing permits to compare the
number of publications by year: the largest number of publications of the test set falls
on the years 1998 and 1989 while publications of 2003 are not numerous. Unfor-
tunately, it is not possible to get any detailed information from this drawing. The
central part of the drawing is complete graph stating that there exist citing links from
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any year to any posterior year in this network. And the publications of every year
are that numerous, that it is very difficult to select a vertex by the mouse pointer for
further investigation.

Fig. 5. A citation network of 20 000 vertices retrieved from Citeseerportal. (a) A global view,
(b) one-month publications of the 1998 year.

Since it is not always possible to extract a deep hierarchy allowing the hierarchi-
cal edge bundles to be applied, we have implemented two alternative strategies for
citation networks visualization:

1 To emphasize the directed nature of links in the citation networks, a dynamic
layered method of visualization was implemented.

2 To reduce the visual density of drawings, a geometry-based edge bundling
method was developed.

4. DYNAMIC LAYERED DRAWING OF THE
CITATION NETWORKS

A citation network is a directed graph, so it is desirable that all edges are directed to
one side. The direction of the edges corresponds to the chronological order of publi-
cations. Also, the citation networks are assumed to be acyclic, even if it is not always
the case. For example, if a scientific paper sometimes cite work that is forthcoming
but not yet published, the resulting network will have a closed loop. However, such
loops are rare and short.
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The construction of a layered graph drawing [13] proceeds in a sequence of stan-
dard steps:

1 Layer assignment. The vertices of the directed acyclic graph are assigned
to layers, such that each edge goes from the left to the right. In the current
implementation each layer corresponds to a publishing year, i.e. the papers,
published in the same year are assigned to the same layer. We are going to
parameterize the length of the time intervals in the nearest future. Edges that
span multiple layers are replaced by paths of dummy vertices so that, after this
step, each edge in the expanded graph connects two vertices on adjacent layers
of the drawing.

2 Crossing minimization. The vertices within each layer are permuted in an
attempt to reduce the number of crossings among the edges connecting it to
the previous layer. Since finding the minimum number of crossings is NP-
complete, we place each vertex at a position determined by the average of the
positions of its neighbors on the previous level and then permuting adjacent
pairs as long as that improves the number of crossings.

3 Coordinate assignment. To each vertex is assigned a coordinate within its
layer, consistent with the permutation calculated in the previous step. The
dummy vertices are removed from the graph and the vertices and edges are
drawn.

Figure 5 shows the drawing of a citation network generated by the layered method of
placement. Publishing years of papers in the citation network are shown as rectan-
gles of different colors at the top of the image. All papers published in the same
year are placed in a vertical column corresponding to this year. The edges of the net-
work correspond to the citations. The color of each edge is identical to the color of
label of the year of the citing publication. The more citation links has some publica-
tion, the more input edges has the corresponding vertex, and the greater is its radius.
As a result, the citation links of publications form highly visible bundles. Four but-
tons at the top of the screen are used to track the dynamics of the citation network
year by year. The buttons ”<” and ”>” are designed to move through the draw-
ing and observe the evolution of the citation network over time. Technically, this
feature is implemented by filtering vertices and edges of the citation network. Press-
ing the ”>>” button displays the entire citation network, and the ”<<” button is used
to clean the drawing.

The evolution over time of a citation network of papers devoted to the graph theory
is shown in Fig. 5. The four fragments of this figure show different intervals of time
between 1965 and 2005. In the period from 1965 to 1989 (Fig. 6(a)) the test set of
publications is dominated by the “Linear-time algorithm for isomorphism of planar
graphs” paper. The corresponding vertex has the largest radius and a large brown tail
of input edges. In 1993 (Fig. 6 (b)) the number of references to the papers “A data
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Fig. 6. The evolution of a citation network over time.

structure for dynamic trees” and “A linear-time heuristic for improving network par-
tition” increases. In 1995 (Figure 6 (c)), these two papers have the same level of ci-
tation index as the paper “Linear-time algorithm for isomorphism of planar graphs”.
Finally, in 2005 (Fig. 6 (d)) the paper “A linear-time heuristic for improving network
partition” gets the most cited. Hence, data sets are better comprehended due to the
dynamic visualization.

It is also possible to observe growing interest to the paper “Node-and-edge-deletion
NP-complete problems” that refers to the previously dominating paper “Linear-time
algorithm for isomorphism of planar graphs”, i.e. a chain of highly cited related pub-
lications arises.

Besides, this visualization method helps to detect errors and inaccuracies in biblio-
graphic data. Fig. 6(a) shows a fragment of a citation network generated for the ACM
dataset on the time interval from 1988 to 1990. A brown link connects the node of
the “Analysis of pointers and structures” paper published in 1990 and the “Interpro-
cedural slicing using dependence graphs” paper published in 1988. Since the color of
the link corresponds to the year 1990 it should mean that the arc is oriented backward
and a paper published in 1988 cites a paper published in 1990. By checking the ACM
dataset (Fig. 6(b)) we have discovered that the paper “Interprocedural slicing using
dependence graphs” has several dates of publication and the corresponding node is
placed in the layer of the earliest date of publication.
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Fig. 7. Datasets inaccuracies. (a) Backward link representing a paper published in 1988 citing a
paper published in 1990. (b) Multiple dates of publishing for a paper.
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The main problem with the conventional layered method is that drawings get over-
loaded very quickly and using the filtering removes irrelevant papers but distorts
reality: irrelevant publications are the major contributors in determining the signifi-
cance of other publications. The hierarchical edge bundles method is not applicable
in the absence of external hierarchical structure. Therefore we have implemented an
algorithm , which can reduce the drawing density by forming bundles of edges based
on their own geometry, and not introduced from outside.

5. GEOMETRY-BASED EDGE BUNDLING
METHOD.

The main idea of the geometry based edge bundling method [8] is to reduce the vi-
sual clutter of the image by bending the edges through a special control grid with-
out changing the original locations of graph vertices. This method proceeds as fol-
lows:

1 Generate a rectangular NxN grid and put it over a graph drawing constructed in
any way.

2 For each grid cell, calculate the main direction of the edges crossing the cell.

3 Merge into zones the adjacent cells having directions that differ by no more
than the threshold value .

4 Calculate the basic direction and normal vector to the main direction of each zone.

5 Calculate the points of intersection of the normal segments with zones’ bound-
aries .

6 Use the resulting points to construct a triangulation.

7 Find for each edge of the constructed triangulation the point of intersection with
the edges of the original graph drawing. Calculate the centers of these points.

8 Use the resulting points as control points of b-splines.

Fig. 8(a) demonstrates applying the geometry based edge bundling strategy to the
drawing obtained by circular drawing method from Fig.2(b). Fig. 8(b) shows apply-
ing the geometry based edge bundling strategy to the drawing obtained by layered
visualization method from Fig.5(d).

No doubt, due to this methodology the drawing congestion is reduced. But at this
stage, there are more questions with this method than answers. How to choose the
best direction for a rectangular grid? How does the direction of the edge bundles de-
pend on the size of the grid? How to choose the best edge direction within each zone
in function of the underlying visualization method? Nevertheless, we hope to de-
velop this method to the point where it can be used to examine trends in a research
field.
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Fig. 8. The application of the geometry based edge bundling strategy to the drawing obtained by
layered visualization method. (a) Applying the geometry based edge bundling strategy to the circular
drawing. (b) Applying the geometry based edge bundling strategy to the layered drawing.

6. CONCLUSION

In this paper we have demonstrated three visualization methods of citation net-
works generated for datasets of Linked Open Data portals. These drawings are rather
helpful for understanding of datasets of large volumes. Also they enable users to ob-
serve the evolution of datasets over time. In the nearest future we are going to apply
the previously developed clustering methods for the citation networks analysis and to
compare the results obtained by the two groups of methods.
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1. INTRODUCTION

In the category C2V [1], [5] of the local convex topological vector Hausdorff spaces
[7], [8] the following factorization structures are examined:

(Epi,M f ) - the class of epimorphisms, the class of kernels = the class of mor-
phisms with dense image, the class of topological inclusions with closed image;

(Eu,Mp)= the class of universal epimorphisms, the class of precise (exact) monomor-
phisms=the class of surjective morphisms, the class of topological embedding;

(Ep,Mu)= the class of precise epimorphisms, the class of universal mono-morphisms;
(E
′
p,M

′
u)= the class of precise epimorphisms, the class of universal monomorphisms

with the closed image;
(E f ,Mono) = the class of cokernels, the class of monomorphisms = the class of

factorial morphisms, the class of injective morphisms.

We will examine the following subcategories of the categorie C2V:

S - the subcategory of spaces endowed with a weak topology,
Γ0 - the subcategory of complete spaces,
Π - the subcategory of complete spaces with a weak topology,
M̃ - the subcategory of spaces endowed with Mackey topology.
The first subcategory is reflective while the last one is coreflective.

Definition 1.1. [2]. Monomorphism m is called universal monomorphism if for every
pushout square u′ · m = m′ · u the morphism m′ is a monomorphism.

27
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Theorem 1.1. ([2], Theorem 1.7). A monomorphism m : X −→ Y is a universal
monomorphism in the category C2V if any continuous functional defined on X extends
through m.

Let K be a coreflective subcategory with the coreflector functor k : C2V −→ K

(see [2] p. 2.11). We denote

µK = {m ∈Mono | k(m) ∈ Iso}.

Dual, let R be a reflective subcategory with the reflector functor r : C2V −→ R.
We denote by

εR = {e ∈ Epi | r(e) ∈ Iso}.

Definition 1.2. [2], [5], [9]. Let A be a class of morphisms of the category C. It is
said that the morphism f ∈ A⊥ if for some commutative square (see diagram below)

f · s = t · g

with g ∈ A there exists a unique morphism diagonal d so that

f · d = t

d · g = s.

f

d

g

s t

-

-

? ?

�
�

�	

In this case we denote f ⊥ g. The class A⊥ is called the class of down orthogonal
morphisms to the morphisms of class A.

In an obvious way is defined the class A⊤ of the above orthogonal morphisms. In
[9], there are used the notations: ∧(A) instead of the A⊥ and τ(A) instead of the Aᵀ.

The next notations are also used :

A⊥ ∩Mono = A
x
,

Aᵀ ∩ Epi = Aq.

For a factorization structure (P, I) we have P = Iq and I = P
x
. For a right factor-

ization structure (respectively left factorization structure) (P, I) we have P = Iq and
I = P⊥ (respectively P = I⊤ and I = Px).

Theorem 1.2. ([2], Theorem 2.12). Let K be a nonzero coreflective subcategory of
the category C2V. Then ((µK)ᵀ, µK) is a left factorization structure in the category
C2V.
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Theorem 1.3. ([2], Theorem 4.4). Let K and L be a coreflective and reflective
subcategory of the category C2V with the respective functors k : C2V −→ K and
l : C2V −→ L. The pair (K,L) is called a conjugate pair of subcategories if
µK = εL.

Definition 1.3. ([2], Def. 2.1). Let A and B be two classes of morphisms of category
C. The class A is called B-hereditary (B-cohereditary) if from the fact that f g ∈ A
and f ∈ B (respectively g ∈ B), it follows that g ∈ A (respectively f ∈ A).

Definition 1.4. ([2], Def. 3.1). Let A and B be two classes of morphisms of the
category C. The composition of the classes A şi B is called the class A ◦ B of all
morphisms of the category C of ab form with the elements a ∈ A and b ∈ B for which
this composition exists.

We denote by R (respectively K) the lattice of the nonzero reflective subcategories
(respectively coreflective) of the category C2V. Any factorization structure (P, I)
divides the lattice R into three classes:
• the class R(P) of P - reflective subcategories;
• the class R(I) of I - reflective subcategories;
• R(P, I) = (R\(R(P) ∪ R(I))) ∪ {C2V}.

Theorem 1.4. 1. ([10], Theorem 1.2). The class R(P) contains the smallest element
S.

2. ([10], Theorem 1.3). If the class P is Mu-hereditary then

R(P) = {L ∈ R | S ⊂ L}.

2. FACTORIZATION STRUCTURES
ASSOCIATED WITH A COREFLECTIVE
SUBCATEGORY

Theorem 2.1. [2]. Let K be a nonzero coreflective subcategory in the category C2V,
and (P, I) - a factorization structure with the class of projections which is (µK)-
hereditary.

1. The pair (E,M) = ((I · (µK))q, I · (µK)) is a factorization structure in the
category C2V. 2. If M̃ ⊂ K, then the class I of injections is P-cohereditary.

3.Let p : X −→ Y ∈ P. The morphism p belongs to the class E iff the square

p · kX = kY · k(p)

is pushout, where kX : kX −→ X and kY : kY −→ Y are K-coreplicas of the respective
objects, and k(p) is that morphism, which make the square commutative.

4. Let f ∈ C2V, f = p · i the (P, I)-factorization of the morphism f , and p = t · u -
the ((µK)⊤, µK)-factorization of the morphism p. Then

f = (i · t) · u
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is the (E,M)-factorization of the morphism f .

Proof. . 1. The fact that (E,M) is a factorization structure in the category C2V

follows from the Theorem 3.2*[2].

2. We prove that the class M is P-cohereditary. Let f · g ∈M and g ∈ P, and

f = i1 · p1 (1)

be the (P, I)-factorization of the morphism f . Since f · g ∈ M, it follows that this
morphism can be expressed

f · g = i · m, (2)

where i ∈ I, and m ∈ µK.

•• •

•

•

������������* HHHHHHHHHHHHj������������*

��
��

��
��

HH
HH

HH
HH

HHHj

?

?

��*
-

g

m

f

i

p1

i1

h

From the (1) and (2) it follows the equality

i · m = i1 · (p1 · g) (3)

with i ∈ I and p1 · g ∈ P. So, there exists a morphism h which satisfies the equalities

m = h · p1 · g (4)

i1 = i · h (5)

From (5) it results that h is a monomorphism. Then, from the equality (4), we get
that m ∈ µK; also it follows that h and p1 · g belong to the class µK. Since M̃ ⊂ K

it follows that µK ⊂ µM̃. Therefore p1 · g ∈ µK ⊂ µM̃ = Mu ∩ Eu, and g is an
epimorphism. Since the class Mu is Epi-cohereditary, we deduce that p1 ∈ Mu. So
p1 ∈ µK. Therefore, in the equality (1), i1 ∈ I, and p1 ∈ µK, i.e. f ∈M.

3. Let p : X −→ Y ∈ P. We construct the corresponding square
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p · kX = kY · k(p) (6)

By using the morphisms kX and k(p) we construct the pushout square

T

��
��

��

��
��

��

HH
HH

HH

X Y

kX kY

-

? ?

-

��*
���

HHj

kX kY

p

k(p)

u

v

t

u · kX = v · k(p) (7)

Then, there exist a morphism t such that

p = t · u (8)

kY = t · v (9)

Consider p ∈ E. From the equality (8) we deduce that t ∈ E. Let us prove that
t ∈ M. Since kX ∈ Eu, it follows that v ∈ Eu. In the equality (9) we have kY ∈ Mono
and v ∈ Eu. Since the class Mono is Eu-cohereditary (lemma 2.6*[2]), we deduce
that t ∈ µK ⊂M. Thus t is an iso, and the square (6) is push out.

Conversely. Let p ∈ P and the square (1) be pushout. We will prove that p ⊥ M.
Since M = I · (µK) and p ∈ P, it results p ⊥ I. It remains to prove that p ⊥ (µM).

Let m : A −→ B ∈ µK, and
m · f = g · p (10)

kA A B

X Y

kX kY

��
��

��
��

��
��

��

��
��

��

- -

-

-

?

?

?

?
��� ���

k(p)

h

p

w

m

kX kY

f g

kA
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If kA : kA −→ A is the K-coreplica of the object A, then m · kA is the K-coreplica
of the object B. Therefore for the morphism f · kY there exists a morphism h such hat

g · kY = m · kA · h. (11)

We have

m · kA · h · k(p)
(11)

g · kY · k(p)
(6)

g · p · kX(10)
m · f · kX ,

i.e.

m · kA · h · k(p) = m · f · kX (12)

and since m ∈Mono it follows that

kA · h · k(p) = f · kX . (13)

Considering that (6) is an push out square, we deduce that

kA · h = w · kY , (14)

f = w · p (15)

for a morphism w. The morphism w is the diagonal in the square (10). Its uniqueness
follows from the fact that m ∈Mono, and p ∈ Epi.

4. Since i ∈ I, and t ∈ µK, it follows that i · t ∈M. It remains to prove that u ∈ E.
Let us return to the morphism p : X −→ Y and see how its ((µK)⊤, µK)-factorization
is performed. We examine the commutative square

p · kX = kY · k(p). (16)

On the morphisms kX and k(p) we construct the pushout square

u · kX = v · k(p). (17)

Then
p = t · u, (18)

kY = t · v (19)

for any morphism t. It is obvious that t ∈ µK, and v is the K-coreplique of the
respective object. It is easy to check that u ⊥ µK, i.e. the equality (18) is the
((µK)⊤, µK)-factorization of the morphism p. Since (17) is a pushout square, it fol-
lows that u ∈ E.

We denote by K(Mu) the class of the Mu-coreflective subcategories. It is clear that

K(Mu) = {K ∈ K | M̃ ∈ K}
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Instead of the factorization structure (P, I) we examine the pair (Eu,Mp). Since
the class Eu is Mu-hereditary we deduce that it is µK-hereditary for any K ∈ K(Mu).
Further on, let K1,K2 ∈ K(Mu) and K1 , K2. Obviously µK1 , µK2 and Mp ·
(µK1) ,Mp · (µK2). Taking into account for K(Mu) is a proper class, we get:

Corollary 2.1. The factorization structures (Mp · (µK)q,Mp · (µK)), for K ∈ K(Mu),
form a proper class of factorization structures with the Eu-cohereditary injection
classes.

Consider the case when (P, I) = (Epi,M f ). Since the class Epi is Mu-hereditary
(Lemma 2.6 [2]), we get:

Corollary 2.2. ([2], lemma2.6). The factorization structures (M f ·(µK)q,M f ·(µK)),
for K ∈ K(Mu), form a proper class of factorization structure with the Epi-cohereditary
injection classes.

Theorem 2.2. If K ∈ K(Mu), then the class M f · (µK) consists of those elements of
class Mp · (µK) which have a closed image.

In particular, it results

(Ep,Mu) = ((Mp · (µM̃))q,Mp · (µ̃M)),

(E
′
p,M

′
u) = ((M f · (µM̃))q,M f · (µM̃))

.

Proof. Let f : X −→ Y ∈ Mp · (µK) and the morphism f have a closed image. We
examined the (Eu,Mp)-factorization of the morphism f = i · p

X Z Y- -
p i

Since f is a bijective mapping it follows that the image of morphism i is closed.
Consequently i ∈M f , p ∈ µK, i ∈M f and f = i · p ∈M f · (µK).

Conversely. Let f : X −→ Y ∈ M f · (µK). Then the morphism f can be written
under the form

f = i · b,
where i ∈ M f , and b ∈ µK ⊂ Eu. Therefore b is a bijective mapping. Thus the
morphism f has a closed image and f : X −→ Y ∈Mp · (µK).

3. A PARTITION OF THE LATTICE R

Let us fix the factorization structures

(E,M) = ((M f · (µK))q,M f · (µK))
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where K ∈ K(Mu). We examine the partition of the class R according to the structure
sets: R(E), R(M), R(E,M).

Lemma 3.1. The full spaces with weak topology subcategory is included in spaces
with Mackey topology subcategory: Π ⊂ M̃.

Proof. Every object X of the subcategory Π is isomophic to an object of the from Kτ,
where K = R or K = C ([6] ch 4, section I, Proposition 13). And K is an object of
subcategory M̃ and this subcategory is closed respect to the products ([7], Theorem
4.3).

Theorem 3.1. The subcategory Π is the smallest element in class R(E).

Proof. Let X be an object of category C2V, and πX : X −→ πX be the Π-replica
of this object. We prove that πX ∈ E. Since Π ⊂ M̃, and M̃ ⊂ K, it follows that
1 : πX −→ πX is the K-coreplica of this object. Let kX : kX −→ X be the K-
coreplica of the object X. We have the following commutative square

πX · kX = 1 · k(πX),

to be proved to is pushout. It is obvious that k(πX) = πX · kX and, since, πX · kX is an
epimorphism, it follows that the respective square is pushout.

X

kX

πX

kπX = πX

-

-

? ?
kX 1

πX

k(πX) = πX · kX

Let us consider that the class E is Mu-hereditary. By using the Theorem 1.3 we
get that R(E) = R. This is possible when K = C2V. In this case we have M =

M f · (µC2V) = M f · Iso = M f , and (E,M) = (Epi,M f ). Indeed, the class Epi is
Mu-hereditary. If K , C2V, since K ∈ R(M), it follows that the classes R(P) and R
do not coincide.

Corollary 3.1. Let K ∈ K(Mu) and K , C2V. Then the factorization structures
((M f · (µK))q,M f · (µK)) have:

1. the class of injections M f · (µK) is Epi-cohereditary,
2. the class of projections (M f · (µK))q is not Mu-hereditary,
3. these factorization structures form a proper class.

Theorem 3.2. Let (K,L) be a conjugated pair of subcategories in the category C2V,
and

(E,M) = ((M f · (µK))q,M f · (µK)).

Then L is the smallest element in class R(M).
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Proof. Since µK = εL it follows that L ∈ R(M). Let R ∈ R(M) and let us prove that
L ⊂ R. For it let X be any object of the category C2V, and rX : X −→ rX R be its
replica. Since rX ∈M =M f · (µK), it follows that it can be written under the form

f X = i · t,

where i ∈ M f , and t ∈ µK. Since rX is an epimorphism, it results that i is an
isomorphism. Thus we have shown that R is (εL)-reflective. Let l : X −→ lX be the
L-replica of the object X. Then, there exist a morphism u such that

lX = u · rX .

This relationship shows that L ⊂ R.

•

•

•

C2V

Π

L

R(E) R(M)

R(E,M)

Example 3.1. Let us examine the dividing of lattice R from the factorization structure
(E
′
p,M

′
u) to check the following equalities

(E
′
p,M

′
u) = ((M f · (µM))q,M f · (µM)) =

= ((M f · (εS))q, M f · (εS)) = ((M f · (Eu ∩Mu))q,M f · (Eu ∩Mu)).

We recall that a locally convex space is called semireflexive if it is quasicomplet
in the weak topology.

Let qΓ0 be the subcategory of the quasicomplet spaces and

L = S ∩ qΓ0.

We proved that L ∈ R(E′p,M
′
u) in the dividing by structure (E

′
p,M

′
u).

Let X be a semireflexive space, for which the topology is not weak, and sX : X −→
sX is its S -replica. Then sX belong of the subcategory L. Therefore there exists, in
the category C2V, an object for which L-replica belong of the class M

′
u.
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Let now X be a locally convex space which is not semireflexive, sX : X −→ sX -
its S -replica, and qX : sX −→ qsX the qΓ0-replica of the object sX. Then qsX is a
space with weak topology, i.e. qsX ∈ |L|. It is obvious that qX is the L-replica of the
object sX.

Since the morphism qX is un epimorphism, then qX ⊥ M f . Further , qX is a
topological inclusion with dense image. We proved that qX ⊥ εS , i.e. qX ⊥ (Eu ∩
Mu). Let b ∈ Eu ∩Mu and

b · u = v · qX (20)

•

•

•

•

•

��
��

��

��

��

@@

@@

-

-

��*

? ?

@@R

��	

u v

b

b
′

v
′

t

qX

We construct, based on morphisms b and v, the pull-back square

b · v′ = v · b′ . (21)

Then there exists a morphism t such that

u = v
′ · t, (22)

qX = b
′ · t. (23)

and b
′ ∈ Eu ∩Mu. Since b

′ ∈ Mu, qX ∈ Epi and the class Epi is Eu-hereditary ([2]
Lemma 2.6) it follows that t ∈ Epi. Therefore qX ∈Mp, t ∈ Epi, and the class Mp is
Epi-cohereditary, so that b

′ ∈Mp, and b
′ ∈ Eu ∩Mp = Iso.

The diagonal of square (20) is the morphism v
′ · (b′)−1.

Thus we have proved that in the category C2V there exists the object L-replica
which belongs to the class M

′
u and not belongs to class E

′
p and there exists the object

L-replica which belongs to class E
′
p and not belongs to class M

′
u.

Consequently L ∈ R(E′p,M
′
u).
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•

•

•

C2V

Π

S

L

R(E
′
p) R(M

′
u)

•

By the Theorem 5.4 [3] the subcategory sR of the semireflexive spaces is equal
with the right product of the subcategory M̃ and subcategory L = S ∩ qΓ0 and also
equal with the semireflexive product of subcategory S and subcategory qΓ0:

sR = M̃ ∗d (S ∩ qΓ0) = S ∗sr qΓ0.
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1. INTRODUCTION

Let A denote the class of all functions of the form

f (z) = z +
∞∑

k=2

akzk, (1)

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1} .

Also let S denote the subclass of A consisting of functions f which are univalent in
U.

The following definition of fractional derivative given by Owa [17] (also by Sri-
vastava and Owa [22]) will be required in our investigation.

The fractional derivative of order γ is defined, for a function f , by

Dγ
z f (z) =

1
Γ(1 − γ)

d
dz

∫ z

0

f (ξ)
(z − ξ)γ dξ (0 ≤ γ < 1), (2)

where the function f is analytic in a simply connected region of the complex z-plane
containing the origin, and the multiplicity of (z−ξ)−γ is removed by requiring log(z−
ξ) to be real when z − ξ > 0.

It readily follows from (2) that

Dγ
z zk =

Γ(k + 1)
Γ(k + 1 − γ)

zk−γ (0 ≤ γ < 1, k ∈ N = {1, 2, . . .}).
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Using Dγ
z f , Owa and Srivastava [18] introduced the operator Ωγ : A → A, which

is known as an extension of the fractional derivative and fractional integral, as fol-
lows:

Ωγ f (z) = Γ (2 − γ) zγDγ
z f (z) = z +

∞∑
k=2

Γ(k + 1)Γ (2 − γ)
Γ(k + 1 − γ)

akzk. (3)

Note that
Ω0 f (z) = f (z).

In [3], Al-Oboudi and Al-Amoudi defined the linear multiplier fractional differen-
tial operator (namely, generalized Al-Oboudi differential operator) Dn,γ

λ as follows:

D0 f (z) = f (z),
D1,γ
λ f (z) = (1 − λ)Ωγ f (z) + λz (Ωγ f (z))′ := Dγ

λ
( f (z)) , λ ≥ 0, 0 ≤ γ < 1,

(4)
D2,γ
λ f (z) = Dγ

λ

(
D1,γ
λ f (z)

)
,

...

Dn,γ
λ f (z) = Dγ

λ

(
Dn−1,γ
λ f (z)

)
, n ∈ N.

(5)

If f is given by (1), then by (3), (4) and (5), we see that

Dn,γ
λ f (z) = z +

∞∑
k=2

Ψk,n (γ, λ) akzk, n ∈ N0 = N∪ {0} , (6)

where

Ψk,n (γ, λ) =
[
Γ(k + 1)Γ (2 − γ)
Γ(k + 1 − γ)

(1 + (k − 1) λ)
]n

.

Remark 1.1. (i) When γ = 0, we get Al-Oboudi differential operator [2].
(ii) When γ = 0 and λ = 1, we get Sălăgean differential operator [21].
(iii) When n = 1 and λ = 0, we get Owa-Srivastava fractional differential operator

[18].

In [9], the author defined the classes Sn
γ,λ(β, b) and Kn

γ,λ(β, b) as follows:

Definition 1.1. Let Sn
γ,λ(β, b) be the class of functions f ∈ A satisfying

ℜ

1 +
1
b

z
(
Dn,γ
λ f (z)

)′
Dn,γ
λ f (z)

− 1


 > β (7)

for all z ∈ U, where b ∈ C − {0} and 0 ≤ β < 1.

Definition 1.2. Let Kn
γ,λ(β, b) be the class of functions f ∈ A satisfying

ℜ

1 +
1
b

z
(
Dn,γ
λ f (z)

)′′(
Dn,γ
λ f (z)

)′
 > β (8)
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for all z ∈ U, where b ∈ C − {0} and 0 ≤ β < 1.

We note that f ∈ Kn
γ,λ(β, b) if and only if z f ′ ∈ Sn

γ,λ(β, b).

Remark 1.2. We have the following classes for special values of the parameters
n, γ, λ, β and b.

(i) S0
γ,λ(β, b) ≡ S1

0,0(β, b) ≡ S∗β(b) and K0
γ,λ(β, b) ≡ K1

0,0(β, b) ≡ Cβ(b). These
classes were introduced by Frasin [13],

(ii) S0
γ,λ(β, 1) ≡ S1

0,0(β, 1) ≡ S∗(β) and K0
γ,λ(β, 1) ≡ K1

0,0(β, 1) ≡ K(β) which are
the classes of starlike functions of order β and convex functions of order β in U,
respectively,

(iii) S0
γ,λ(0, 1) ≡ S1

0,0(0, 1) ≡ S∗ and K0
γ,λ(0, 1) ≡ K1

0,0(0, 1) ≡ K which are familiar
classes of starlike and convex functions in U, respectively,

(iv) Sn
0,1(β, 1) ≡ Sn(β) which is the class of n-starlike functions of order β defined

by Sălăgean [21].

Observe that if f ∈ Sn
γ,λ(β, b) (or Kn

γ,λ(β, b)), then Dn,γ
λ f ∈ S∗β(b) (or Cβ(b)).

Now we define new classes of functions by using the generalized Al-Oboudi dif-
ferential operator Dn,γ

λ as follows:

Definition 1.3. Let Sn
γ,λ (α; β, b) be the class of functions f ∈ A satisfying

ℜ

eiα

1 + 1
b

z
(
Dn,γ
λ f (z)

)′
Dn,γ
λ f (z)

− 1



 > β cosα (9)

for a real number α (−π2 < α <
π
2 ) and for all z ∈ U, where b ∈ C−{0} and 0 ≤ β < 1.

Definition 1.4. Let Kn
γ,λ (α; β, b) be the class of functions f ∈ A satisfying

ℜ

eiα

1 + 1
b

z
(
Dn,γ
λ f (z)

)′′(
Dn,γ
λ f (z)

)′

 > β cosα (10)

for a real number α (−π2 < α <
π
2 ) and for all z ∈ U, where b ∈ C−{0} and 0 ≤ β < 1.

It is clear that f ∈ Kn
γ,λ (α; β, b) if and only if z f ′ ∈ Sn

γ,λ (α; β, b).

Remark 1.3. We note that
(i) Sn

γ,λ (0; β, b) ≡ Sn
γ,λ(β, b) and Kn

γ,λ (0; β, b) ≡ Kn
γ,λ(β, b),

(ii) S0
γ,λ

(0; β, b) ≡ S1
0,0 (0; β, b) ≡ S∗β(b) and K0

γ,λ
(0; β, b) ≡ K1

0,0 (0; β, b) ≡ Cβ(b)
studied in [5] and [12],

(iii) S0
γ,λ

(0; β, 1) ≡ S1
0,0 (0; β, 1) ≡ S∗(β) and K0

γ,λ
(0; β, 1) ≡ K1

0,0 (0; β, 1) ≡ K(β),
(iv) S0

γ,λ
(0; 0, 1) ≡ S1

0,0 (0; 0, 1) ≡ S∗ and K0
γ,λ

(0; 0, 1) ≡ K1
0,0 (0; 0, 1) ≡ K,

(v) S0
γ,λ

(α; 0, 1) ≡ S1
0,0 (α; 0, 1) ≡ Sp(α) which is the class of α-spirallike functions

recently studied in [14] and [15].
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From the general classes Sn
γ,λ (α; β, b) and Kn

γ,λ (α; β, b), we obtain the following
new classes for special parameters n, γ, λ such as

1. Sn
0,λ (α; β, b) ≡ Sn

λ (α; β, b) and Kn
0,λ (α; β, b) ≡ Kn

λ (α; β, b),
2. Sn

0,1 (α; β, b) ≡ Sn (α; β, b) and Kn
0,1 (α; β, b) ≡ Kn (α; β, b),

3. S0
γ,λ

(α; β, b) ≡ S1
0,0 (α; β, b) ≡ Sp (α; β, b) and K0

γ,λ
(α; β, b) ≡ K1

0,0 (α; β, b) ≡
Kp (α; β, b).

By using the generalized Al-Oboudi differential operator, the author introduced
the following integral operators Dn,γ

λ F and Dn,γ
λ G, [8].

Definition 1.5. Let n ∈ N0, l = (l1, . . . , lm) ∈ Nm
0 , and k j > 0 (1 ≤ j ≤ m). One

defines the integral operator In,m,l,k : Am → A,

In,m,l,k( f1, . . . , fm) = F, (11)

such that

Dn,γ
λ F(z) =

∫ z

0

Dl1,γ
λ f1(t)

t


k1

. . .

Dlm,γ
λ fm(t)

t


km

dt (z ∈ U),

where f1, . . . , fm ∈ A and D is the generalized Al-Oboudi differential operator.

Remark 1.4. The integral operator Dn,γ
λ F generalizes many operators which were

introduced and studied recently.
(i) For γ = 0, we get the integral operator

Dn
λF(z) =

∫ z

0

Dl1
λ f1(t)

t

k1

. . .

Dlm
λ fm(t)

t

km

dt

introduced by Bulut [7]; here D is the Al-Oboudi differential operator.
(ii) For n = 0, γ = 0 and l1 = . . . = lm = l ∈ N0, we get the integral operator

F(z) =
∫ z

0

Dl
λ f1(t)

t

k1

. . .

Dl
λ fm(t)

t

km

dt

introduced by Bulut [11]; here D is the Al-Oboudi differential operator.
(iii) For γ = 0 and λ = 1, we get the integral operator

DnF(z) =
∫ z

0

(
Dl1 f1(t)

t

)k1

. . .

(
Dlm fm(t)

t

)km

dt

introduced by Breaz et al. [6]; here D is the Sălăgean differential operator.
(iv) For n = 0 and D0,γ

λ f j = D1,0
0 f j = f j ( j ∈ {1, . . . ,m}), we get the integral

operator

F(z) =
∫ z

0

(
f1(t)

t

)k1

. . .

(
fm(t)

t

)km

dt
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introduced by D. Breaz and N. Breaz [4].
(v) For n = 0, m = 1, k1 = k ∈ [0, 1], k2 = · · · = km = 0 and D0,γ

λ f1 = D1,0
0 f1 = f ∈

S, we get the integral operator

F(z) =
∫ z

0

(
f (t)
t

)k

dt

studied by Miller et al. [16].
(vi) For n = 0, m = 1, k1 = 1, k2 = · · · = km = 0 and D0,γ

λ f1 = D1,0
0 f1 = f ∈ A, we

get the integral operator of Alexander

F(z) =
∫ z

0

f (t)
t

dt

introduced by Alexander [1].

Definition 1.6. Let n ∈ N0, l = (l1, . . . , lm) ∈ Nm
0 , and k j > 0 (1 ≤ j ≤ m). One

defines the integral operator Jn,m,l,k : Am → A,

Jn,m,l,k( f1, . . . , fm) = G, (12)

such that

Dn,γ
λ G(z) =

∫ z

0

[(
Dl1,γ
λ f1(t)

)′]k1
. . .

[(
Dlm,γ
λ fm(t)

)′]km
dt (z ∈ U),

where f1, . . . , fm ∈ A and D is the generalized Al-Oboudi differential operator.

Remark 1.5. The integral operator Dn,γ
δ G many operators which were introduced

and studied recently.
(i) For n = 0 and D0,γ

δ f j = D1,0
0 f j = f j ∈ A (1 ≤ j ≤ m), we have the integral

operator

Gk1,...,km(z) =
∫ z

0

(
f ′1(t

)
)k1 . . .

(
f ′m(t

)
)kmdt (13)

introduced by Breaz et al. [7].
(ii) For n = 0, m = 1, k1 = k ∈ C, k2 = · · · = km = 0 and D0,γ

δ f1 = D1,0
0 f1 = f ∈ A,

we have the integral operator

Gk(z) =
∫ z

0

(
f ′(t

)
)kdt

introduced by Pfaltzgraff [20] (see also Pascu and Pescar [19]).

In this paper, we investigate some properties of the above integral operators Dn,γ
δ F

and Dn,γ
δ G for the classes

Sn
γ,λ (α; β, b) and Kn

γ,λ (α; β, b) .
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2. MAIN RESULTS

Theorem 2.1. Let l j ∈ N0, 0 ≤ β j < 1, k j > 0 (1 ≤ j ≤ m), and −π2 < α < π
2 , b ∈

C − {0}. Also suppose that

0 ≤ 1 +
m∑

j=1

k j(β j − 1) < 1. (14)

If f j ∈ S
l j
γ,λ

(
α; β j, b

)
(1 ≤ j ≤ m), then In,m,l,k( f1, . . . , fm) = F ∈ Kn

γ,λ (α; δ, b) with

δ = 1 +
m∑

j=1

k j(β j − 1). (15)

Proof. Since f j ∈ A (1 ≤ j ≤ m), by (6), we have

Dl j,γ

λ f j(z)
z

= 1 +
∞∑

k=2

Ψk,l j (γ, λ) ak, jzk−1

and
Dl j,γ

λ f j(z)
z

, 0

for all z ∈ U. By (11), we get

(
Dn,γ
λ F(z)

)′
=

Dl1,γ
λ f1(z)

z


k1

. . .

Dlm,γ
λ fm(z)

z


km

.

This equality implies that

ln
(
Dn,γ
λ F(z)

)′
= k1 ln

Dl1,γ
λ f1(z)

z
+ · · · + km ln

Dlm,γ
λ fm(z)

z

or equivalently

ln
(
Dn,γ
λ F(z)

)′
= k1

[
ln Dl1,γ

λ f1(z) − ln z
]
+ · · · + km

[
ln Dlm,γ

λ fm(z) − ln z
]
.

By differentiating above equality, we get

(
Dn,γ
λ F(z)

)′′(
Dn,γ
λ F(z)

)′ = m∑
j=1

k j


(
Dl j,γ

λ f j(z)
)′

Dl j,γ

λ f j(z)
− 1

z

 .
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Then by multiplying the above relation with z/b, we have

1
b

z
(
Dn,γ
λ F(z)

)′′(
Dn,γ
λ F(z)

)′ =

m∑
j=1

k j
1
b


z
(
Dl j,γ

λ f j(z)
)′

Dl j,γ

λ f j(z)
− 1


=

m∑
j=1

k j

1 + 1
b


z
(
Dl j,γ

λ f j(z)
)′

Dl j,γ

λ f j(z)
− 1


 −

m∑
j=1

k j

or equivalently

eiα

1 + 1
b

z
(
Dn,γ
λ F(z)

)′′(
Dn,γ
λ F(z)

)′
 =

1 − m∑
j=1

k j

 eiα +

m∑
j=1

k jeiα

1 + 1
b


z
(
Dl j,γ

λ f j(z)
)′

Dl j,γ

λ f j(z)
− 1


 .

Since f j ∈ S
l j
γ,λ

(
α; β j, b

)
(1 ≤ j ≤ m), we get

ℜ

eiα

1 + 1
b

z
(
Dn,γ
λ F(z)

)′′(
Dn,γ
λ F(z)

)′

 =

1 − m∑
j=1

k j

ℜ {
eiα

}

+

m∑
j=1

k jℜ

eiα

1 + 1
b


z
(
Dl j,γ

λ f j(z)
)′

Dl j,γ

λ f j(z)
− 1





>

1 − m∑
j=1

k j

 cosα +
m∑

j=1

k jβ j cosα

=

1 + m∑
j=1

k j(β j − 1)

 cosα

for all z ∈ U. Hence, we obtain F ∈ Kn
γ,λ (α; δ, b) with δ given by (2) .

By setting β1 = · · · = βm = β in Theorem 2.1, we obtain the following.

Corollary 2.1. Let l j ∈ N0, 0 ≤ β < 1, k j > 0 (1 ≤ j ≤ m), and −π2 < α < π
2 , b ∈

C − {0}. Also suppose that

0 ≤ 1 + (β − 1)
m∑

j=1

k j < 1.

If f j ∈ S
l j
γ,λ

(α; β, b) (1 ≤ j ≤ m), then In,m,l,k( f1, . . . , fm) = F ∈ Kn
γ,λ (α; µ, b) with

µ = 1 + (β − 1)
m∑

j=1

k j. (16)
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Putting m = 1 and k1 = k in Corollary 2.1, we obtain the following.

Corollary 2.2. Let l ∈ N0, 0 ≤ β < 1, k > 0, and −π2 < α < π
2 , b ∈ C − {0}. Also

suppose that
0 ≤ 1 + (β − 1)k < 1.

If f ∈ Sl
γ,λ (α; β, b), then

Dn,γ
λ F(z) =

∫ z

0

Dl,γ
λ f (t)

t


k

dt ∈ Kn
γ,λ (α; ρ, b)

with
ρ = 1 + (β − 1)k. (17)

Putting k = 1 in Corollary 2.2, we obtain the following.

Corollary 2.3. Let l ∈ N0, 0 ≤ β < 1, and −π2 < α < π
2 , b ∈ C − {0}. If f ∈

Sl
γ,λ (α; β, b), then the integral operator

Dn,γ
λ F(z) =

∫ z

0

Dl,γ
λ f (t)

t
dt ∈ Kn

γ,λ (α; β, b) .

Corollary 2.4. Let f ∈ Sp (α; β, b). Then the image of f by the integral operator of
Alexander belongs to Kp (α; β, b) , i.e.

F(z) =
∫ z

0

f (t)
t

dt ∈ Kp (α; β, b) .

Theorem 2.2. Let l j ∈ N0, 0 ≤ β j < 1, k j > 0 (1 ≤ j ≤ m), and −π2 < α < π
2 , b ∈

C − {0}. Also suppose that

0 ≤ 1 +
m∑

j=1

k j(β j − 1) < 1.

If f j ∈ K
l j
γ,λ

(
α; β j, b

)
(1 ≤ j ≤ m), then Jn,m,l,k( f1, . . . , fm) = G ∈ Kn

γ,λ (α; δ, b) with δ
is given by (2).

Proof. By (12), we get(
Dn,γ
λ G(z)

)′
=

[(
Dl1,γ
λ f1(z)

)′]k1
. . .

[(
Dlm,γ
λ f1(z)

)′]km
. (18)

This equality implies that

(
Dn,γ
λ G(z)

)′′
=

m∑
j=1

k j

[(
Dl j,γ

λ f j(z)
)′]k j

(
Dl j,γ

λ f j(z)
)′′

(
Dl j,γ

λ f j(z)
)′ m∏

r=1
(r, j)

[(
Dlr ,γ
λ fr(z)

)′]kr
. (19)
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Thus by using (5) and (6), we obtain

z
(
Dn,γ
λ G(z)

)′′(
Dn,γ
λ G(z)

)′ = m∑
j=1

k j

z
(
Dl j,γ

λ f j(z)
)′′

(
Dl j,γ

λ f j(z)
)′ .

Then by multiplying the above relation with 1/b, we have

1
b

z
(
Dn,γ
λ G(z)

)′′(
Dn,γ
λ G(z)

)′ =

m∑
j=1

k j
1
b

z
(
Dl j,γ

λ f j(z)
)′′

(
Dl j,γ

λ f j(z)
)′

=

m∑
j=1

k j

1 + 1
b

z
(
Dl j,γ

λ f j(z)
)′′

(
Dl j,γ

λ f j(z)
)′

 −
n∑

j=1

k j

or equivalently

eiα

1 + 1
b

z
(
Dn,γ
λ G(z)

)′′(
Dn,γ
λ G(z)

)′
 =

1 − m∑
j=1

k j

 eiα +

m∑
j=1

k jeiα

1 + 1
b

z
(
Dl j,γ

λ f j(z)
)′′

(
Dl j,γ

λ f j(z)
)′

 .
Since f j ∈ K

l j
γ,λ

(
α; β j, b

)
(1 ≤ j ≤ m), we get

ℜ

eiα

1 + 1
b

z
(
Dn,γ
λ G(z)

)′′(
Dn,γ
λ G(z)

)′

 =

1 − m∑
j=1

k j

ℜ {
eiα

}

+

m∑
j=1

k jℜ

eiα

1 + 1
b

z
(
Dl j,γ

λ f j(z)
)′′

(
Dl j,γ

λ f j(z)
)′




>

1 − m∑
j=1

k j

 cosα +
m∑

j=1

k jβ j cosα

=

1 + m∑
j=1

k j(β j − 1)

 cosα

for all z ∈ U. Hence, we obtain G ∈ Kn
γ,λ (α; δ, b) with δ is given by (2).

Corollary 2.5. Let l j = 0, 0 ≤ β j < 1, k j > 0 (1 ≤ j ≤ m), and −π2 < α < π
2 , b ∈

C − {0}. Also suppose that

0 ≤ 1 +
m∑

j=1

k j(β j − 1) < 1.
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If f j ∈ Kp
(
α; β j, b

)
(1 ≤ j ≤ m), then Gk1,...,km ∈ Kp (α; δ, b) with δ is given by (2).

Other interesting corollaries of Theorem 2.2 can be obtained considering the same
particular cases as for Corollaries 2.1 − 2.4.
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Department of Mathematics and Computer Science, Technical University of Civil Engineering

of Bucharest, Romania

ndanet@cfdp.utcb.ro

Abstract In this paper we obtain some estimations for the Pompeiu-Hausdorff distance between
order intervals of a normed lattice and of an ordered normed space.

Keywords: Pompeiu-Hausdorff distance, normed lattices, ordered normed spaces, order intervals.
2010 MSC: Primary 46B40; Secondary 46A40.

1. INTRODUCTION

The distance between the subsets of Rn was introduced by the Romanian mathe-
matician Dimitrie Pompeiu in 1905 in his Ph. D. Thesis [10] (see also [3]). Is worth
noting that the concept of metric space appeared in the Ph. D. thesis of Maurice
Fréchet [6] published a little bit later in 1906. Felix Hausdorff studied the notion
of set distance in the setting of metric spaces in his book from 1914 [7]. Hausdorff
quoted Pompeiu as the author of the notion of distance between sets, but not in the
main text of the book, only in the final notes, as was the procedure at that time to
indicate the references ([8], p. 343). And thus the distance between sets came to be
called the Hausdorff distance. We will call this distance Pompeiu-Hausdorff distance
like in the book of R. Tyrrell Rockafellar and Roger J.-B. Wets “Variational Analysis”
([12], p. 144).

In this section we recall some basic definitions and results about Pompeiu-Hausdorff
distance. First we recall the notion of quasi-metric. A function q : X × X −→ R+ is
said to be a quasi-metric on the set X if for each x, y, z ∈ X, q satisfies the following
conditions:

(1) q(x, x) = 0;
(2) q(x, y) = q(y, x) = 0⇒ x = y;
(3) q(x, y) ≤ q(x, z) + q(z, y).
For every quasi-metric q it is always possible to define another quasi-metric, called

the conjugated quasi-metric of q, defined by q̃(x, y) = q(y, x), and a metric, called the
metric associated to q, defined by

dq(x, y) = max{q(x, y), q̃(x, y)}, x, y ∈ X. (1)

51
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The associated metric dq is the smallest metric majorizing q.

Let (X, d) be a metric space and Pc,b(X) the collection of all nonempty subsets A of
X which are closed and bounded. The function q : Pc,b(X) × Pc,b(X) −→ R+ defined
by

q(A, B) = sup
a∈A

dist(a, B), (2)

where dist(a, B) = inf
b∈B

d(a, b), is a quasi-metric on the set Pc,b(X). The requirement

that the subsets A and B are closed is necessary in order to obtain the equality A = B
and not A = B. The requirement that A and B are bounded is necessary to obtain
q(A, B) < ∞. It is worth to remark that using the quasi-metric (2) we can characterize
the order relation given by the inclusion between the sets of Pc,b(X) as follows

A ⊂ B⇔ q(A, B) = 0.

The metric associated by formula (1) to the quasi-metric q defined in (2), that is,

dPH(A, B) = max{q(A, B), q(B, A)}, (3)

where A, B ∈ Pc,b(X), is called the Pompeiu-Hausdorff distance, PH-distance for
short, between the sets A and B relative to the metric d. (By convention, dPH(∅,∅) =
0 and dPH(A,∅) = ∞ for A , ∅.) It is well known that dPH is a metric on Pc,b(X)
([1], Lemma 3.72, p.110).

For a nonempty subset A of a metric space (X, d) we denote by Nε[A] = {x ∈ X |
d(x, A) ≤ ε} the closed ε-neighborhood of A. A useful formula for computing the
quasi-metric (2) is

q(A, B) = inf{ε > 0 | A ⊂ Nε[B]}, (4)

where, by convention, inf ∅ = +∞. Then for the Pompeiu-Hausdorff distance we
have the following formula ([1], Lemma 3.71, p.110),

dPH(A, B) = inf{ε > 0 | A ⊂ Nε(B) and B ⊂ Nε(A)}.

In general, the computation of the PH-distance between sets is not an easy
operation. The aim of this paper is to obtain some useful estimations for PH-distance
in the particular case in which the sets are order intervals of a normed lattice or of an
ordered normed space.

For the unexplained terminology, especially for ordered normed spaces, see [1]
and [2].

2. POMPEIU-HAUSDORFF DISTANCE
BETWEEN ORDER INTERVALS OF A
NORMED LATTICE

In this section X is a normed lattice. This means that X is a normed vector lattice
endowed with a lattice norm, that is, a norm with the property that x, y ∈ X, |x| ≤ |y|
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implies ∥x∥ ≤ ∥y∥ . We denote an order interval of X by x = [x, x] = {a ∈ X | x ≤ a ≤
x} and the set of all order intervals of X by IX. Since in a normed lattice X the order
intervals are closed and bounded subsets of X, the quasi-metric (2) restricted to the
set IX, that is, q : IX × IX → R+, is given by the formula

q(x, y) = sup
a∈x

dist(a, y) = sup
a∈x

inf
b∈y
∥b − a∥ . (5)

The first result gives a double estimation for the quasi-metric q. It is the main result
of this section because all others are obtained from it.

Proposition 2.1. For any order intervals x = [x, x] and y = [y, y] of the normed
lattice X we have

max{
∥∥∥∥(x − y)−

∥∥∥∥ , ∥∥∥(x − y)+
∥∥∥} ≤ q(x, y) ≤

∥∥∥∥(x − y)− ∨ (x − y)+
∥∥∥∥ .

Proof. Let a be any element in x. Define ba = (y ∧ a) ∨ y = y ∧ (a ∨ y). Then ba ∈ y
and

a − ba = a − (y ∧ a) ∨ y = a + [−(y ∧ a)] ∧ (−y) =

= [a + (−y) ∨ (−a)] ∧ (a − y) =

= [(a − y) ∨ 0] ∧ (a − y) = (a − y)+ ∧ (a − y).

Consequentely

−(x − y)− = 0 ∧ (x − y) ≤ a − ba ≤ (a − y)+ ≤ (x − y)+

and
|a − ba| ≤ (x − y)− ∨ (x − y)+.

Then we have

q(x, y) = sup
a∈x

inf
b∈y
∥b − a∥ ≤ sup

a∈x
∥a − ba∥ ≤

∥∥∥∥(x − y)− ∨ (x − y)+
∥∥∥∥ .

On the other hand,

q(x, y) = sup
a∈x

inf
b∈y
∥b − a∥ ≥ inf

b∈y
∥x − b∥ ≥

∥∥∥(x − y)+
∥∥∥ ,

and analogously q(x, y) ≥
∥∥∥∥(x − y)−

∥∥∥∥ .
We recall that (see [1], p.357) a normed lattice X is called an M-space if its norm

has the property
∥x ∨ y∥ = max{∥x∥ , ∥y∥}, x, y ≥ 0,
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and an L-space if the norm has the property

∥x + y∥ = ∥x∥ + ∥y∥ , x, y ≥ 0.

The following corollary gives the expression of the quasi-metric (5) and of the
PH-distance (3) between two order intervals of an M-space X.

Corollary 2.1. If X is an M-space, then for all order intervals x, y of X we have the
formulae:

(i) q(x, y) = max{
∥∥∥∥(x − y)−

∥∥∥∥ , ∥∥∥(x − y)+
∥∥∥}.

(ii) dPH(x, y) = max{
∥∥∥∥x − y

∥∥∥∥ , ∥x − y∥}.

In particular, for X = R (the real axis) we obtain that the PH-distance dPH(x, y)
coincides with Moore’s distance ([9], p. 52) used in interval analysis.

Next corollary gives a very useful estimation for the PH-distance between two
intervals of the form [0, x] and [0, y], with x, y ∈ X+.

Corollary 2.2. Let X be a normed lattice.

(i) For any x, y ∈ X+ we have,

q([0, x], [0, y]) =
∥∥∥(x − y)+

∥∥∥ ≤ ∥x − y∥ . (6)

The equality holds if 0 ≤ y ≤ x.

(ii) For any x, y ∈ X+ we have,

dPH([0, x], [0, y]) = max{
∥∥∥(x − y)+

∥∥∥ , ∥∥∥(x − y)−
∥∥∥} ≤ ∥x − y∥ . (7)

The equality holds if 0 ≤ y ≤ x or 0 ≤ x ≤ y.

Remark 2.1. (a) If X is an L-space and in (6) we have equality, then 0 ≤ y ≤ x.
Indeed, in this case we have

∥∥∥(x − y)+
∥∥∥ = ∥x − y∥ . Since |x − y| = (x − y)+ + (x − y)−

and X is a L-space we obtain
∥∥∥(x − y)−

∥∥∥ = 0, hence (x − y)− = 0, and therefore y ≤ x.
(b) If X is an L-space and in (7) we have equality, then 0 ≤ y ≤ x or 0 ≤ x ≤ y. �

Finally we show what happens when we compute the PH-distance between two
intervals [0, x] and [0, y] with x ∧ y = 0.

Corollary 2.3. If X is a normed lattice and x, y ∈ X are such that x ∧ y = 0, then we
have:

(i) q([0, x], [0, y]) = ∥x∥.
(ii) dPH([0, x], [0, y]) = max{∥x∥ , ∥y∥}.

Proof. (i) results by using the equality (x − y)+ = x − x ∧ y in Corollary 2.2.
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In the theory of normed lattices a notion which is extensively used is that of almost
order bounded set. We recall that a subset A of a normed vector lattice X is said to be
almost order bounded if for every ε > 0 there exists a positive element x such that

A ⊆ [−x, x] + εBX ,

where BX = {x ∈ X | ∥x∥ ≤ 1} ([13], p. 501).

The following proposition gives some useful equivalent formulations for the notion
of almost order bounded set by using the quasi-metric (5) .

Proposition 2.2. With the above notation we have the following equivalences:

(i) A ⊆ [−x, x] + εBX .

(ii) q (A, [−x, x]) ≤ ε.
(iii) sup

a∈A

∥∥∥(|a| − x)+
∥∥∥ ≤ ε.

(iv) sup
a∈A

q ([0, |a|] , [0, x]) ≤ ε.

Proof. (i) ⇔ (ii) is straightforward by definitions if we use for the computation of
the quasi-norm q the formula (4).

(i)⇔ (iii) is proved in [13], Theorem 122.1, p. 501.
(iii)⇔ (iv) results by using Corollary 2.2.

Obviously, every order bounded set is almost order bounded, and every almost
order bounded set is norm bounded. Also every totally bounded set is almost order
bounded ([13] Theorem 122.2, p.502).

3. POMPEIU-HAUSDORFF DISTANCE
BETWEEN ORDER INTERVALS OF AN
ORDERED NORMED SPACE

In this section X is an ordered normed space with the positive cone X+. This means
that X is a normed space equipped with a cone denoted X+ which gives the order
relation on X. An ordered Banach space is a Banach space endowed with a cone, not
necessarily closed ([2], p. 85).

The cone X+ is called normal if there exists a constant C > 0 such that

0 ≤ x ≤ y⇒ ∥x∥ ≤ C ∥y∥ . (8)

Actually the constant C ≥ 1 and the infimum of all C for which the inequality (8)
holds is called the normal constant of the cone X+.

If X+ is a normal cone, then every order bounded set is norm bounded. (The
converse is true if int(X+) , ∅.) So in an ordered normed space X endowed with a
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normal cone X+ the order intervals of X are norm bounded. We will assume also that
the cone X+ is closed to have all order intervals closed.

The quasi-metric (5) between two order intervals [0, x] and [0, y], with x, y ∈ X+,
has the following form:

q([0, x], [0, y]) = sup
0≤a≤x

dist(a, [0, y]) = sup
0≤a≤x

inf
0≤b≤y

∥a − b∥ . (9)

In the case when the positive cone X+ is closed we can characterize the order
relation on X by using this quasi-metric.

Proposition 3.1. Let X be an ordered normed space such that its positive cone X+ is
closed and normal. Then

0 ≤ x ≤ y⇔ q([0, x], [0, y]) = 0.

Proof. If 0 ≤ x ≤ y, then [0, x] ⊂ [0, y] and q([0, x], [0, y]) = 0.
Conversely, if q([0, x], [0, y]) = 0, then for every a ∈ [0, x] we have inf

0≤b≤y
∥a − b∥ =

0. Then there exists a sequence (bn), with bn ∈ [0, y], such that ∥a − bn∥ < 1/n. Since
0 ≤ bn ≤ y, ∥bn − a∥ → 0, and X+ is closed, all these imply that 0 ≤ a ≤ y. Hence,
[0, x] ⊂ [0, y].

In the theory of ordered vector spaces is well known that those results that are true
in vector lattices (where exist positive and negative parts of an element and its mod-
ulus) can be obtained in an ordered vector space if this space has the Riesz decom-
position property. We recall that an ordered vector space X is said to have the Riesz
decomposition property if for three positive elements x, u, v ∈ X such that x ≤ u + v
there exist x1, x2 ∈ X with x = x1 + x2 and 0 ≤ x1 ≤ u, 0 ≤ x2 ≤ v.

Proposition 3.2. Let X be an ordered normed space such that the positive cone X+
is closed and normal with the normal constant C. Then we have:

(i) C−1 ∥y − x∥ ≤ q([0, y], [0, x]), for all x, y ∈ X such that 0 ≤ x ≤ y.

(ii) If X has the Riesz decomposition property and 0 ≤ x ≤ y, then

q([0, y], [0, x]) ≤ C ∥y − x∥ .

Proof. (i) Let us remark first that, for every a ∈ [0, x], we have

0 ≤ y − x ≤ y − a⇒ ∥y − x∥ ≤ C ∥y − a∥ ⇒ ∥y − a∥ ≥ C−1 ∥y − x∥ .

Then

q([0, y], [0, x]) = sup
0≤b≤y

inf
0≤a≤x

∥b − a∥ ≥ inf
0≤a≤x

∥y − a∥ ≥ C−1 ∥y − x∥ .
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(ii) Assume now that X has the Riesz decomposition property. For every b ∈ [0, y],
we write

0 ≤ b ≤ y = (y − x) + x.

Since X has the Riesz decomposition property there exist b1, b2 ≥ 0 such that b =
b1 + b2 and 0 ≤ b1 ≤ y − x, 0 ≤ b2 ≤ x. Denote ab = b2. Then ab ∈ [0, x] and
0 ≤ b − ab = b − b2 = b1 ≤ y − x. Hence ∥b − ab∥ ≤ C ∥y − x∥ , from where we have

inf
0≤a≤x

∥b − a∥ ≤ C ∥y − x∥ .

Therefore
q([0, y], [0, x]) = sup

0≤b≤y
inf

0≤a≤x
∥b − a∥ ≤ C ∥y − x∥ .

Corollary 3.1. Let X be an ordered normed space such that the positive cone X+
is closed and normal with the normal constant C. If X has the Riesz decomposition
property, then for any x, y ∈ X such that 0 ≤ x ≤ y we have

C−1 ∥y − x∥ ≤ dPH([0, y], [0, x]) ≤ C ∥y − x∥ .

Let us remark that in the above proposition the cone X+ is not generating. (The
cone X+ is called generating if X = X+ − X+.) In order to obtain some estimation for
the PH-distance between the order intervals [0, x] and [0, y] we assume that 0 ≤ x ≤ y.
If x and y are two arbitrary positive elements of X, the following results of E. Yu.
Emel’yanov is known ([5], p. 67). In this case, in addition to Proposition 3.2, is
assumed that the space X is a Banach space and the cone X+ is generating.

Proposition 3.3. Let X be an ordered Banach space such that the positive cone X+ is
closed, normal and generating. If X has the Riesz decomposition property, then there
exists a constant K > 0 such that for every x, y ∈ X+ we have:

(i) q([0, x], [0, y]) ≤ K ∥x − y∥ .
(ii) dPH([0, x], [0, y]) ≤ K ∥x − y∥ .

The next proposition contains some characterizations of a normal cone with the
aid of the quasi-norm q defined in (9) or with the PH-distance associated to q. Before
giving the statement of the proposition we make some convention about the notation
used in it. If in formula (2) the set A = {a}, then we will write q(a, B) instead of
q({a}, B), and similarly q(A, b) if B = {b}.

Proposition 3.4. Let X be an ordered normed space such that the positive cone X+
is closed. The following conditions are equivalent.

(i) The positive cone X+ is normal with the normal constant C ≥ 1, that is,

0 ≤ x ≤ y⇒ ∥x∥ ≤ C ∥y∥ .
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(ii) There exists a constant C ≥ 1 such that for any x, y ≥ 0 we have

dPH([0, x], [0, y]) ≤ C max{∥x∥ , ∥y∥}.

(iii) The function X+ × X+ −→ R+ : (x, y) → dPH([0, x], [0, y]) is continuous at
(0, 0).

(iv) The function X+ −→ R+ : x→ q([0, x], 0) is continuous at 0.
(v) There exists a constant C ≥ 1 such that for every x ∈ X we have

∥x∥ ≤ C q(−x, X+) + (1 +C) q(x, X+).

Proof. (i)⇒ (ii) Let x, y ∈ X+. Then we have

q([0, x], [0, y]) = sup
0≤a≤x

inf
0≤b≤y

∥a − b∥ ≤ sup
0≤a≤x

∥a∥ ≤ C ∥x∥ .

Similarly, we get q([0, y], [0, x]) ≤ C ∥y∥ . Therefore it follows

dPH([0, x], [0, y]) ≤ C max{∥x∥ , ∥y∥}.

(ii)⇒ (iii) For every ε > 0 there exists δε =
ε

C
> 0 such that if max{∥x∥ , ∥y∥} < δε

we have dPH([0, x], [0, y]) < C · ε
C
= ε.

(iii) ⇒ (iv) Obvious, if we write the definition of continuity for the function
(x, 0) → dPH([0, x], 0) and remark that in this case dPH([0, x], 0) = q([0, x], 0) since
q(0, [0, x]) = 0.

(iv) ⇒ (i) Since the function X+ −→ R+ : x → q([0, x], 0) is continuous at 0, for
ε = 1 there exists δ > 0 such that

∥x∥ < δ⇒ q([0, x], 0) < 1.

Let 0 ≤ z ≤ x, with x , 0, and let η such that 0 < η < δ. Then 0 ≤ z
∥x∥η ≤

x
∥x∥η.

Since
∥∥∥∥∥ x
∥x∥η

∥∥∥∥∥ = η < δ we have

q
([

0,
x
∥x∥η

]
, 0

)
< 1,

that is

sup
{
∥b∥ : 0 ≤ b ≤ x

∥x∥η
}
< 1.

In particular, for b =
z
∥x∥ηwe have

∥∥∥∥∥ z
∥x∥η

∥∥∥∥∥ < 1, or ∥z∥ < 1
η
∥x∥ . Finally, for η→ δwe

obtain ∥z∥ < 1
δ
∥x∥ . This shows that the positive cone X+ is normal with the normal

constant C =
1
δ
.
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(i)⇒ (v) First we remark that

q(x, X+) = dist(x, X+) = inf{∥x − y∥ | y ≥ 0},

q(−x, X+) = dist(−x, X+) = inf{∥x + z∥ | z ≥ 0}.
Then there exist two sequences (yn) and (zn) in X+ such that

∥x − yn∥ < q(x, X+) +
1
n
, and ∥x + zn∥ < q(−x, X+) +

1
n
.

Therefore
∥yn + zn∥ < q(x, X+) + q(−x, X+) +

2
n
,

and

∥x∥ = ∥−x∥ ≤ ∥−x + yn∥ + ∥yn∥ < q(x, X+) +
1
n
+C ∥yn + zn∥ <

< q(x, X+) +
1
n
+C

(
q(x, X+) + q(−x, X+) +

2
n

)
<

< C q(−x, X+) + (1 +C) q(x, X+) +
1 + 2C

n
,

from where we obtain the required inequality.
(v)⇒ (i) Suppose that (v) holds and consider 0 ≤ x ≤ y. Then

q(−x, X+) ≤ inf
z≥0
∥x + z∥ ≤ ∥x + (y − x)∥ = ∥y∥ ,

and q(x, X+) = 0. By (v) we obtain ∥x∥ ≤ C ∥y∥ .

Remark 3.1. (a) The equivalence between the normality of the cone X+ and the
continuity of the function X+ × X+ −→ R+ : (x, y) → dPH([0, x], [0, y]) at (0, 0) is
affirmed in [4] without proof.

(b) The function q(−x, X+) = inf{∥x + z∥ | z ≥ 0} used in Proposition 3.4 is called
a half-norm. For the study of half-norms and their duals, see [11].
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Abstract In this paper we define three classes of new sequence spaces. We give some relations
related to these sequence spaces. We also introduce the concept of
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]
Z
−statistically

convergence and obtain some inclusion relations related to these new sequence spaces.

Keywords: σ -convergence, lacunary sequence, Zweier space, statistical convergence.
2010 MSC: 40C05, 40J05, 40A45.

1. INTRODUCTION

Let l∞, c and co be the linear spaces of bounded, convergent and convergent to
zero sequences with complex terms, respectively. Note that l∞, c and co are Banach
spaces with the sup-norm

∥(xk)∥∞ = sup
k
|xk| .

A sequence space X with a linear topology is called a K-space if each of maps
pi : X → C defined by pi (x) = xi is continuous for all i ∈ N. A K-space is called FK-
space if X is a complete linear metric space and a BK-space is a normed FK-space.

Shaefer [13] defined the σ − convergence as follows: Let σ be a one-to-one map-
ping of the set of positive integers into itself such that σm (n) = σ

(
σm−1 (n)

)
,m =

1, 2, 3, .... A continuous linear functional ϕ on l∞ (the set of all bounded sequences)
is said to be an invariant mean or a σ − mean if and only if

(i) ϕ ((xk)) ≥ 0 when the sequence (xk) has xk ≥ 0 for all k,

(ii) ϕ (e) = 1, where e = (1, 1, 1, ...)

and
(iii) ϕ

({
xσ(k)

})
= ϕ ({xk}) for all (xk) ∈ l∞.

For certain kinds of mappings σ, every invariant mean ϕ extends the limit func-
tional on the space c, the set of all convergent sequences, in the sense that ϕ (x) =
lim xk for all (xk) ∈ c. Consequently, c ⊂ Vσ, where Vσ is the set of bounded se-
quences all of whose σ − means are equal. It was natural to expect that invariant
mean must rise to a new type of convergence, namely, strong invariant convergence,

61
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just as almost convergence gives rise to concept of strong almost convergence and
this concept was introduced and discussed by Mursaleen [10] . If [Vσ] denotes the set
of all strongly σ − convergent sequences, then Mursaleen defined

[Vσ] =

x = (xk) ∈ l∞ : lim
m

1
m

m∑
k=1

∣∣∣xσk(n) − L
∣∣∣ = 0, uniformly in n

 .
[Vσ]o denotes the subset of these sequences in [Vσ] for which L = 0. Taking σ (n) =
n + 1, we obtain [Vσ] =

[̂
c
]

so that strong σ − convergence generalizes the concept
of strong almost convergence. Note that [Vσ] ⊂ Vσ ⊂ l∞.

By a lacunary sequence θ = (kr; r = 0, 1, 2, ...), where k0 = 0, we shall mean an
increasing sequence of non-negative integers hr := kr − kr−1 → ∞ as r → ∞.The
intervals determined by θ are denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
will be

denoted by qr. The space of lacunary strongly convergent sequence Nθ was defined
by Freedman et al. [3] as follows:

Nθ =

(xk) : lim
r→∞

1
hr

∑
k∈Ir

|xk − L| = 0 for some L

 .
The space Nθ is a BK-space with the norm

∥(xk)∥θ = sup
r

1
hr

∑
k∈Ir

|xk| .

No
θ denotes the subset of these sequences in Nθ for which L = 0 and

(
No
θ , ∥(xk)∥θ

)
is also a BK-space.

Now we define the following sequence spaces as follows:

[
Vθ
σ

]o
=

(xk) ∈ l∞ : lim
r

1
hr

∑
k∈Ir

∣∣∣xσk(n)

∣∣∣ = 0, uniformly in n

 ,
[
Vθ
σ

]
=

(xk) ∈ l∞ : lim
r

1
hr

∑
k∈Ir

∣∣∣xσk(n) − L
∣∣∣ = 0, uniformly in n, for some L


and [

Vθ
σ

]∞
=

(xk) ∈ l∞ : sup
r,n

1
hr

∑
k∈Ir

∣∣∣xσk(n)

∣∣∣ < ∞
 .

It is easy to see that the space
[
Vθ
σ

]
is a BK space with the norm

∥(xk)∥θ = sup
r,m

1
hr

∑
k∈Ir

∣∣∣xσk(n)

∣∣∣ .
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It is clear that if θ = (2r) then
[
Vθ
σ

]
-summability reduces to ordinary [Vσ]−summability.

For a sequence space µ, the matrix domain µA of an infinite matrix A is defined by

µA = {(xk) : Ax ∈ µ}

where A = (ank)∞n,k=1 is an infinite matrix of real or complex numbers and Ax =
(An (x))∞n=1 if An (x) =

∑
k ankxk converges for each n ∈ N.

In [11] , Şengönül introduced sequence spaces Zw and Zw
o as the set of all sequences

such that Z-transforms of them are in the spaces c and co, respectively, i.e.,

Zw = {(xk) : Z (xk) ∈ c} and Zw
o = {(xk) : Z (xk) ∈ co}

where Z = (znk)∞n,k=0 denotes by the matrix

znk =


1
2 , k ≤ n ≤ k + 1

0, otherwise
(n, k ∈ N) .

This matrix is called Zweier matrix. Note that Z is a regular matrix [8] .
The purpose of this paper is to introduce and study the concept of

[
Vθ
σ

]
Z
−strong

Zweier convergence and
[
S θ
σ

]
Z
−statistical Zweier convergence.

2.
[
Vθσ
]

Z
- STRONG ZWEIER CONVERGENCE

We introduce the sequence spaces
[
Vθ
σ

]o

Z
,
[
Vθ
σ

]
Z

and
[
Vθ
σ

]∞
Z

as the set of all se-

quences such that Z-transforms are in
[
Vθ
σ

]o
,
[
Vθ
σ

]
and

[
Vθ
σ

]∞
, respectively, that is

[
Vθ
σ

]o

Z
=

(xk) : lim
r

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)∣∣∣∣∣ = 0, uniformly in n

 ,
[
Vθ
σ

]
Z
=

(xk) : lim
r

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ = 0, uniformly in n, for some L


and [

Vθ
σ

]∞
Z
=

(xk) : sup
r,n

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)∣∣∣∣∣ < ∞


Define the sequence y =
(
yn

k

)
which will be frequently used throughout the paper,

as Z-transform of a sequence x = (xk) , i.e.,

yn
k =

1
2

(
xσk(n) + xσk−1(n)

)
(k ∈ N) (2.1)
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Theorem 2.1. The sequence spaces
[
Vθ
σ

]o

Z
,
[
Vθ
σ

]
Z

and
[
Vθ
σ

]∞
Z

are linear spaces over
the complex field C; moreover, these become BK-spaces with respect to the norm

∥(xk)∥[Vθ
σ]o

Z
= ∥(xk)∥[Vθ

σ]Z
= ∥(xk)∥[Vθ

σ]∞Z = ∥Z (xk)∥[Vθ
σ] .

Proof. The first part of the theorem is a routine verification and so we omit it. Since
the sequence spaces

[
Vθ
σ

]o

Z
and

[
Vθ
σ

]
Z

are BK-spaces with respect to the norm defined
(2.1) and the matrix Z = (znk)∞n,k=0 is normal, i.e., znk , 0 for 0 ≤ k ≤ n and znk = 0
for k > n for all n, k ∈ N and also from Theorem 4.3.2 of Wilansky [4] gives the fact
that

[
Vθ
σ

]o

Z
,
[
Vθ
σ

]
Z

and
[
Vθ
σ

]∞
Z

are the BK-spaces.

Theorem 2.2. The sequence spaces
[
Vθ
σ

]o

Z
,
[
Vθ
σ

]o

Z
and

[
Vθ
σ

]∞
Z

are linearly isomorphic
to the sequence spaces Nθ,No

θ and N∞θ , respectively.

Proof. We should show the existence of a linear bijection between the spaces
[
Vθ
σ

]o

Z

,
[
Vθ
σ

]o

Z
and

[
Vθ
σ

]∞
Z

and
[
Vθ
σ

]o
,
[
Vθ
σ

]
and

[
Vθ
σ

]∞
. Consider the transformation Z define,

with the notation (2.1), from
[
Vθ
σ

]o

Z
to No

θ by

Z :
[
Vθ
σ

]o

Z
→

[
Vθ
σ

]o

(xk)→ Z (xk) = (yk)

where the sequence (yk) is given by (2.1). The linearity of transformation Z is clear.
Further, it is trivial that (xk) = (0) whenever Z (xk) = 0 and hence Z is injective. Let(
yn

k

)
∈

[
Vθ
σ

]o
and the sequence (xk) by

xσk(n) = 2
k∑

i=0

(−1)i−k yn
i (i ∈ N)

Then
lim

r

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)∣∣∣∣∣
= lim

r

1
hr

∑
k∈Ir

∣∣∣∣∣∣∣12
2 k∑

i=0

(−1)i−k yn
i + 2

k−1∑
i=0

(−1)(i−1)−k yn
i


∣∣∣∣∣∣∣

= lim
r

1
hr

∑
k∈Ir

∣∣∣yn
k

∣∣∣
which says us that (xk) ∈

[
Vθ
σ

]o

Z
. Additionally, we observe that

∥(xk)∥[Vθ
σ]o

Z
= sup

r

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)∣∣∣∣∣
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= sup
r

1
hr

∑
k∈Ir

∣∣∣∣∣∣∣12
2 k∑

i=0

(−1)i−k yn
i + 2

k∑
i=0

(−1)(i−1)−k yn
i


∣∣∣∣∣∣∣

= sup
r

1
hr

∑
k∈Ir

∣∣∣ym
k

∣∣∣ = ∥(yk)∥[Vθ
σ]o .

Thus, we have (xk) ∈
[
Vθ
σ

]o
and consequently Z is surjective. Hence, Z is linear bi-

jection which therefore says us that the sequence spaces
[
Vθ
σ

]o

Z
and

[
Vθ
σ

]o
are linearly

isomorphic as was desired. The others can be proved similarly. This completes the
proof.

There is a relation between the sequence space
[
Vθ
σ

]
and the sequence space [Vσ]

of strongly invariant Cesaro summable sequences defined by

[Vσ] =

(xk) ∈ l∞ : lim
m

1
m

m∑
k=1

∣∣∣xσk(n) − L
∣∣∣ = 0, uniformly in n, for some L

 .
Clearly, in the special case θ = (2r), we have

[
Vθ
σ

]
= [Vσ] .

Also, we see that, there are strong connection between the sequence space
[
Vθ
σ

]
Z

and the sequence space [wσ]Z , which is defined by

[wσ]Z =

(xk) : lim
m

1
m

m∑
k=1

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ = 0, uniformly in n, for some L

 .
Clearly, in the special case θ = (2r) , we have

[
Vθ
σ

]
Z
= [wσ]Z .

Theorem 2.3. Let θ = (kr) be a lacunary sequence with lim inf qr > 1, then [wσ]Z ⊂[
Vθ
σ

]
Z
.

Proof. Let (xk) ∈ [wσ]Z . Suppose that lim infr qr > 1, then there exists a δ > 0 such
that qr ≥ 1 + δ for sufficiently large r, which implies

hr

kr
≥ δ

1 + δ
Then for every ε > 0 and for sufficiently large r, we have

1
kr

kr∑
k=1

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ 1
kr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
≥ δ

1 + δ
.

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ .
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This completes the proof.

Theorem 2.4. Let θ = (kr) be lacunary sequence with lim supr qr < ∞, then
[
Vθ
σ

]
Z
⊂

[wσ]Z .

Proof. If lim supr qr < ∞, then there exists B > 0 such that qr < C for all r ≥ 1. Let
x = (xk) ∈

[
Vθ
σ

]
Z

and ε > 0.There exists B > 0 such that for every j ≥ B

A j =
1
h j

∑
k∈I j

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ < ε.
we can also find K > 0 such that A j < K for all j = 1, 2, 3, .... Now let m be any
integer with kr−1 < m < kr,where r ≥ B. Then

1
m

m∑
k=1

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≤ 1
kr−1

kr∑
k=1

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
=

1
kr−1

∑
k∈I1

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ + 1
kr−1

∑
k∈I2

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
+... +

1
kr−1

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
=

k1

kr−1k1

∑
k∈I1

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ + k2 − k1

kr−1(k2 − k1)

∑
k∈I2

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
+... +

kB − kB−1

kr−1(kB − kB−1)

∑
k∈IB

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
+... +

kr − kr−1

kr−1(kr − kr−1)

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
=

k1

kr−1
A1 +

k2 − k1

kr−1
A2 + ... +

kB − kB−1

kr−1
AB + ... +

kr − kr−1

kr−1
Ar

≤
sup

j≥1
A j

 kB

kr−1
+

sup
j≥B

A j

 kr − kB

kr−1

≤ K.
kB

kr−1
+ εC.

This completes the proof.

Corollary 2.1. Let θ = (kr) be lacunary sequence 1 < lim infr qr ≤ lim supr qr < ∞,
then

[
Vθ
σ

]
Z
= [wσ]Z .

Proof. The result follows from Theorem 2.3 and Theorem 2.4.
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3.
[
Sσσ
]

Z
-STATISTICAL ZWEIER CONVERGENCE

In this section we introduce the concept of
[
S θ
σ

]
Z
-statistical convergence and give

some inclusion relations related to this sequence space.
The notion on statistical convergence was introduced by Fast [6] and studied by

various authors (see [1 − 2] , [5] , [7] , [9] , [11] , [14]) .

Definition 3.1. [6] A sequence (xk) is said to be statistically convergent to a number
L if for every ε > 0,

lim
m

1
m
|{k ≤ m : |xk − L| ≥ ε}| = 0.

In this case we write

S − lim xk = L or xk → L (S ) and S = {(xk) : for some L, S − lim xk = L} .
Definition 3.2. [9] A sequence (xk) is said to be lacunary-statistically convergent to
the number L if for every ε > 0,

lim
r

1
hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0.

In this case we write S θ − lim xk = L or xk → l
(
S θ

)
and

S =
{
(xk) : for some L, S θ − lim xk = L

}
.

Definition 3.3. [11] A sequence (xk) is said to be S θ
σ−statisticaly convergent to L if

for every ε > 0,

lim
r

1
hr

∣∣∣∣{k ∈ Ir :
∣∣∣xσk(n) − L

∣∣∣ ≥ ε}∣∣∣∣ = 0, uniformly in n.

In this case we write S θ
σ − lim xk = L or xk → L

(
S θ
σ

)
and

S θ
σ =

{
(xk) : for some l, S θ

σ − lim x = L
}
.

Definition 3.4. A sequence (xk) is said to be S Z-statistically convergent to the number
L if for every ε > 0,

lim
m

1
m

∣∣∣∣∣∣
{

k ≤ m :
∣∣∣∣∣12 (xk + xk−1) − L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0.

In this case we write [S σ]Z − lim xk = L or xk → L ([S σ]Z) and
[S σ]Z = {(xk) : for some L, [S σ]Z − lim x = L} .

Definition 3.5. A sequence (xk) is said to be
[
S θ
σ

]
Z
-statistically convergent to the

number L if for every ε > 0,

lim
r

1
hr

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ = 0, uniformly in n.
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In this case we write
[
S θ
σ

]
Z
− lim xk = L or xk → L

([
S θ
σ

]
Z

)
and[

S θ
σ

]
Z
=

{
x = (xk) : for some L,

[
S θ
σ

]
Z
− lim x = L

}
.

In the cases θ = (2r) we shall write [S σ]Z instead of
[
S θ
σ

]
Z

and θ = (2r) , σ (n) =

n + 1; we shall write S Z instead of
[
S θ
σ

]
Z
, respectively.

Theorem 3.1. Let θ = (kr) be a lacunary sequence. Then
[
Vθ
σ

]
Z
⊂

[
S θ
σ

]
Z
.

Proof. Let (xk) ∈
[
Vθ
σ

]
Z
. Then

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
=

1
hr

∑
k∈Ir∣∣∣∣∣ 1

2

(
x
σk (n)+x

σk−1(n)

)
−L

∣∣∣∣∣≥ε

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
+

1
hr

∑
k∈Ir∣∣∣∣∣ 1

2

(
x
σk(n)+x

σk−1(n)

)
−L

∣∣∣∣∣<ε

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣

≥ 1
hr

∑
k∈Ir∣∣∣∣∣ 1

2

(
x
σk (n)+x

σk−1(n)

)
−L

∣∣∣∣∣≥ε

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣

≥ 1
hr

∑
k∈In

ε ≥ ε

hr

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ .

It follows that xk → l
([

S θ
σ

]
Z

)
. This completes the proof.

Theorem 3.2. Let θ = (kr) be a lacunary sequence. If x = (xk) ∈ l∞ and xk →
L
([

Vθ
σ

]
Z

)
, then xk → L

([
S θ
σ

]
Z

)
.

Proof. Suppose that (xk) ∈ l∞ and xk → L
([

Vθ
σ

]
Z

)
. Since sup

∣∣∣∣ 1
2

(
xσk(n) + xσk−1(n)

)∣∣∣∣ <
∞, there is a constant A > 0 such that

∣∣∣∣1
2

(
xσk(n) + xσk−1(n)

)∣∣∣∣ < A for all k, n ∈ N.
Therefore we have, for ε > 0

1
hr

∑
k∈Ir

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
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=
1
hr

∑
k∈Ir∣∣∣∣∣ 1

2

(
x
σk (n)+x

σk−1(n)

)
−L

∣∣∣∣∣≥ε

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣
+

1
hr

∑
k∈Ir∣∣∣∣∣ 1

2

(
x
σk(n)+x

σk−1(n)

)
−L

∣∣∣∣∣<ε

∣∣∣∣∣12 (
xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣

≤ A
hr

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ + 1

hr

∑
k∈Ir

ε

=
A
hr

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ + ε.

Taking limit as ε→ 0, the desired result follows.

Corollary 3.1. Let θ = (kr) be a lacunary sequence. Then l∞ ∩
[
Vθ
σ

]
Z
= l∞ ∩

[
S θ
σ

]
Z
.

Proof. It follows from Theorem 3.1. and Theorem 3.2.

Theorem 3.3. Let θ = (kr) be a lacunary sequence. Then [S σ]Z ⊂
[
S θ
σ

]
Z
.

Proof. Given ε > 0, we have∣∣∣∣∣∣
{

k ≤ m :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ ⊃

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ .

Therefore

1
m

∣∣∣∣∣∣
{

k ≤ m :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≥ 1
m

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− L

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣

≥ hr

m
.

1
hr

∣∣∣∣∣∣
{

k ∈ Ir :
∣∣∣∣∣12 (

xσk(n) + xσk−1(n)

)
− l

∣∣∣∣∣ ≥ ε}
∣∣∣∣∣∣ .

Taking limit as m → ∞ uniformly in n, we get that xk → l
([

S θ
σ

]
Z

)
.This completes

the proof.
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Abstract This paper presents the homogenization of the wave problem for a reticulated structure
composed of thin slashes in two dimensions ox1 and ox2. The result of this paper contin-
ues the study of the homogenization of the wave problem for such a periodic structure,
started in [2]. In this article homogenization is done after the small thickness of the bars
and the result is a two-dimensional problem of wave on a fixed domain.

Keywords: homogenization , ε - periodicity, reticulated structure.
2010 MSC: 35J20.

1. INTRODUCTION

Our paper continues the study of asymptotic behavior of oblique plates at free
vibrations. The structure for which we study the wave problem is a three-dimensional
reticulated structure where the ε periodicity goes in two directions. The material of
the structure has small thickness, namely bars – distributed ε - periodically - which
make up have thickness εδ, except in edge thickness εδ/2. Thickness or height of
the structure is considered small and denoted by e. The perforated domain that we
study the waves problem depends on three small parameters ε, δ and e. In our case
the period ε and the thickness e, we take them comparable.

This article contains five sections. The first section is a short introduction. In the
second section we present the geometry of the domain. In the third section we present
the problem of wave on reticulated structure previously considered, and the section
four is the main result obtained in article [2] which means homogenization after ε -
the period of the wave problem and obtain a two-dimensional boundary problems.

Section five is novel in relation to article [2] and consists in homogenization of
wave problem obtained in [2] after δ - thickness of the material from the cell period
that is covered the domain ω from R2. The result is obtained by dilatation method
introduced in [1], while the homogenized coefficients are those obtained in [3].

The obtained limit problem is a two-dimensional problem of waves, namely the
oscillations problem for the rectangular membrane to cover the whole structure ( the
domain ω of the plan), including boundary. Note, homogenized coefficients depend
on the characteristic constants of the material.

71
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Fig. 1. The periodicity cell Yδ.

2. THE GEOMETRY OF THE DOMAIN

Let ω = (0, L1)× (0, L2) ⊂ R2 and Ωe = ω×
(
− e

2 ,
e
2

)
, and ω is periodically covered

with the reference cell Y = (0, 1) × (0, 1). Mathematically means ω = ω ∩ εY . We
consider the periodicity cell Yδ = Hδ ∪ Vδ ∪ O1

δ ∪ O2
δ and represented in figure 1,

where Yδ is occupied by material of cell Y, Tδ = Y\Yδ called the hole and consider
ωεδ perforated domain from ω after distribution of the periodicity cell Yδ with period
ε after two dimensions ox1 and ox2.

Consider the three-dimensional perforated domain Ωe
εδ = ωεδ ×

(
− e

2 ,
e
2

)
which is

a reticulated structure type plates that depends on three small parameters: ε period,
e the plate thickness and δ the thickness of the slashes which forms the covers. The
domain Ωe

εδ is represented in figure 2.

3. THE STATEMENT OF THE WAVE PROBLEM

We are in the case e = kε, k a strictly positive constant. In this situation the period
ε and the thickness of structure e is the same power.

We have the structure Ωk
εδ instead of Ωe

εδ. We introduce the following notations:
Γkε

0 = ∂ω ×
{
+ kε

2

}
which represents the outer border of the top cover in which is

embedded crosslinked structureΩk
εδ; γ

k
εδ = ∂Ω

k
εδ\Γkε

0 = ∂T k
εδ∪Γk±

εδ ∪
(
∂ω ×

(
− kε

2 ,
kε
2

))
,

where T k
εδ = (ω ∩ εTδ) ×

(
− kε

2 ,
kε
2

)
are holes in Ωk

εδ, Γ
k±
εδ = ωεδ ×

{
± kε

2

}
are the two

covers (upper and lower) of the structure Ωk
εδ, ∂ω ×

(
− kε

2 ,
kε
2

)
is the lateral border of

the structure.
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Fig. 2. Reticulated structure Ωe
εδ .

The wave problem on Ωk
εδ is

vεδ
′′

k − ∂
∂xi

(
ai j

∂uεδk
∂x j

)
= 0 in Ωk

εδ × (0, T )

ai j
∂uεδk
∂x j

ni = 0 on γk
εδ × (0,T )

uεδk = 0 on Γkε
0 × (0, T )

uεδk (0) = u0
kεδ in Ωk

εδ

uεδ
′

k (0) = u1
kεδ in Ωk

εδ.

(1)

The coefficients
(
ai j

)
i, j=1,3

are elliptical and symmetric, that is ∃ α > 0 a constant

so that ai jξiξ j ≥ αξiξi, ∀ξ ∈ R3 and ai j = a ji.
We make change in the variable and the function:

z1 = x1, z2 = x2, z3 =
x3

kε
, z3 ∈

(
−1

2
,

1
2

)
;

uεδk (x1, x2, x3, t) = vkεδ (z1, z2, z3, t) .

The problem (1) becomes:
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v′′kεδ + Akεδvkεδ = 0 in Ωεδ × (0,T )(
aiβ

∂vkεδ
∂zβ
+ (kε)−1 ai3

∂vkεδ
∂z3

)
ni = 0 on Γεδ × (0,T )

vkεδ = 0 on γ0 × (0,T )
vkεδ (0) = v0

εδ in Ωεδ
v′kεδ (0) = v1

εδ in Ωεδ.

(2)

where: Ωεδ = ωεδ ×
(
− 1

2 ,
1
2

)
, Γεδ = ∂Ωεδ\γ0 and γ0 = ∂ω ×

{
+1

2

}
, and the covers

are Γ±εδ = ωεδ ×
{
±1

2

}
.

The elliptical operator Akεδ is:

Akεδ = − ∂
∂zα

(
aαβ ∂

∂zβ

)
−(kε)−1 ∂

∂zα

(
aα3

∂
∂z3

)
−(kε)−1 ∂

∂z3

(
a3β

∂
∂zβ

)
−(kε)−2 ∂

∂z3

(
a33

∂
∂z3

)
.

Here we introduce the space Vεδ, and the norm ∥·∥εδ on the space Vεδ.

4. THE HOMOGENIZATION OF THE WAVE
PROBLEM AFTER ε → 0

In [2] we obtained the following result:

Theorem 4.1. We consider that the initial data (2) satisfies conditions:

a)
∥∥∥v0
εδ

∥∥∥
εδ
≤ cδ and ṽ0

εδ −→ε v0
δ weak in H1

0 (ω)

b)
∥∥∥v1
εδ

∥∥∥
L2(ωεδ)

≤ cδ and ṽ1
εδ −→ε v1

δ weak in L2 (ω)

Then there is an extending operator Pεδ ∈ L
(
L∞

(
0,T ; H1

0 (ω)
)

; L∞
(
0,T ; L2 (ω)

))
so that we have the convergences:

c)Pεδvkεδ −→
ε

vkδ weak * L∞
(
0, T ; H1

0 (ω)
)

d)Pεδv′kεδ −→ε v′kδ weak * L∞
(
0, T ; L2 (ω)

)
where vkδ satisfy the limit problem:

(meas Yδ) v′′kδ − qδkαβ
∂2vkδ
∂zα∂zβ

= 0, (0,T ) × Ω
vkδ = 0 (0, T ) × δω

vkδ (0) =
v0
δ

meas Yδ
in ω

v′kδ (0) =
v1,∗
δ

meas Yδ
in ω

(3)

where:
v1,∗
δ =

∫ 1
2

− 1
2

v1
δdz3, and the coefficients qδkαβ are given by:

qδkαβ =
∫ 1

2

− 1
2

∫
Yδ

(
aγβ

∂wδk
α

∂yγ
+ k−1a3β

∂wδk
α

∂y3

)
dy, α, β = 1, 2
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where the correction functions wδk
α satisfy the problem:

− ∂

∂yβ

(
aγβ

∂wδk
α

∂yγ

)
− k−1 ∂

∂yβ

(
a3β

∂wδk
α

∂y3

)
− k−1 ∂

∂y3

(
aγ3

∂wδk
α

∂yγ

)
− k−2 ∂

∂y3

(
a33

∂wδk
α

∂y3

)
= 0

(
aγ j

∂wδk
α

∂yγ
+ k−1a3 j

∂wδk
α

∂y3

)
n j = 0

on [
∂Tδ ×

(
−1

2
,

1
2

)]
∪

[
Yδ ×

{
±1

2

}]
5. THE HOMOGENIZATION OF THE WAVE

PROBLEM AFTER δ → 0
Theorem 5.1. Assuming the hypothesis of the above theorem satisfied, we have:

a)δ−1v0
δ −→δ v0 weak in H1

0 (ω) ,

b)δ−1v1,∗
δ −→δ v1 weak in L2 (ω) ,

respective
c)vkδ

v−→
δ

weak * L∞
(
0, T ; H1

0 (ω)
)
,

d)v′kδ
v−→
δ

′
weak * L∞

(
0,T ; L2 (ω)

)
,

where vδ satisfies the boundary problem:(
2 + 2

√
2
)

v′′ − q∗αβ
∂2v

∂zα∂zβ
= 0 in ω × (0, T )

v = 0 on ∂ω × (0, T )
v (0) = v0

2+2
√

2 in ω

v′ (0) = v1

2+2
√

2
in ω.

(4)

The coefficients q∗αβ are the main results of the article [3] and have the form

q∗11 = D
[

1
A22
+

√
2

a11−a13−a31+a33
+

√
2

a11+a22+a33+a13+a22+a31

]
q∗22 = D

[
1

A11
+

√
2

a11−a13−a31+a33
+

√
2

a11+a22+a33+a13+a22+a31

]
q∗12 = q∗21 =

√
2D

[
1

a11−a13−a31+a33
− 1

a11+2a22+a33+a13+a31

]
.

(5)

where:

D = det A,
(
Ai j

)
i, j
=

((
ai j

)
i, j

)−1
, and A11, A22 are algebraic complements.

Proof. Multiply the first equation of the system (3) with v′kδ and integrate by parts on
ω × (0,T )
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1
2

∫ T

0

d
dt

[∫
ω

(meas Yδ)
(
v′kδ

)2
dz

]
dt +

1
2

∫ T

0

d
dt

[∫
ω

qδkαβ
∂vkδ

∂zα

∂vkδ

∂zβ
dz

]
dt = 0. (6)

Noting the energy of the system (3) by

Eδ (t) =
1
2

∫
ω

(meas Yδ)
(
v′kδ

)2
dz +

1
2

∫
ω

qδkαβ
∂vkδ

∂zα

∂vkδ

∂zβ
dz. (7)

From the relation (6) obtain

Eδ (T ) = Eδ (0)

which implies based on conservation of energy

Eδ (t) ≤ Eδ (0) =
1

2 (meas Yδ)

∥∥∥v1,∗
δ

∥∥∥2
L2(ω) +

1
2 (meas Yδ)2

∫
ω

qδkαβ
∂v0

kδ

∂zα

∂v0
kδ

∂zβ
dz

and applying Holder’s inequality we have

Eδ (t) ≤ 1
2 (meas Yδ)

∥∥∥v1,∗
δ

∥∥∥2
L2(ω) +

1
2 (meas Yδ)2 qδkαβ

∥∥∥∥∥∥∥∂v0
δ

∂zα

∥∥∥∥∥∥∥
L2(ω)

·
∥∥∥∥∥∥∥∂v0

δ

∂zβ

∥∥∥∥∥∥∥
L2(ω)

. (8)

From
∥∥∥v0
εδ

∥∥∥
εδ
≤ cδ and ṽ0

εδ −→ε v0
δ weak in H1

0 (Ω) we have∥∥∥∥∥∥∥∂v0
δ

∂zα

∥∥∥∥∥∥∥
L2(ω)

≤ cδ, (9)

and from
∥∥∥v1
εδ

∥∥∥
L2(Ωεδ)

≤ cδ and ṽ1
εδ −→ε v1

δ weak in L2 (Ω) we have∥∥∥v1
δ

∥∥∥
L2(Ω) ≤ cδ =⇒

∥∥∥v1,∗
δ

∥∥∥
L2(ω) ≤ cδ. (10)

Using the estimations (9) and (10) in (8) we find

Eδ (t) ≤ cδ

2 + 2
√

2
+

δ−1qδkαβ(
2 + 2

√
2
)2 cδ, (11)

and using the method of dilatation have

δ−1qδkαβ → q∗αβ
c1 ≤ δ−1qδkαβ ≤ c2

(12)

where c1 and c2 are independent of δ.
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From the second equation of the relation (12) obtain in the estimation (11)

Eδ (t) ≤ cδ

and considering the energy expression we obtain

δ−1 (meas Yδ)
∥∥∥v′kδ

∥∥∥2
L2(ω) + δ

−1qδkαβ

∫
ω

∂vkδ

∂zα

∂vkδ

∂zβ
dz ≤ c. (13)

From the first equation of the relation (12)

δ−1qδkαβ = q∗αβ + θ
δk
αβ (14)

with

θδkαβ −−−→δ→0
0.

We choose a δ small enough

θδkαβ > −
1
2

q∗αβ

and considering (14) and the elliptic coefficients q∗αβ, the estimation (13) becomes(
2 + 2

√
2
)

(1 − δ)
∥∥∥v′kδ

∥∥∥2
L2(ω) +

c0

2
∥vkδ∥2H1(ω) ≤ c

from where
∥vkδ∥H1(ω) ≤ c∥∥∥v′kδ

∥∥∥
L2(ω) ≤ c

estimates that provides convergences (c) and (d).
From

∥∥∥v0
εδ

∥∥∥
εδ
≤ cδ and ṽ0

εδ −→ε v0
δ weak in H1

0 (Ω) we have estimation∥∥∥v0
δ

∥∥∥
H1(ω) ≤ cδ

which together with (10) give us convergences (a) and (b).
Now, we establish the limit problem.
Multiply the first equation of the system (3) with ϕw, ϕ ∈ D (ω), w ∈ D (0, T ).

Integrate by parts on ω × (0, T ), pass to the limit as δ → 0 with (c) and the first
equation of the relation (12), and then integrate by parts∫ T

0

∫
ω

(
2 + 2

√
2
)

v′′ϕwdzdt −
∫ T

0

∫
ω

q∗αβ
∂2v

∂zα∂zβ
dzdt = 0.

Meaning the first equation of system (4):

(
2 + 2

√
2
)

v′′ − q∗αβ
∂2v

∂zα∂zβ
= 0 in ω × (0,T ) .
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Passing to the limit in the third equation and the fourth equation of the system (3),
with the convergences (a), (b), (c) and (d) we obtain the initial conditions.
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Abstract In this paper we prove some existence results for L∞-solutions to a semilinear evolution
system of the form :

du = (Au + F (u, v)) dt + d f , t ∈ [0,+∞[
dv = (Bv +G (u, v)) dt + dg, t ∈ [0,+∞[
u (0) = u0

v (0) = v0.

where A : D (A) ⊆ X → X generates a C0-semigroup of contractions {S A (t) ; t ≥ 0}
in a real Banach space (X, ∥ · ∥X), B : D(B) ⊆ Y → Y generates a C0-semigroup of
contractions {S B (t) ; t ≥ 0} in a real Banach space (Y, ∥ · ∥Y ), F : X × Y → X, G :
X × Y → Y , f ∈ BV ([0,+∞[ ; X), g ∈ BV ([0,+∞[ ; Y), u0 ∈ X and v0 ∈ Y . The
proofs are essentially based on an interplay between compactness and Lipschitz type
arguments.

Keywords: reaction-diffusion system, compact semigroup, function of bounded variation.
2010 MSC: Primary 47J35, 35K37, 35K45, Secondary 47D03.

1. INTRODUCTION

The purpose of this paper is to prove some local and global existence results con-
cerning L∞-solutions to semilinear evolution system of the type

du = (Au + F (u, v)) dt + d f , t ∈ [0,+∞[
dv = (Bv +G (u, v)) dt + dg, t ∈ [0,+∞[
u (0) = u0
v (0) = v0,

(1)

where A : D (A) ⊆ X → X generates a C0-semigroup of contractions {S A (t) ; t ≥ 0}
in the real Banach space (X, ∥·∥X), B : D (B) ⊆ Y → Y generates a C0-semigroup
of contractions {S B (t) ; t ≥ 0} in the real Banach space (Y, ∥·∥Y ), F : X × Y → X,
G : X × Y → Y , f ∈ BV ([0,+∞[ ; X), g ∈ BV ([0,+∞[ ; Y), u0 ∈ X and v0 ∈ Y . An
example of a reaction-diffusion system with measures, in which the Dirac measure is
concentrated at point, is also included. A special case is that when A ≡ 0, it is the
case when the diffusion process in the first equation is absent. In this situation we
shall say that the corresponding system for (1) is semidiffusive.
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Recall that Ahmed [1]-[4] had considered the question of existence of measure val-
ued solutions for semilinear systems, but not necessarily of reaction-diffusion type, in
the case when A, B generates analytic semigroups. Also, Ahmed [1]-[4] had consid-
ered some applications of the existence results in optimal control theory and minimax
problems for certain dynamical systems.

Bidaut-Véron, Garcı́a-Huidobro, Yarur [11] studied a semilinear parabolic system
with absorption terms in a bounded domain of Rn, with Dirichlet or Neumann condi-
tion, and proved the existence and uniqueness of the Cauchy problem when the initial
data are L1-function or bounded measures.

An abstract reaction-diffusion system with measures has been considered in Amann,
Quittner [5], in the case when A, B generates analytic semigroups. For weakly or
strongly coupled parabolic systems, they have defined the solution using the tech-
nique of interpolation-extrapolation spaces and the Riesz representation theorem for
a bounded Banach-space-valued Radon measure, obtained an existence theorem for
global solutions and show that the solution depends Lipschitz continuously on the
data. In Amann, Quittner [6] these results were applied in the optimal control theory
for parabolic systems involving measures .

In the case when f ≡ g ≡ 0 and A, B are m-dissipative (possible nonlinear) oper-
ators, the problem (1) was recently studied by Burlică, Roşu [12]. For de case when
f ≡ g ≡ 0, A = ∆φ, B = ∆ψ (∆ is the Laplace operator), where φ, ψ : R → R
are continuous, nondecreasing functions with φ (0) = 0, ψ (0) = 0 and F, G satisfy
various conditions, the corresponding parabolic reaction-diffusion system has been
considered by Dı́az, Vrabie [18]. Moreover, Dı́az, Vrabie [18], [25] follow a different
strategy, based upon the compactness of the generalized Green operator associated to
the nonlinear diffusion equation in [17]. After that, a similar strategy was used in
many papers. We note also that a similar strategy was used in Burlică, Roşu [12] and
is used in our article as well.

For φ (u) = au, ψ (v) = bv, where a > 0, b > 0 (a special case for our system (1)),
Kouachi [22] obtained the existence of global solutions to a reaction-diffusion sys-
tems, with Neumann condition on the boundary, via a Lyapunov functional. Badraoui
[7] proved existence of global solutions for the thermal-diffusive combustion sys-
tem on unbounded domains, using an abstract theory with analytic semigroups. In
Badraoui [8] the asymptotic behavior of solutions to a reaction-diffusion system with
unbounded domains was studied.

We notice that special reaction-diffusion systems, not necessarily with measures,
arise as mathematical models in Climatology (see Dı́az, Muñoz, Schiavi [14], Dı́az,
Schiavi [16]), Medicine (see Dı́az, Tello [15], Maddalena [23]), Biology, Population
Dynamics, and the list can be continued.

The paper is divided into four sections, the second section being concerned with
the introduction of the L∞-solution for linear Cauchy problem involving measures
and such basic properties of the L∞-solution as regularity and compactness in
Lp (a, b; X). The results are taken up from Vrabie [26], [27]. Also, in the second sec-
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tion we introduce the L∞-solution and present some existence results for a semillinear
Cauchy problem involving measures. The results are from Grosu [19], [21]. Section
3 contains the statement and proof of our main results. Section 4 presents a significant
example of a reaction-diffusion system in which the Dirac measure is concentrated at
point.

2. PRELIMINARIES

We assume familiarity with the basic concepts and results concerning C0 -semigroups
and infinite-dimensional vector-valued functions of bounded variation and we refer
to Barbu and Precupanu [10], Pazy [24] and Vrabie [27] for details. First, we recall
for easy reference some results established in Vrabie [26], [27] and Grosu [19], [21].

Let P ([a, b]) be the set of all partitions of the interval [a, b]. We recall that, if
g : [a, b] → X then, for each P ∈ P ([a, b]) , P : a = t0 < t1 < ... < tk = b , the
number

VarP (g, [a, b]) =
k−1∑
i=0

∥g (ti+1) − g (ti)∥

is called the variation of the function g relatively to the partition P. If

sup
P∈P([a,b])

VarP (g, [a, b]) < +∞,

then g is said to be of bounded variation, and the number

Var (g, [a, b]) = sup
P∈P([a,b])

VarP (g, [a, b])

is called the variation of the function g on the interval [a, b]. We denote by
BV ([a, b] ; X) the vector space of all function of bounded variation from [a, b] to X.
Also, we denote by BV (R; X) the space of all functions g : R→ X whose restrictions
to any interval [a, b] belong to BV ([a, b] ; X).

Proposition 2.1. If g ∈ BV ([a, b] ; X), then g is piecewise continuous on [a, b], i.e.
there exists an at most countable subset E of [a, b], such that g is continuous on
[a, b] \ E and, at each t ∈ E ∩ [a, b[ and each s ∈ E ∩ ]a, b] , there exists g (t + 0) and
g(s − 0).

See Vrabie [27], Proposition 1.4.2, p. 14.

Definition 2.1. A family G in BV ([a, b] ; X) is of equibounded variation on [a, b] if
there exists mG > 0 such that, for each g ∈ G, we have

Var (g, [a, b]) ≤ mG.

However, for simplicity reasons, we preferred to consider only C0-semigroups of
contractions. Note that all the results which will follow hold true also for the general
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case of C0-semigroups not necessarily of contractions. Let g ∈ BV ([a, b] ; X) and
let {S (t) ; t ≥ 0} be a C0-semigroup of contractions in a Banach space X such that the
semigroup is continuous from ]0,∞[ to L(X) in the uniform operator topology. Then,
for each t ∈ ]a, b], there exists a unique element

∫ t
a S (t − s) dg (s) ∈ X such that∫ t

a
S (t − s) dg (s) = lim

µ(P)↓0

k−1∑
i=0

S (t − τi) (g (ti+1) − g (ti))

and it is called the Riemann-Stieltjes integral on [a, b] of the operator-valued function
τ 7→ S (t − τ) with respect to the vector-valued function g. See Vrabie [27], p. 205,
p. 206 and Theorem 9.1.1, p. 208.

Remark 2.1. Since {S (t) ; t ≥ 0} is a C0-semigroup of contractions, whenever∫ t
a S (t − s) dg (s) ∈ X, we have∥∥∥∥∥∥

∫ t

a
S (t − s) dg (s)

∥∥∥∥∥∥ ≤ Var (g, [a, t]) .

for each t ∈ ]a, b].

Remark 2.2. For each c ∈ [a, b[, and each δ > 0 such that c + δ ∈ [a, b], and each
t ∈ [c + δ, b], we have∫ c+δ

c
S (t − s) dg (s) =

∫ c+δ

c
χ]c,c+δ]S (t − s) dg (s) + S (t − c) (g (c + 0) − g (c)) ,

where χ]c,c+δ] denotes the characteristic function of ]c, c + δ].
See Vrabie [27], Remark 9.1.1, p. 207.

Next, let us consider the nonhomogeneous Cauchy problem{
du = (Au) dt + dg
u (a) = ξ, (2)

where A : D (A) ⊆ X → X generates a C0-semigroup of contractions {S A (t) ; t ≥ 0}
in the real Banach space X, ξ ∈ X and g ∈ BV ([a, b] ; X).

Definition 2.2. Let A be the infinitesimal generator of a C0-semigroup of contrac-
tions {S (t) ; t ≥ 0}, which is continuous from ]0,∞[ to L(X) in the uniform operator
topology. The function u : [a, b]→ X given by

u (t) = S (t − a) ξ +
∫ t

a
S (t − s) dg (s) (3)

for each t ∈ [a, b] is called an L∞-solution on [a, b] of the problem (2).
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Remark 2.3. We notice that each L∞-solution u satisfies

∥u (t)∥ ≤ ∥ξ∥ + Var (g, [a, b]) ,

for each t ∈ [a, b].

Theorem 2.1. (Regularity of L∞-solutions) Let g ∈ BV ([a, b] ; X) and (a, ξ) ∈ R ×
X. Let A be the infinitesimal generator of a C0-semigroup of contractions which is
continuous from ]0,∞[ to L (X) in the uniform operator topology and let u be the
L∞-solution of (2) corresponding to ξ and g. Then, for each t ∈ [a, b[ and each
s ∈ ]a, b], there exists u (t + 0) and u(s − 0) and{

u (t + 0) − u (t) = g (t + 0) − g (t)
u (s) − u(s − 0) = g (s) − g(s − 0). (4)

So, u is continuous from the right (left) at t ∈ [a, b[ (t ∈ ]a, b]) if and only if g is
continuous from the right (left) at t. In particular, u is continuous at any point at
which g is continuous and thus u is piecewise continuous on [a, b].

See Vrabie [27], Theorem 9.2.1, p. 210.

In that follows, we assume that A is the infinitesimal generator of a C0-semigroup
of contractions which is continuous from ]0,∞[ to L (X) in the uniform operator
topology and then, for each (ξ, g) ∈ X × BV ([a, b] ; X), the Cauchy problem (2)
has a unique L∞-solution u. Furthermore, for p ∈ [1,+∞[, we denote by Q : X ×
BV ([a, b] ; X)→ Lp (a, b; X),

Q (ξ, g) = u

the L∞-solution operator.

Theorem 2.2. Let A : D (A) ⊆ X → X be the infinitesimal generator of a compact
C0-semigroup of contractions {S A (t) ; t ≥ 0}, let D be a bounded subset in X and G

a subset in BV ([a, b] ; X) of equibounded variation. Then, for each p ∈ [1,+∞[,
Q(D,G) = {Q (ξ, g) ; (ξ, g) ∈ D × G} is relatively compact subset in Lp (a, b; X).

See Vrabie [27], Theorem 9.4.2, p. 219.

In order to formulate our existence results, we introduce the notion of L∞-solution
of a semilinear equation involving measures, as in Grosu [20]. Next, let A be as above,
let D ⊂ R × X be a nonempty and open subset and f : D→ X a continuous function.
Let g ∈ BV (R; X) and (a, ξ) ∈ R × X. Let us consider the Cauchy problem :{

du = (Au + f (t, u)) dt + dg
u (a) = ξ (5)

Definition 2.3. A function u : [a, c] → X is called an L∞-solution on [a, c] of the
problem (5) if:

(i) for each t ∈ [a, c[ there exists u (t + 0) ;
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(ii) for each t ∈ [a, c[, (t, u (t + 0)) ∈ D;

(iii) t → f (t, u (t + 0)) is in L1 (a, c; X) and u is anL∞-solution on [a, c] in the sense
of Definition 2.1 for the following Cauchy problem{

du = (Au) dt + dh
u (a) = ξ,

where h : [a, c]→ X is defined by

h (t) =
∫ t

a
f (s, u (s + 0)) ds + g (t) , (6)

for all t ∈ [a, c].

We define the L∞-solution of (1) only on a semi-open interval [a, c[ by requiring
(i), (ii), (iii) as above, except for the condition ”t → f (t, u (t + 0)) is in L1([a, c[ ; X)”
which should be relaxed to ”t → f (t, u (t + 0)) is in L1

loc([a, c[ ; X)”.

Remark 2.4. By Theorem 2.1 we observe that, if A : D (A) ⊆ X → X is the infinites-
imal generator of a C0-semigroup of contractions which is continuous from ]0,+∞[
to L (X) in the uniform operator topology and u : [a, c] → X is an L∞-solution of
the problem (5) on [a, c], then u is piecewise continuous on [a, c]. Since f : D → X
is continuous, then f (t, u (t + 0)) = f (t, u (t)) a.e. on [a, c]. Thus, in (6), h is given in
fact by

h (t) =
∫ t

a
f (s, u (s)) ds + g (t) ,

for each t ∈ [a, c].
Let us remark also that, in Definition 2.3, we ask (t, u (t + 0)) ∈ D, for all t ∈ [a, c[

instead of (t, u (t)) ∈ D, for all t ∈ [a, c] (or [a, c[), as in the definition of a C0-
solution. We have to impose that condition because, for certain L∞-solutions, it may
happen that, at some point of discontinuity t ∈ ]a, c] for u, (t, u (t − 0)) < D. Since, by
Theorem 2.1, (t, u (t)) is uniquely determined by the jump condition u (t) − u(t − 0) =
g (t)−g(t−0), then (t, u (t)) might be, not only outside D, but even outside its closure.

Lemma 2.1. Let A : D (A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions, {S A (t) ; t ≥ 0}, continuous from ]0,+∞[ to L (X) in the
uniform operator topology and let g ∈ BV ([a, b] ; X). If f : [a, b] × X → X is con-
tinuous, bounded and globally Lipschitz with respect to its second argument then, for
each ξ ∈ X, the problem (1) has a unique L∞-solution defined on [a, b].

See Grosu [21], Lemma 2.1.

Theorem 2.3. Let A : D (A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contraction {S A (t) ; t ≥ 0} which is continuous from ]0,+∞[ to L (X) in
the uniform operator topology. Let us assume that D ⊂ R×X is a nonempty and open
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subset in R × X and f : D → X is a continuous function which is locally Lipschitz
with respect to the second variable. Then, for each (a, ξ) ∈ R × X with

(a, g (a + 0) − g (a) + ξ) ∈ D,

there exists c > a such that the Cauchy problem (5) has a unique L∞-solution on
[a, c] (or on [a, c[) in the sense of Definition 2.3.

See Grosu [19], Theorem 2.2 and Vrabie [27], Theorem 12.1.2, p. 272.

Theorem 2.4. Let A : D (A) ⊆ X → X be the infinitesimal generator of a compact
C0-semigroup of contraction {S A (t) ; t ≥ 0}. Let D ⊂ R × X be nonempty and open
and f : D→ X a continuous function. Then for each (a, ξ) ∈ R × X with

(a, g (a + 0) − g (a) + ξ) ∈ D

there exists c > a such that the Cauchy problem (5) has at least one L∞-solution on
[a, c] (or on [a, c[) in the sense of Definition 2.3.

See Grosu [19], Theorem 3.2 and Vrabie [27], Theorem 12.2.2, p. 275.

Definition 2.4. An L∞-solution u : I → X of (5), with I = [a, c[ (I = [a, c]) is
continuable if there exists another L∞-solution of (5), v : [a, b] → X, with b ≥ c
(b > c), such that u (t) = v (t), for each t ∈ I. If b > c, the L∞-solution u is called
strictly continuable. A L∞-solution is called saturated (non-continuable) if it is not
continuable. If the projection of D on R contained R+, a L∞-solution u is called
global if it is defined on [a,+∞[ .

Lemma 2.2. Let A : D (A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions, let f : D → X be continuous and g ∈ BV(R; X). Let
us assume that either the semigroup is compact, or f is locally Lipschitz with respect
to the second variable and the semigroup is continuous from ]0,+∞[ to L (X) in the
uniform operator topology. An L∞-solution, u : [a, c[→ X, of (5) is

(i) continuable with b = c if and only if there exists u (c − 0) = lim
t↑c

u (t) and

(c, g (c + 0) − g (c − 0) + u (c − 0)) < D;

(ii) strictly continuable if and only if there exists u (c − 0) = lim
t↑c

u (t) and

(c, g (c + 0) − g (c − 0) + u (c − 0)) ∈ D.

See Grosu [19], Lemma 4.1 and Vrabie [27], Lemma 12.3.1, p. 277.

Theorem 2.5. Let A : D (A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions, let f : D → X be continuous and g ∈ BV(R; X). Let us
assume that either the semigroup is compact, or f is locally Lipschitz with respect
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to its second argument and the semigroup is continuous from ]0,+∞[ to L (X) in the
uniform operator topology. If u : J → X is an L∞-solution of (5), with J = [a, c[ or
J = [a, c], then either u is saturated, or u can be continued up to a saturated one.

See Grosu [19], Theorem 4.1 and Vrabie [27], Theorem 12.3.1, p. 278.

Theorem 2.6. Let A : D (A) ⊆ X → X be the infinitesimal generator of a C0-
semigroup of contractions, let f : R+ × X → X be continuous and let g ∈ BV (R; X).
Let us assume that either the semigroup is compact, or f is locally Lipschitz with
respect to its last argument and the semigroup is continuous from ]0,+∞[ to L (X) in
the uniform operator topology. Further, let us assume that there exist two continuous
functions h, k : R+ → R+ such that

∥ f (t, u)∥ ≤ k (t) ∥u∥ + h (t) (7)

for each (t, u) ∈ R+ × X. Then, for each (a, ξ) ∈ R+ × X, (5) has at least one global
L∞-solution u : [a,+∞[ → X (or, for each (a, ξ) ∈ R+ × X, then each saturated
L∞-solution u : [a, c[→ X of (5) is global, i.e. c = +∞).

See Grosu [19], Theorem 4.3 and Vrabie [27], Theorem 12.3.3, p. 281.

3. EXISTENCE RESULTS FOR SEMILINEAR
SYSTEMS

We define the L∞-solution of the problem (1).

Definition 3.1. A function (u, v) : [0,T ] → X × Y is called an L∞-solution on [0, T ]
of the problem (1) if :

(i) for each t ∈ [0, T [, there exists u (t + 0) and v (t + 0) ;

(ii) t 7→ F (u (t + 0) , v (t + 0)) is in L1 (0, T ; X), t 7→ G (u (t + 0) , v (t + 0)) is in
L1 (0,T ; Y), and u is an L∞-solution on [0,T ] in the sense of Definition 2.3 for
the following Cauchy problem{

du = (Au + F (u, v)) dt + d f
u (0) = u0,

while v is an L∞-solution on [0, T ] in the sense of Definition 2.3 for the Cauchy
problem {

dv = (Bv +G (u, v)) dt + dg
v (0) = v0.

We define the L∞-solution of the problem (1) on a semi-open interval [0,T [ by re-
quiring (i), (ii) in Definition 3.1 except for the condition ”t 7→ F (u (t + 0) , v (t + 0))
is in L1 (0,T ; X) , t 7→ G (u (t + 0) , v (t + 0)) is in L1 (0,T ; Y)” which should be re-
laxed to ”t 7→ F (u (t + 0) , v (t + 0)) is in L1

loc([0,T [ ; X), t 7→ G (u (t + 0) , v (t + 0))
is in L1

loc([0, T [ ; Y)”.
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The purpose of this section is to prove an existence result concerning L∞-solutions
to a reaction-diffusion system of the form (1), where f , g, A, B, F, G satisfy the hy-
potheses :

(H0) f ∈ BV ([0,+∞[ ; X) and g ∈ BV ([0,+∞[ ; Y) ;

(H1) A : D (A) ⊆ X → X generates a C0-semigroup of contractions {S A (t) ; t ≥ 0} in
a real Banach space (X, ∥·∥X), which is continuous from ]0,+∞[ to L (X) in the
uniform operator topology ;

(H2) B : D (B) ⊆ Y → Y generates a compact C0-semigroup of contractions
{S B (t) ; t ≥ 0} in a real Banach space (Y, ∥·∥Y ) ;

(H3) F : X × Y → X is continuous and locally Lipschitz with respect to its first
variable, i.e. for each

(
η1, η2

)
in X × Y , there are ρF = ρF

(
η1, η2

)
> 0 and

lF = lF
(
η1, η2

)
> 0 such that

∥F (u, v) − F (̃u, v)∥X ≤ lF ∥u − ũ∥X ,

for each u, ũ ∈ D
(
η1, ρF

)
and v ∈ D

(
η2, ρF

)
(D (η, ρ) is the open ball of radius

ρ, centered at η);

(H4) G : X × Y → Y is a continuous mapping ;

(H5) There exist ai > 0, bi > 0, ci > 0, i ∈ {1, 2} such that

∥F (u, v)∥X ≤ a1 ∥u∥X + b1 ∥v∥Y + c1,

for each (u, v) ∈ X × Y , and

∥G (u, v)∥Y ≤ a2 ∥u∥X + b2 ∥v∥Y + c2,

for each (u, v) ∈ X × Y .

Namely, we will prove

Theorem 3.1. Assume that (H0), (H1), (H2), (H3) and (H4) are satisfied. Then, for
each (u0, v0) ∈ X × Y, there exists T0 > 0 such that (1) has at least one L∞-solution
(u, v) : [0,T0] → X × Y. If, in addition, (H5) is satisfied, then (1) has at least one
global L∞-solution (u, v) : [0,+∞[→ X × Y.

We mention here that the proof of Theorem 3.1 and of the other theorems which
we need for this proof (Theorem 3.2, Theorem 3.3 bellow) is essentially based on an
interplay between compactness and Lipschitz type arguments.

First, let us consider the specific case when F and G satisfy :

(H′3) F : X × Y → X is continuous, bounded, i.e. there exists mF > 0 such that

∥F (u, v)∥X ≤ mF ,
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for each u ∈ X, v ∈ Y , and globally Lipschitz with respect to its first variable,
i.e. there exists LF > 0 such that

∥F (u, v) − F (̃u, v)∥X ≤ LF ∥u − ũ∥X ,

for each u, ũ ∈ X and v ∈ Y ;

(H′4) G : X × Y → Y is continuous, bounded, i.e. there exists mG > 0 such that

∥G (u, v)∥Y ≤ mG,

for each u ∈ X, v ∈ Y , and globally Lipschitz with respect to its second variable,
i.e. there exist LG > 0 such that

∥G (u, v) −G (u, ṽ)∥Y ≤ LG ∥v − ṽ∥Y ,

for each u ∈ X and v, ṽ ∈ Y .

Theorem 3.2. Assume that (H0), (H1), (H2),
(
H′3

)
and

(
H′4

)
are satisfied. Then,

for each (u0, v0) ∈ X × Y, and each T > 0 there exists at least one L∞-solution
(u, v) : [0,T ]→ X × Y of (1).

Proof. The idea of the proof consists in showing that a suitable defined operator has
at least one fixed point, whose existence is equivalent with the existence of at least
one L∞-solution of (1) .

To begin with, let us fix (u0, v0) ∈ X × Y and T > 0.
Since g ∈ BV ([0,+∞[ ; Y), there exist mg > 0 such that, for each t ∈ [0,T ], we

have
Var (g, [0, t]) ≤ mg.

Let us define
r =

[
(1 + LGT ) ∥v0∥Y + mGT + mg

]
eLGT

and
K =

{
v ∈ L∞ (0, T ; Y) ; ∥v (t)∥Y ≤ r, a.e in [0,T ]

}
.

Obviously, K is nonempty, bounded, closed and convex, in L∞ (0, T ; Y), and thus in
L1 (0,T ; Y), as well. In what follows, we consider K as a subset in L1 (0, T ; Y). Now,
let us define R :K⊂ L1 (0, T ; Y)→ L1 (0, T ; X) by

Rṽ = u (8)

for each ṽ ∈K, where u is the unique L∞-solution on [0,T ] of the Cauchy problem{
du = (Au + F (u, ṽ)) dt + d f
u (0) = u0,

(9)
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in the sense of Definition 2.3. Since the C0-semigroup of contractions {S A (t) ; t ≥ 0}
is continuous from ]0,+∞[ to L (X) in the uniform operator topology, F is bounded,
by (3), (6) and by Remark 2.4 we obtain that R is well-defined and

(Rṽ) (t) = S A (t) u0 +

∫ t

0
S A (t − s) F (u (s) , ṽ (s)) ds+

∫ t

0
S A (t − s) d f (s) , (10)

for each t ∈ [0,T ]. Next, let us define the operator T:K⊂ L1 (0,T ; Y)→ L1 (0, T ; Y)
by

Tṽ = v (11)

for each ṽ ∈K, where v is the unique L∞-solution on [0, T ] of the Cauchy problem{
dv = (Bv +G (u, v)) dt + dg
v (0) = v0,

(12)

in the sense of Definition 2.3, with u the L∞-solution on [0,T ] of (9). Since the C0
-semigroup of contractions {S B (t) ; t ≥ 0} is continuous from ]0,+∞[ to L (Y) in the
uniform operator topology, G is bounded, by (3), (6) and by Remark 2.4 we obtain
that T is well-defined and

(Tṽ) (t) = S B (t) v0 +

∫ t

0
S B (t − s) G (u (s) , v (s)) ds +

∫ t

0
S B (t − s) dg (s) , (13)

for each t ∈ [0, T ]. We mention that, if we assume that (H0), (H1), (H2),
(
H′3

)
and(

H′4
)

are satisfied, then each one of the problems (9) and (12) has a unique L∞-
solution defined on [0, T ]. See Lemma 2.1.

At this point let us observe that T has a unique fixed point in L1 (0, T ; Y) if and
only if (u, v) : [0, T ] → X × Y defined by (8) and (11) is an L∞-solution of the
problem (1) on [0, T ]. Thus, to complete the proof, it suffices to show that T satisfies
the hypotheses of Schauder’s Fixed Point Theorem. To this aim, we have to show
that:

(i) T maps K into K;

(ii) T is continuous;

(iii) T is compact.

(i) Let ṽ ∈K be arbitrary. A computational argument involving (13) and Remark
2.1 shows that, for each t ∈ [0,T ], we have

∥(Tṽ) (t)∥Y ≤ ∥S B (t) v0∥Y
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+

∫ t

0
∥S B (t − s)∥L(Y) ∥G (u (s) , v (s))∥Y ds +

∥∥∥∥∥∥
∫ t

0
S B (t − s) dg (s)

∥∥∥∥∥∥
Y

≤ ∥S B (t)∥L(Y) ∥v0∥Y +
∫ t

0
∥G (Rṽ (s) , v0)∥Y ds

+

∫ t

0
∥G (Rṽ (s) , Tṽ (s)) −G (Rṽ (s) , v0)∥Y ds + Var (g, [0, t]) ,

for each ṽ ∈K and t ∈ [0,T ]. Using
(
H′4

)
to increase the right hand side, we obtain

that
∥(Tṽ) (t)∥Y

≤ ∥v0∥Y + mGT + LG

∫ t

0
∥(Tṽ) (s) − v0∥Y ds + mg

≤ ∥v0∥Y + mGT + LG

∫ t

0
∥(Tṽ) (s)∥Y ds + LG ∥v0∥Y T + mg,

for each ṽ ∈K and t ∈ [0,T ]. From Gronwall’s Inequality, it follows that

∥(Tṽ) (t)∥Y ≤
[
(1 + LGT ) ∥v0∥Y + mGT + mg

]
eLGT = r

for each ṽ ∈K and t ∈ [0,T ]. Therefore T maps K into itself.
(ii) Next, we will prove that T is continuous from K into itself, both domain and

range being endowed with the induced strong topology of L1 (0, T ; Y). Indeed, let
(̃vn)n∈N ⊂K be such that ṽn → ṽ in L1 (0,T ; Y). For each n ∈ N∗, let Rṽn = un be the
unique L∞-solution on [0, T ] of{

dun = (Aun + F (un, ṽn)) dt + d f
un (0) = u0,

(14)

and let Tṽn = vn be the unique L∞-solution on [0,T ] of{
dvn = (Bvn +G (un, vn)) dt + dg
vn (0) = v0,

(15)

where un is the L∞-solution on [0,T ] of (14). Moreover, let Rṽ = u be the unique L∞-
solution on [0,T ] of (9) and let Tṽ = v be the unique L∞-solution on [0,T ] of (12).
We mention that, if we assume that (H0), (H1), (H2),

(
H′3

)
and

(
H′4

)
are satisfied, then

each one of the problems (9), (12), (14) and (15) has a unique L∞-solution defined
on [0, T ]. See Lemma 2.1. We will prove that vn → v in L1 (0,T ; Y).

First, from (10) and the corresponding relation to (14), we have that

∥un (t) − u (t)∥X =∥∥∥∥∥∥
∫ t

0
S A (t − s) F (un (s) , ṽn (s)) ds −

∫ t

0
S A (t − s) F (u (s) , ṽ (s)) ds

∥∥∥∥∥∥
X
≤
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0
∥S A (t − s)∥L(X) ∥F (un (s) , ṽn (s)) − F (u (s) , ṽ (s))∥X ds ≤∫ t

0
∥F (un (s) , ṽn (s)) − F (u (s) , ṽn (s))∥X ds+∫ t

0
∥F (u (s) , ṽn (s)) − F (u (s) , ṽ (s))∥X ds,

for each t ∈ [0, T ] and each n ∈ N∗. Then, by
(
H′3

)
, we obtain that

∥un (t) − u (t)∥X ≤ LF

∫ t

0
∥un (s) − u (s)∥X ds+

∫ T

0
∥F (u (s) , ṽn (s)) − F (u (s) , ṽ (s))∥X ds,

for each t ∈ [0, T ] and each n ∈ N∗. From Gronwall’s Inequality, we get

∥un (t) − u (t)∥X ≤ eLFT
∫ T

0
∥F (u (s) , ṽn (s)) − F (u (s) , ṽ (s))∥X ds, (16)

for each t ∈ [0, T ] and each n ∈ N∗. We prove that

lim
n→∞

eLFT
∫ T

0
∥F ( u (s) , ṽn (s)) − F (u (s) , ṽ (s))∥X ds = 0. (17)

Let us assume by contradiction that this is not the case. Then there would exist ε0 > 0
such that, for each n ∈ N∗,we have

eLFT
∫ T

0
∥F (u (s) , ṽn (s)) − F (u (s) , ṽ (s))∥X ds ≥ ε0.

But F is continuous, (̃vn)n is bounded and ṽn → ṽ in L1 (0,T ; Y). There exists a
subsequence

(̃
vnk

)
k∈N∗ of (̃vn)n∈N∗ ,such that lim

k→∞
ṽnk (t) = ṽ (t) a.e. for t ∈ [0, T ].

Therefore, we get that

lim
k→∞

eLFT
∫ T

0

∥∥∥F
(

u (s) , ṽnk (s)
) − F ( u (s) , ṽ (s))

∥∥∥
X ds = 0,

which contradicts the inductive hypothesis. This contradiction can be eliminated only
if (17) holds. Then, by (16) we obtain that un → u in L1 (0,T ; X). Similarly, we prove
that vn → v in L1 (0,T ; Y).

(iii) In order to apply Schauder’s fixed point Theorem, we have merely to check
that T(K) is relatively compact in L1 (0,T ; Y). But this happens by virtue of Theorem
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2.2. For each ṽ ∈K, let Rṽ = u be the unique L∞ -solution of (9) and let Tṽ = v be
the unique L∞-solution of (12). Let us define

G =

{
t 7→

∫ t

0
G (u (s) , v (s)) ds + g (t) ; ṽ ∈ K

}
From (H0) and

(
H′4

)
it follows that G is of equibounded variation. Let us consider the

problem {
dv = (Bv) dt + dg
v (0) = v0.

(18)

where g ∈G. Since B generates a compact C0-semigroup of contractions, from
Theorem 2.2, it follows that Q ({0} ,G) is relatively compact in L1 (0,T ; Y). But
T(K) ⊆ Q ({0} ,G), and so T(K) is a relatively compact set, too.

Consequently, by Schauder’s fixed point Theorem, T has at least one fixed point
v ∈K which by means of (u, v), where u = Rv defines an L∞ -solution of the problem
(1) on [0,T ], and this completes the proof.

Next, we suppose that :(
H′′4

)
G : X × Y → Y is continuous and locally Lipschitz with respect to its second
variable, i.e. for each

(
η1, η2

) ∈ X × Y , there exist ρG = ρG
(
η1, η2

)
> 0 and

lG = lG
(
η1, η2

)
> 0 such that

∥G (u, v) −G(u, ṽ)∥Y ≤ lG ∥v − ṽ∥Y ,

for each u ∈ D
(
η1, ρG

)
and v, ṽ ∈ D

(
η2, ρG

)
.

Theorem 3.3. Assume that (H0), (H1), (H2), (H3) and
(
H′′4

)
are satisfied. Then, for

each (u0, v0) ∈ X × Y, there exists T0 > 0 such that (1) has at least one L∞-solution
(u, v) : [0,T0]→ X × Y (or (u, v) : [0, T0[→ X × Y).

Proof. We will rewrite (1) for a suitable chosen functions and we will apply Theorem
2.2.

First, let (u0, v0) ∈ X × Y be arbitrary and let us denote η1 = f (0 + 0) − f (0) + u0,
η2 = g (0 + 0) − g (0) + v0. Let ρF = ρF

(
η1, η2

)
> 0, ρG = ρG

(
η1, η2

)
> 0, lF =

lF
(
η1, η2

)
> 0 and lG = lG

(
η1, η2

)
> 0 be given by (H3) and

(
H′′4

)
. Let us define

r = min
{
ρF , ρG

}
.

As F and G are continuous, they are locally bounded and, diminishing r if necessary,
we may assume that there exists mF = mF

(
η1, η2

)
> 0 and mG = mG

(
η1, η2

)
> 0

such that
∥F (u, v)∥X ≤ mF and ∥G (u, v)∥Y ≤ mG,
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for each (u, v) ∈ D
(
η1, r

) × D
(
η2, r

)
. Let us define ΠX : X → D

(
η1, r

)
by

ΠX (u) =

 u, for u ∈ D
(
η1, r

)
r

∥u − u0∥X
(u − u0) + u0, for u ∈ X \ D

(
η1, r

)
and ΠY : Y → D

(
η2, r

)
by

ΠY (v) =

 v, for v ∈ D
(
η2, r

)
r

∥v − v0∥Y
(v − v0) + v0, for v ∈ Y \ D

(
η2, r

)
.

It is known that ΠX , ΠY are Lipschitz continuous with Lipschitz constant 2. More-
over, they map the space X and Y into D

(
η1, r

)
and D

(
η2, r

)
respectively. Next, let

us define Fr : X × Y → X and Gr : X × Y → Y by

Fr (u, v) = F (ΠX (u) ,ΠY (v)) and Gr (u, v) = G (ΠX (u) ,ΠY (v))

for each (u, v) ∈ X × Y .
We consider the reaction-diffusion system

du = (Au + Fr (u, v)) dt + d f , t ∈ [0,+∞[
dv = (Bv +Gr (u, v)) dt + dg, t ∈ [0,+∞[
u (0) = u0
v (0) = v0.

(19)

We will prove that Fr and Gr satisfy
(
H′3

)
and

(
H′4

)
and we will use the Theorem 3.2.

Since both F and ΠX are continuous, it follows that Fr is continuous. Moreover Fr
satisfies

∥Fr (u, v) − Fr (̃u, v)∥X = ∥F (ΠX (u) ,ΠY (v)) − F (ΠX (̃u) ,ΠY (v))∥X ,

for each u, ũ ∈ X and each v ∈ Y . But ΠX (u), ΠX (̃u) ∈ D
(
η1, r

) ⊆ D
(
η1, ρF

)
and

ΠY (v) ∈ D
(
η2, r

) ⊆ D
(
η2, ρF

)
. So, by (H3), we obtain that

∥Fr (u, v) − Fr (̃u, v)∥X ≤ lF ∥ΠX (u) − ΠX (̃u)∥X ≤ 2lF ∥u − ũ∥X ,

for each u, ũ ∈ X and each v ∈ Y . Also, Fr satisfies

∥Fr (u, v)∥Y = ∥F (ΠX (u) ,ΠY (v))∥X ≤ mF ,

for each (u, v) ∈ X × Y . Since both G and ΠY are continuous, it follows that Gr is
continuous. Moreover, Gr satisfies

∥Gr (u, v) −Gr (u, ṽ)∥Y = ∥G (ΠX (u) ,ΠY (v)) −G (ΠX (u) ,ΠY (̃v))∥Y ,

for each u ∈ X and each v, ṽ ∈ Y . But ΠX (u) ∈ D
(
η1, r

) ⊆ D
(
η1, ρG

)
and ΠY (v),

ΠY (̃v) ∈ D
(
η2, r

) ⊆ D
(
η2, ρG

)
. So, by

(
H′′4

)
, we obtain that

∥Gr (u, v) −Gr (u, ṽ)∥Y ≤ lG ∥ΠY (v) − ΠY (̃v)∥Y ≤ 2lG ∥v − ṽ∥Y ,
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for each u, ũ ∈ X and each v ∈ Y . Also, Gr satisfies

∥Gr (u, v)∥Y = ∥G (ΠX (u) ,ΠY (v))∥Y ≤ mG,

for each (u, v) ∈ X × Y .
From Theorem 2.2 we know that for each (u0, v0) ∈ X × Y and for each T > 0,

there exists at least one L∞-solution (u, v) : [0, T ] → X × Y of (19). We will prove
that this L∞-solution is in fact an L∞-solution on [0, T0], with T0 < T small enough,
of the problem (1) in the sense of Definition 3.1. Indeed, by virtue of Theorem 2.1 ,
it follows that u, v are piecewise continuous on [0, T ] and so u (t + 0) = u (t) a.e. on
[0, T ] and v (t + 0) = v (t) a.e. on [0,T ]. But Fr, Gr are continuous functions and
accordingly ∫ t

0
Fr (u (s + 0) , v (s + 0)) ds =

∫ t

0
Fr (u (s) , v (s)) ds,∫ t

0
Gr (u (s + 0) , v (s + 0)) ds =

∫ t

0
Gr (u (s) , v (s)) ds,

for each t ∈ [0, T ]. Since u (0) = u0, by Theorem 2.1 we have

u (t) − η1 = u (t) − f (0 + 0) + f (0) − u0 = u (t) − u (0 + 0) .

Then, by taking into account that lim
t↓0

u (t) = u (0 + 0), it follows that there exists

T01 ∈ [0, T ] such that, for each t ∈ ]0,T01[, we have that∥∥∥u (t) − η1

∥∥∥ < r,

i.e. (t, u (t)) ∈ ]0, T01[×D(η1, r). Since u is piecewise continuous on [0, T01] it follows
that u (t + 0) ∈ D(η1, r) for each t ∈ [0,T01[. Analogously, there exists T02 ∈ [0,T ]
such that v (t + 0) ∈ D(η2, r) for each t ∈ [0, T02[. Let T0 = min {T01, T02}. But in this
case

ΠX (u (t + 0)) = u (t + 0) and ΠY (v (t + 0)) = v (t + 0)

for each t ∈ [0, T0[.
Then Fr (u (s + 0) , v (s + 0)) must coincide with F (u (s + 0) , v (s + 0)) and

Gr (u (s + 0) , v (s + 0)) must coincide with G (u (s + 0) , v (s + 0)), for each s ∈ [0,T0[ .
Hence the function (u, v) : [0,T0] → X × Y is an L∞-solution of the problem (1) in
the sense of Definition 3.1, as is claimed.

We continue with the proof of Theorem 3.1.

Proof. The idea of the proof is to approximate the continuous mapping G with a
sequence of locally Lipschitz mappings (Gn)n∈N∗ such that F and Gn satisfy the hy-
potheses of Theorem 3.3, to obtain a sequence of L∞-solutions ((un, vn))n∈N∗ , and
then to show that, on a subsequence at least, ((un, vn))n∈N∗ converges to a L∞-solution
of (1).
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To this aim, as G : X × Y → Y is continuous, for each n ∈ N∗, there exists
Gn : X × Y → Y a locally Lipschitz mapping, which satisfies

∥Gn (u, v) −G (u, v)∥Y ≤
1
n
, (20)

for each (u, v) ∈ X × Y. See Theorem 1.13, p. 16 in Cârjă [13]. That means that, for
each n ∈ N∗, Gn satisfies

(
H′′4

)
. Let us (u0, v0) ∈ X × Y and let us consider, for each

n ∈ N∗, the problem
dun = (Aun + F (un, vn)) dt + d f , t ∈ [0,+∞[
dvn = (Bvn +Gn (un, vn)) dt + dg, t ∈ [0,+∞[
un (0) = u0
vn (0) = v0.

(21)

Thanks to Theorem 3.3, we know that, for each n ∈ N∗ and each (u0, v0) ∈ X × Y ,
there exists Tn > 0 such that (21) has at least one saturated L∞-solution (un, vn) :
[0, Tn[→ X×Y . See also Theorem 2.5. We will prove next that Tn > 0 can be chosen
independent of n. Let us denote η1 = f (0 + 0)− f (0)+ u0, η2 = g (0 + 0)− g (0)+ v0
and let us observe that there are r = r

(
η1, η2

)
> 0, r < ρF and M = M

(
η1, η2

)
> 0,

such that
∥F (u, v)∥X ≤ M and ∥G (u, v)∥Y ≤ M,

for each (u, v) ∈ D
(
η1, r

) × D
(
η2, r

)
. Let us consider T > 0, small enough, such that∥∥∥S A (t) η1 − η1

∥∥∥
X + MT + Var( f , [0, T ]) ≤ r

and ∥∥∥S B (t) η2 − η2

∥∥∥
X + MT + Var (g, [0,T ]) ≤ r

for each t ∈ [0, T ]. We will prove that T ≤ Tn, for each n ∈ N∗, and therefore all the
solutions (un, vn) are defined at least on [0, T ]. Finally, we will pass to the limit for
n→ ∞ to get the solution of (1).

We define

E =
{
τ ∈ ]0, Tn[ ;

∥∥∥un (t) − η1

∥∥∥
X ≤ r,

∥∥∥vn (t) − η2

∥∥∥
Y ≤ r, for t ∈ [0, τ]

}
and

T ∗n = sup E,

and we will show that T ∗n ≥ T , for each n ∈ N∗. Let us assume by contradiction that
there exists n ∈ N∗ such that T ∗n < T . First, we will show that there exists

lim
t↑T ∗n

un (t) = un
(
T ∗n − 0

)
.

Let l > 0 be arbitrary. As sup E = T ∗n , then there exists τl ∈ E (hence τl < Tn) such
that T ∗n − l < τl ≤ T ∗n . Since

un (t) = S A (t) u0 +

∫ t

0
S A (t − s) F (un (s + 0) , vn (s + 0)) ds +

∫ t

0
S A (t − s) d f (s) ,
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for t = T ∗n − l ∈ [0, Tn[, with l > 0 arbitrary but fixed, then the conclusion follows
from the continuity of t 7→ S A (t) u0, the condition t 7→ F (un (t + 0) , vn (t + 0)) is
in L1

loc ([0, Tn[ ; X), the assumption T ∗n < T < +∞ and Theorem 2.1. In the same
manner, we deduce the existence of

lim
t↑T ∗n

vn (t) = vn
(
T ∗n − 0

)
.

Next, let us consider again an arbitrary l > 0. As sup E = T ∗n , then there exists τl ∈ E
(hence τl < Tn) such that T ∗n − l < τl ≤ T ∗n . Let us denote γ∗1 = f

(
T ∗n + 0

)− f
(
T ∗n − 0

)
. Then,by Remark 2.1, Remark 2.2 and by the assumption T ∗n < T , we have∥∥∥un

(
T ∗n − l

)
+ γ∗1 − η1

∥∥∥
X =∥∥∥∥∥∥S A

(
T ∗n − l

)
u0 +

∫ T ∗n−l

0
S A

(
T ∗n − l − s

)
F (un (s) , vn (s)) ds+

∫ T ∗n−l

0
χ]0,T ∗n−l]S A

(
T ∗n − l − s

)
d f (s)+

S A
(
T ∗n − l

)
( f (0 + 0) − f (0)) + γ∗1 − η1

∥∥∥
X ≤∥∥∥S A

(
T ∗n − l

)
η1 − η1

∥∥∥
X +

∫ T ∗n−l

0
∥F (un (s) , vn (s))∥X ds+

Var
(
f ,

]
0, T ∗n − l

])
+

∥∥∥ f
(
T ∗n + 0

) − f
(
T ∗n − 0

)∥∥∥
X <∥∥∥S A

(
T ∗n − l

)
η1 − η1

∥∥∥
X + M

(
T ∗n − l

)
+ Var (g, [0,T ]) ≤∥∥∥S A

(
T ∗n − l

)
η1 − η1

∥∥∥
X + MT + Var (g, [0, T ]) ≤ r

Then un
(
T ∗n − 0

)
+ f

(
T ∗n + 0

) − f
(
T ∗n − 0

) ∈ IntD
(
η1, r

)
which is false because, for

each n ∈ N∗, (un, vn) is strictly noncontinuable. So, for each n ∈ N∗, we have T ∗n ≥ T ,
and hence T ≤ Tn, for each n ∈ N∗.

Since G is bounded on D
(
η1, r

) × D
(
η2, r

)
, (un (s) , vn (s)) ∈ D

(
η1, r

) × D
(
η2, r

)
for each s ∈ [0, T ] and Gn satisfy (20), then, from (H0) it follows that the set{

t 7→
∫ t

0
Gn (un (s) , vn (s)) ds + g (t) ; n ∈ N∗

}
is of equibounded variation on [0,T ]. Moreover, B generates a compact C0-semigroup
and, by Theorem 2.2, we obtain that the set {vn; n ∈ N∗} is relatively compact in
L1 (0,T ; Y). So, on a subsequence at least,

(
vnk

)
k∈N∗ converges to some v in L1 (0, T ; Y).

With this v, let us consider the problem{
du = (Au + F (u, v)) dt + d f , t ∈ [0, T ]
u (0) = u0.

(22)
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From (H3) and Theorem 2.3 we obtain that there exists T0 ∈ ]0, T ] such that the
problem (22) has a unique L∞-solution u : [0,T0] → X. Now, we deduce that, for
each t ∈ [0, T0] we have ∥∥∥unk (t) − u (t)

∥∥∥
X =∥∥∥∥∥∥

∫ t

0
S A (t − s) F

(
unk (s) , vnk (s)

)
ds −

∫ t

0
S A (t − s) F (u (s) , v (s)) ds

∥∥∥∥∥∥
X
≤∫ t

0
∥S A (t − s)∥L(X)

∥∥∥F
(
unk (s) , vnk (s)

) − F (u (s) , v (s))
∥∥∥

X ds ≤∫ t

0

∥∥∥F
(
unk (s) , vnk (s)

) − F
(
u (s) , vnk (s)

)∥∥∥
X ds+∫ t

0

∥∥∥F
(
u (s) , vnk (s)

) − F (u (s) , v (s))
∥∥∥

X ds ≤

lF

∫ t

0

∥∥∥unk (s) − u (s)
∥∥∥

X ds +
∫ T0

0

∥∥∥F
(
u (s) , vnk (s)

) − F (u (s) , v (s))
∥∥∥

X ds.

From Gronwall’s Inequality, we get∥∥∥unk (t) − u (t)
∥∥∥

X ≤ eLFT0

∫ T0

0

∥∥∥F
(
u (s) , vnk (s)

) − F (u (s) , v (s))
∥∥∥

X ds, (23)

for each t ∈ [0, T0]. We prove that

lim
k→∞

eLFT0

∫ T0

0

∥∥∥F
(
u (s) , vnk (s)

) − F (u (s) , v (s))
∥∥∥

X ds = 0. (24)

Let us assume by contradiction that this is not the case. Then there exists ε0 > 0 such
that, for each k ∈ N∗,we have

eLFT0

∫ T0

0

∥∥∥F
(
u (s) , vnk (s)

) − F (u (s) , v (s))
∥∥∥

X ds ≥ ε0.

But F is continuous, vnk → v in L1 (0, T0; Y). There exists a subsequence
(
vnkp

)
p∈N∗

of
(
vnk

)
k∈N∗ ,such that lim

p→∞
vnkp

(t) = v (t) a.e. for t ∈ [0,T0]. Therefore, we get that

lim
p→∞

eLFT0

∫ T0

0

∥∥∥∥F
(
u (s) , vnkp

(s)
)
− F (u (s) , v (s))

∥∥∥∥
X

ds = 0,

which contradicts the inductive hypothesis. This contradiction can be eliminated only
if (24) holds, and then, by (23) we obtain that unk → u in L1 (0,T0; X).

If, in addition, (H5) is satisfied, then, by Theorem 2.6 , each L∞-solution of (1)
can be extended up to a global one and this achieves the proof.

Remark 3.1. We note that the proof of Theorem 3.1 follows the very same lines if
the functions F and G are of the form F = F (t, u, v) and G = G (t, u, v) , for each
(t, u, v) ∈ [0,+∞[ × X × Y.
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4. AN EXAMPLE

Let Ω be a bounded domain in Rn, n ∈ N∗, with sufficiently smooth boundary Γ.
Let us consider the reaction-diffusion system with measures :

ut = α∆u + f (t, x, u, v) + δ (· − t01) for (t, x) ∈ R+ ×Ω
vt = β∆v + g (t, x, u, v) + δ (· − t02) for (t, x) ∈ R+ ×Ω
u (t, x) = v (t, x) = 0 for (t, x) ∈ R+ × Γ
u (0, x) = u0 (x) , v (0, x) = v0 (x) for x ∈ Ω

(25)

where α ≥ 0, β > 0, f , g : R+ × Ω × R2 → R, δ (· − t0) is the Dirac measure concen-
trated at t0 ∈ ]0,+∞[, and u0 ∈ L1 (Ω) , v0 ∈ L1 (Ω). We notice that t is the ”temporal”

variable and ∆ =
n∑

i=1

∂2

∂x2
i

is the Laplace operator with respect to a ”spatial” variable.

Theorem 4.1. Assume that f , g are continuous and that the function f is locally
Lipschitz with respect to its third variable, i.e. for each

(
η1, η2

) ∈ R2 there exists
ρ f = ρ f

(
η1, η2

)
> 0 and l f = l f

(
η1, η2

)
> 0 such that

| f (t, x, u, v) − f (t, x, ũ, v)| ≤ l f |u − ũ| , (26)

for all (t, x) ∈ R+ × Ω and u, ũ, v ∈ R with
∣∣∣u − η1

∣∣∣ < ρ f ,
∣∣∣̃u − η1

∣∣∣ < ρ f ,
∣∣∣v − η2

∣∣∣ < ρ f .

Then, for each (u0, v0) ∈ L1 (Ω) × L1 (Ω) , there exists T0 > 0 such that (25) has at
least one L∞-solution (u, v) : [0, T0] → X × Y and satisfying the initial conditions
u (0, x) = u0 (x) and v (0, x) = v0 (x) a.e. for x ∈ Ω. If, in addition, assume that there
exist ai > 0, bi > 0, ci > 0, i ∈ {1, 2} such that

| f (t, x, u, v)| ≤ a1 |u| + b1 |v| + c1 (27)

for each (t, x, u, v) ∈ R+ ×Ω × R2 and

|g (t, x, u, v)| ≤ a2 |u| + b2 |v| + c2 (28)

for each (t, x, u, v) ∈ R+ × Ω × R2, then the system (25) has at least one global L∞-
solution (u, v) : [0,+∞[→ X × Y.

Proof. In order to use Theorem 3.1 we shall rewrite (25) as a reaction-diffusion
system (1). To this aim, take X = Y = L1 (Ω), and let us define the operator
A : D (A) ⊆ L1 (Ω)→ L1 (Ω) by{

D (A) =
{
u ∈ L1 (Ω) ; u ∈ W1,1

0 (Ω) , α∆u ∈ L1 (Ω)
}

Au = α∆u, for each u ∈ D (A)

and the operator B : D (B) ⊆ L1 (Ω)→ L1 (Ω) by{
D (B) =

{
v ∈ L1 (Ω) ; v ∈ W1,1

0 (Ω) , β∆v ∈ L1 (Ω)
}

Bv = β∆v, for each v ∈ D (B) .
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It is known that A generates a compact C0-semigroup of contractions {S A (t) ; t ≥ 0}
on X if α > 0, and which is only continuous from ]0,+∞[ to L (X) in the uniform
operator topology if α = 0. See for instance Vrabie [27], Theorem 7.2.7, p. 160. Also
it is known that B generates a compact C0-semigroup of contractions {S B (t) ; t ≥ 0}
on Y . Next, let us define f0 : [0,+∞[→ L1 (Ω) and g0 : [0,+∞[→ L1 (Ω) by

( f0 (t)) (x) =


−1

2 for 0 ≤ t < t01
0 for t = t01
1
2 for t01 < t < +∞

and

(g0 (t)) (x) =


−1

2 for 0 ≤ t < t02
0 for t = t02
1
2 for t02 < t < +∞,

for all t ∈ [0,+∞[ and a.e. x ∈ Ω. Clearly f0 ∈ BV
(
[0,+∞[ ; L1 (Ω)

)
, g0 ∈

BV
(
[0,+∞[ ; L1 (Ω)

)
and let us remark that (d f0) (t) = δ (t − t01) and (dg0) (t) =

δ (t − t02) in the sense of distributions.
Now, let us observe that (25) may be rewritten as a Cauchy problem in L1 (Ω) of

the form : 
du = (Au + F (u, v)) dt + d f0, t ∈ [0,+∞[
dv = (Bv +G (u, v)) dt + dg0, t ∈ [0,+∞[
u (0) = u0
v (0) = v0,

(29)

where A, B, f0, g0, u0, v0 are as above, while F,G : [0,T ] × L1 (Ω) × L1 (Ω) →
L1 (Ω) are the superposition operators on L1 (Ω) × L1 (Ω) associated with f and g
respectively, i.e.

(F (t, u, v)) (x) = f (t, x, u (x) , v (x)) and (G (t, u, v)) (x) = g (t, x, u (x) , v (x))

for each u, v ∈ L1 (Ω), for each t ∈ [0,+∞[ and a.e. for x ∈ Ω. See for instance
Vrabie [27], Definition A.6.1, p. 313. By (iii) in Lemma A.6.1, p. 312 in Vrabie [27],
it readily follows that F and G are well defined on L1 (Ω)× L1 (Ω). In addition, since
f , g are continuous, it follows that F,G are continuous on [0,+∞[ × L1 (Ω) × L1 (Ω).
Moreover F satisfies (H3). Then, by Theorem 3.1 and Remark 3.2, we conclude that
there exists T0 ∈ ]0,+∞[ such that the problem (27) has at least one L∞-solution
on [0,T0] in the sense of Definition 3.1. In addition, by virtue of (27) and (11),
by Theorem 3.1, it follows that the above L∞-solution for the problem (27) can be
extended up to a global L∞-solution.
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Academiei Bucureş ti, D. Reidel Publishing Company, 1986.
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Abstract In this paper, the approximate controllability result of a class of dynamic control systems
described by nonlinear fractional stochastic functional differential equations in Hilbert
space driven by a fractional Brownian motion with Hurst parameter H > 1/2 has been
established and discussed by using the theory of fractional calculus, fixed point tech-
nique, stochastic analysis technique and methods adopted directly from deterministic
control problems. As an application that illustrates the abstract results, an example is
given.
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1. INTRODUCTION

The concept of controllability plays an important role in both the deterministic
and the stochastic control theory. In recent years, significant progress has been made
in the controllability of linear and nonlinear deterministic systems (Bashirov and
Mahmudov, 1999; Klamka, 1991, 2000; Balachandran and Sakthivel, 2001). The
controllability of nonlinear deterministic systems in a finite and infinite dimensional
space by using different kinds of approaches have been considered in many publica-
tions (see [1, 2, 6] and the references therein). Moreover, the exact controllability
enables to steer the system to arbitrary final state while approximate controllability
means that the system can be steered to arbitrary small neighborhood of final state.
Klamka [8] derived a set of sufficient conditions for the exact controllability of semi-
linear systems. Further, approximate controllable systems are more prevalent and
very often approximate controllability is completely adequate in applications. The
approximate controllability of systems represented by nonlinear evolution equations
has been investigated by several authors [9, 10], in which the authors effectively used
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the fixed point approach. Fu and Mei [5] studied the approximate controllability of
semilinear neutral functional differential systems with finite delay. The conditions
are established with the help of semigroup theory and fixed point technique under the
assumption that the linear part of the associated nonlinear system is approximately
controllable.

Very recently, Sakthivel et al. [13] established a set of sufficient conditions for ob-
taining the approximate controllability of semilinear fractional differential systems in
Hilbert spaces. Also, Sakthivel et al. in [14] investigated approximate controllability
problem for nonlinear fractional stochastic systems driven by Wiener process, which
are natural generalizations of the well known controllability concepts from the the-
ory of infinite dimensional deterministic control systems. Specifically, they studied
the approximate controllability of nonlinear fractional control systems under the as-
sumption that the associated linear system is approximately controllable.

However, to the best of our knowledge, the approximate controllability problem
for nonlinear fractional stochastic functional system driven by fractional Brownian
motion in Hilbert spaces has not been investigated yet. Motivated by this considera-
tion, in this paper we investigate the approximate controllability problem of a class of
nonlinear fractional stochastic functional systems, we consider a mathematical model
given by the following fractional functional equation with control:

cDq
t [x(t) − φ(t, xt)] = Ax(t) + Bu(t) + ϕ(t, xt) + σH(t)

dBH
Q(t)

dt
x(t) = ψ(t), t ∈ [−r, 0],

(1)

where A is the infinitesimal generator of an analytic semigroup of bounded linear
operators (S (t))t≥0 in a Hilbert space U; BH

Q = {BH
Q(t), t ∈ [0,T ]} is a fBm with Hurst

index H ∈ ( 1
2 , 1) defined in a complete probability space (Ω,F, IP); 0 < q < 1 and

cDq
t denotes the Caputo fractional derivative operator of order q. xt ∈ Cr denote the

function defined by xt(v) = x(t + v), ∀v ∈ [−r, 0], where Cr = C([−r, 0],U) is the
space of continuous functions f from [−r, 0] to U.

We will study the approximate controllability problem for nonlinear fractional con-
trol systems of the form (1) under the assumption that the associated linear system is
approximately controllable.

The paper is organized as follows. In Section 2 we e will first revise some results
concerning fractional calculus including pathwise stochastic integration with respect
to fractional Brownian motion and some estimates for such integrals. Second, we
provide some definitions, lemmas and notations necessary to establish our main re-
sults. In Section 3 we formulate and prove conditions for approximate controllability
of the fractional stochastic functional dynamical control system (1) using the con-
traction mapping principle. As an application that illustrates the abstract results, an
example is given.
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2. PRELIMINARIES

In this section we introduce some notations, definitions, a technical lemmas and
preliminary fact which are used in what follows.
Let (Ω,F, (Ft, t ∈ [0,T ]), IP) be a complete probability space with a filtration satisfy-
ing the standard conditions.

Definition 2.1. The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is
a Gaussian process BH

t = {BH
t ,Ft, t ∈ [0, T ]}, having the properties BH

0 = 0, IEBH
t = 0

and IEBH
t BH

s =
1
2 (s2H + t2H − |t − s|2H).

Let T > 0 and denote by Υ the linear space of R-valued step functions on [0, T ],
that is, ϕ ∈ Υ if

ϕ(t) =
n−1∑
i=1

ziχ[ti,ti+1)(t),

where t ∈ [0, T ], xi ∈ IR and 0 = t1 < t2 < · < tn = T . For ϕ ∈ Υ its Wiener integral
with respect to BH is∫ T

0
ϕ(s)dBH(s) =

n−1∑
i=1

zi
(
BH(ti+1) − BH(ti)

)
.

Let H be the Hilbert space defined as the closure of Υ with respect to the scalar
product ⟨χ[0,t], χ[0,s]⟩H = RH(t, s). Then the mapping

ϕ =

n−1∑
i=1

ziχ[ti,ti+1) 7→
∫ T

0
ϕ(s)dBH(s)

is an isometry between Υ and the linear space span{BH(t), t ∈ [0, T ]}, which can
be extended to an isometry between H and the first Wiener chaos of the fBm
spanL2(Ω){BH(t), t ∈ [0, T ]} (see [12]). The image of an element ϕ ∈ H by this
isometry is called the Wiener integral of ϕ with respect to BH .

Let us now consider the Kernel

KH(t, s) = cH s
1
2−H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du

where cH =

(
H(2H−1)

β(2−2H,H− 1
2 )

) 1
2

, where β denoting the Beta function, and t > s. It is not

difficult to see that
∂KH

∂t
(t, s) = cH

(
t
s

)H− 1
2

(t − s)H− 3
2 .
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Let KH : Υ 7→ L2([0,T ]) be the linear operator given by

KHϕ(s)(s) =
∫ t

s
ϕ(t)

∂KH

∂t
(t, s)dt.

Then (KHχ[0,t])(s) = KH(t, s)χ[0,t](s) and KH is an isometry betweenΥ and L2([0,T ])
that can be extended to H.

Denoting L2
H

([0,T ]) = {ϕ ∈ H,KHϕ ∈ L2([0,T ])}, since H > 1/2, we have

L1/H([0,T ]) ⊂ L2
H([0, T ]). (2)

Moreover the following result hold:

Lemma 2.1 ([12]). For ϕ ∈ L1/H([0,T ]),

H(2H − 1)
∫ T

0

∫ T

0
|ϕ(r)||ϕ(u)||r − u|2H−2drdu ≤ cH ||ϕ||2L1/H([0,T ]).

Let us now consider two separable Hilbert spaces (U, | · |U , < ., . >U) and
(V, | · |V , < ., . >V ). Let L(V,U) denote the space of all bounded linear operator from
V to U and Q ∈ L(V,V) be a non-negative self adjoint operator. Denote by L0

Q(V,U)

the space of all ξ ∈ L(V,U) such that ξQ
1
2 is a Hilbert-Schmidt operator. the norm is

given by

|ξ|2
L0

Q(V,U)
=

∣∣∣∣ξQ
1
2

∣∣∣∣2
HS
= tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from V to U.
Let {BH

n (t)}n∈IN be a sequence of two-side one-dimensional fBm mutually indepen-
dent on the complete probability space (Ω,F, IP), {en}n∈IN be a complete orthonormal
basis in V . Define the V-valued stochastic process BH

Q(t) by

BH
Q(t) =

∞∑
n=1

BH
n (t)Q

1
2 en , t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then this series converges in
the space V , that is, it holds that BH

Q(t) ∈ L2(Ω,V). Then, we say that BH
Q(t) is a

V-valued Q-cylindrical fBm with covariance operator Q.
Let ψ : [0, T ]→ L0

Q(V,U) such that

∞∑
n=1

||KH(ψQ
1
2 )en||L2([0,T ],U) < ∞. (3)

Definition 2.2. Let ψ : [0, T ] → L0
Q(V,U) satisfy (4). Then, its stochastic integral

with respect to the fBm BH
Q is defined for t ≥ 0 as∫ t

0
ψ(s)dBH

Q(s) :=
∞∑

n=1

∫ t

0
ψ(s)Q

1
2 endBH

n (s) =
∞∑

n=1

∫ t

0

(
KH(ψQ

1
2 en)

)
(s)dW(s),
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where W is a Wiener process.

Notice that if
∞∑

n=1

||ψQ
1
2 en||L1/H([0,T ],U) < ∞, (4)

then in particular (4) holds, which follows immediately from (3).
The following lemma is proved in [12] and obtained as a simple application of

Lemma 1.

Lemma 2.2 ([12]). For any ψ : [0, T ] → L0
Q(V,U) such that (5) holds, and for any

α, β ∈ [0,T ] with α > β,

IE
∣∣∣∣ ∫ α

β
ψ(s)dBH

Q(s)
∣∣∣∣2
U
≤ cH(2H − 1)(α − β)2H−1

∞∑
n=1

∫ α

β
|ψQ

1
2 en|2Uds,

where c = c(H). If in addition
∞∑

n=1

|ψQ
1
2 en|U is uniformly convergent for t ∈ [0, T ], (5)

then

IE
∣∣∣∣ ∫ α

β
ψ(s)dBH

Q(s)
∣∣∣∣2
U
≤ cH(2H − 1)(α − β)2H−1

∫ α

β
|ψ(s)|2

L0
Q(V,U)

ds. (6)

Now, we recall the following known definitions on the fractional integral and
derivative

Definition 2.3 ([12]). Let f ∈ L1(0,T ) and α > 0. The fractional Riemann-Liouville
integral of f of order α is defined for almost all t ∈ (0,T ) by

Iα f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

where Γ(α) =
∫ ∞

0 θα−1e−θdθ is the Euler function.

Definition 2.4. Riemann-Liouville derivative of order α with lower limit zero for a
function f : [0,∞)→ IR can be written as

LDα f (t) =
1

Γ(n − α)
dn

dtn

∫ t

0

f (s)
(t − s)α+1−n ds, t > 0, n − 1 < α < n. (7)

Definition 2.5. The Caputo derivative of order α for a function f : [0,∞) → IR can
be written as

cDα f (t) =L Dα

(
f (t) −

n−1∑
k=0

tk

k!
f k(0)

)
, t > 0, n − 1 < α < n. (8)
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If f (t) ∈ Cn[0,∞), then

cDα f (t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1 f n(s)ds = In−α f n(s), t > 0, n − 1 < α < n

Now, we denote by C(0, T ; L2(Ω; U)) = C(0, T ; L2(Ω,F, IP; U)) the Banach
space of all continuous functions from [0, T ] into L2(Ω; U) equipped with the sup
norm.

Let us consider a fixed real number r ≥ 0. If x ∈ C(−r, T ; L2(Ω; U)) for each
t ∈ [0, T ] we denote by xt ∈ C(−r, 0; L2(Ω; U)) the function defined by xt(v) = x(t+v),
for v ∈ [−r, 0].

Consider the fractional functional equation with control of the form cDq
t [x(t) − φ(t, xt)] = Ax(t) + Bu(t) + ϕ(t, xt) + σH(t)

dBH
Q(t)

dt
x(t) = ψ(t), t ∈ [−r, 0],

(9)

where BH
Q(t) is the fractional Brownian motion which was introduced above, the ini-

tial data ψ ∈ C(−r, 0; L2(Ω; U)) and A : Dom(A) ⊂ U → U is the infinitesimal
generator of a strongly continuous semigroup S (.) on U. Here, for 0 < q < 1, cDq

t
denote the Caputo fractional derivative operator of order q, control function u(.) is
given in L2([0, T ], Ũ), a Banach space of admissible control functions with Ũ is
a Hilbert space and B ∈ L(Ũ,U). Further φ, ϕ : [0, T ] × C(−r, 0; U) → U and
σH : [0, T ]→ L0

Q(V,U) are appropriate functions.

Definition 2.6. A U-valued process x(t) is called a mild solution of (1) if
x ∈ C(−r, T ; L2(Ω; U)), x(t) = ψ(t) for t ∈ [−r, 0], and, for t ∈ [0, T ], satisfies

x(t) =

S (t)
[
ψ(0) − φ(0, x0)

]
+ φ(t, xt) +

1
Γ(q)

∫ t

0
(t − s)q−1S (t − s)

[
Bu(s) + ϕ(s, xs)

]
ds

+
1
Γ(q)

∫ t

0
(t − s)q−1S (t − s)φ(s, xs)ds +

1
Γ(q)

∫ t

0
(t − s)q−1S (t − s)σH(s)dBH

Q(s).

(10)

We will make use of the following assumptions on data of the problem:
(H1) The semigroup (S (t))t≥0 is a bounded linear operator on U and satisfies for t ≥ 0

|S (t)x|U ≤ Meλt|x|, M ≥ 1, λ ∈ IR and x ∈ U.

(H2) The functions ϕ, φ satisfy the following Lipschitz condition: there exist con-
stants c1, c2 > 0 for x, y ∈ U and t ≥ 0 such that

|ϕ(t, x) − ϕ(t, y)|2U ≤ c1|x − y|2U ,
|φ(t, x) − φ(t, y)|2U ≤ c2|x − y|2U .
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(H3) The functions ϕ, φ are continuous and satisfy the usual linear growth condition
i.e., there exist constants c3, c4 > 0 for x, y ∈ U and t ≥ 0 such that

|ϕ(t, x)|2U ≤ c3(1 + |x|2U),
|φ(t, x)|2U ≤ c4(1 + |x|2U).

(H4) The function σH satisfies the following conditions: for the complete orthonor-
mal basis {en}n∈IN in V , we have

∞∑
n=1

||σHQ1/2en||L2([0,T ];U) < ∞.
∞∑

n=1

|σH(t, x(t))Q1/2en|U is uniformly convergent for t ∈ [0,T ].

Note that, by assumption (H4), for every t ∈ [0, T ],
∫ t

0
|σH(s)|2

L0
Q(V,U)

ds < ∞.

(H5) The linear stochastic system is approximately controllable on [0,T ].

Let B∗, S ∗(.) be respectively the operator adjoint of B and S (.). Define the con-
trollability Grammian operator by Θt

0 =
∫ t

0 (t − s)2(q−1)S (t − s)BB∗S ∗(t − s)ds. Then,

for each 0 ≤ s ≤ t, the operator θ
(
θI + Θt

0

)−1
→ 0 in the strong operator topology as

θ → 0+.
We consider the corresponding linear fractional deterministic control system to

(9) { cDq
t x(t) = Ax(t) + (Bu)(t) t ∈ [0, T ],
x(t) = ψ(t), t ∈ [−r, 0], (11)

Proposition 2.1. The deterministic system (11) is approximately controllable on

[0, T ] iff the operator θ
(
θI + Θt

0

)−1
→ 0 as θ → 0+.

We note that the approximate controllability for linear fractional deterministic con-
trol system (11) is a natural generalization of approximate controllability of linear
first order control system (see [11], Theorem 2).

Definition 2.7. System (9) is approximately controllable on [0,T ] if
R(T ) = L2(Ω,F, IP; U), where R(t) = {x(t) = x(t, u) : u ∈ L2([0,T ], Ũ)}.

The following lemma is required to define the control function. The reader can
refer to [10] for the proof.

Lemma 2.3. For all adapted, U-valued process zT ∈ L2(Ω; U), there exists f ∈

L2
(
Ω; L2([0, T ]; L0

Q)
)

such that zT = IEzT +

∫ T

0
f (s)dBH

Q(s).
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Let θ > 0 and zT ∈ L2(Ω; U). Define the control function in the following form:
uθ(t, x) =

= B∗(T − t)q−1S ∗(T − t)
[
(θI + ΘT

0 )−1
(
IEzT − S (T )[ψ(0) − φ(0, x0)] − φ(T, x(T ))

)
+

∫ T
0 (θI + ΘT

0 )−1 f (s)dBH
Q(s) − 1

Γ(q)

∫ T

0
(θI + ΘT

0 )−1(T − s)q−1S (T − s)φ(s, x(s))ds

− 1
Γ(q)

∫ T

0
(θI + ΘT

0 )−1(T − s)q−1S (T − s)ϕ(s, x(s))ds

− 1
Γ(q)

∫ T

0
(θI + ΘT

0 )−1(T − s)q−1S (T − s)σH(s)dBH
Q(s)

]
.

Now for our convenience, let us assume that the function f satisfies the condition
(H4). Set c5 = max{| f (s)|2U : 0 ≤ s < t ≤ T }.

Lemma 2.4. There exists a positive real constant N such that for all x ∈ C(−r, T ; U),
we have

IE|uθ(t, x)|2 ≤ N
θ2

(
1 +

∫ t

0
IE|x(s)|2Uds

)
. (12)

Proof. Let x ∈ C(−r,T ; U) and T > 0 be fixed. We have

IE|uθ(t, x)|2 ≤
≤ 6IE

∣∣∣∣B∗(T − t)q−1S ∗(T − t)(θI + ΘT
0 )−1(IEzT − S (T )[ψ(0) − φ(0, x0)])

∣∣∣∣2
+ 6IE

∣∣∣∣B∗(T − t)q−1S ∗(T − t)(θI + ΘT
0 )−1φ(T, x(T ))

∣∣∣∣2
+ 6IE

∣∣∣∣B∗(T − t)q−1S ∗(T − t)
∫ t

0 (θI + ΘT
0 )−1 f (s)dBH

Q(s)
∣∣∣∣2

+ 6IE
∣∣∣∣B∗(T − t)q−1S ∗(T − t)

1
Γ(q)

∫ t

0
(θI + ΘT

0 )−1(T − s)q−1S (T − s)φ(s, x(s))ds
∣∣∣∣2

+ 6IE
∣∣∣∣B∗(T − t)q−1S ∗(T − t)

1
Γ(q)

∫ t

0
(θI + ΘT

0 )−1(T − s)q−1S (T − s)ϕ(s, x(s))ds
∣∣∣∣2

+ 6IE
∣∣∣∣B∗(T − t)q−1S ∗(T − t)

1
Γ(q)

∫ t

0
(θI + ΘT

0 )−1(T − s)q−1S (T − s)σH(s)dBH
Q(s)

∣∣∣∣2.
From the Hölders inequality, the assumption on the data and Lemma 2.4., we have

IE|uθ(t, x)|2 ≤ 6
θ2 |B|

2T 2q−2
(

M2e2λt

q − 1

)2[
IE|zT |2 − IE|ψ(0) − φ(0, x0)|2

]
+

6
θ2 |B|

2T 2q−2
(

Meλt

q − 1

)2[
IE|φ(T, x(T ))|2 − c6H(2H − 1)T 2H

]
+

6
θ2 |B|

2T 4q−3
(

M2e2λt

(q − 1)Γ(q)

)2

c7

∫ t

0
(1 + IE|x(s)|2U)ds

+
6
θ2 |B|

2T 4q−3
(

M2e2λt

(q − 1)Γ(q)

)2

cH(2H − 1)T 2H−1
∫ t

0
|σH(s)|2

L0
Q(V,U)

ds,
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where c6 = cc5 and c7 = c3 + c4.
Remark that condition (H4) ensures the existence of a positive constant c8 such that

6|B|2T 4q−3
(

M2e2λt

(q − 1)Γ(q)

)2

cH(2H−1)T 2H−1
∫ t

0
|σH(s)|2

L0
Q(V,U)

ds ≤ c8, for all t ≥ 0.

Thus it follows from the above inequalities and linear growth condition that there
exists N > 0 such that

IE|uθ(t, x)|2 ≤ N
θ2

(
1 +

∫ t

0
IE|x(v)|2U)dv

)
.

3. CONTROLLABILITY RESULTS

In this section, we formulate and prove conditions for approximate controlla-
bility of the fractional functional stochastic dynamical control system (9) using the
contraction mapping principle. In particular, we establish approximate controllability
of nonlinear fractional functional stochastic control system (9) under the assumptions
that the corresponding linear system is approximately controllable.

We first define the operator Pθ : C(0,T ; L2(Ω,U))→ C(0, T ; L2(Ω,U)), θ > 0 by

Pθx(t) =

S (t)
[
ψ(0) − φ(0, x0)

]
+ φ(t, xt) +

1
Γ(q)

∫ t

0
(t − s)q−1S (t − s)

[
Buθ(s, x) + ϕ(s, xs)

]
ds

+
1
Γ(q)

∫ t

0
(t − s)q−1S (t − s)φ(s, xs)ds +

1
Γ(q)

∫ t

0
(t − s)q−1S (t − s)σH(s)dBH

Q(s).

(13)

Lemma 3.1. For any x ∈ C(0,T ; L2(Ω,U)), (Pθx)(.) is continuous on [0,T] in L2

sense.

Proof. Let x ∈ C(0, T ; L2(Ω,U)) be fixed and 0 ≤ t1 < t2 ≤ T . Then from Eq. (13)
we have

IE|(Pθx)(t2) − (Pθx)(t1)|2 ≤

≤ 6
[
IE|(S (t2) − S (t1))[ψ(0) − φ(0, x0)]|2 + IE|φ(t2, xt2) − φ(t1, xt1)|2

]
+ 6

[ 4∑
i=1

IK|Σx
i (t2) − Σx

i (t1)|2
]
.

From the strong continuity of S (.), the first term on the R.H.S goes to zero as t2−t1 →
0 [5]. The Lipschitz condition on φ implies that the second term goes to zero as
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t2 − t1 → 0.
Next, it follows from Hölder’s inequality and assumptions on the theorem that

IK|Σx
1(t2) − Σx

1(t1)|2 ≤

3IK

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
(t1 − s)q−1[S (t2 − s) − S (t1 − s)]ϕ(s, xs)ds

∣∣∣∣∣∣2
+ 3IK

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]S (t2 − s)ϕ(s, xs)ds

∣∣∣∣∣∣2
+ 3IK

∣∣∣∣∣∣ 1
Γ(q)

∫ t2

t1
(t2 − s)q−1ϕ(s, xs)ds

∣∣∣∣∣∣2
≤ 3

t2q−1
1

(2q − 1)Γ2(q)

∫ t1

0
IK

∣∣∣∣[S (t2 − s) − S (t1 − s)]ϕ(s, xs)
∣∣∣∣2ds

+ 3
(

Meλt

Γ(q)

)2( ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]2
ds

)( ∫ t1

0
IE|ϕ(s, xs)|2ds

)
+ 3

(t2 − t1)2q−1

2q − 1

(
Meλt

Γ(q)

)2 ∫ t2

t1
IE|ϕ(s, xs)|2ds.

Further, we obtain

IE|Σx
2(t2) − Σx

2(t1)|2 ≤

≤ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
(t1 − s)q−1[S (t2 − s) − S (t1 − s)]Buα(s, x)ds

∣∣∣∣∣∣2
+ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]S (t2 − s)Buα(s, x)ds

∣∣∣∣∣∣2
+ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t2

t1
(t2 − s)q−1Buα(s, x)ds

∣∣∣∣∣∣2
≤ 3

t2q−1
1

(2q − 1)Γ2(q)

∫ t1

0
IE
∣∣∣∣[S (t2 − s) − S (t1 − s)]Buα(s, x)

∣∣∣∣2ds

+ 3
(

Meλt

Γ(q)

)2

|B|2
( ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]2
ds

)( ∫ t1

0
IE|uα(s, x)|2ds

)
+ 3

(t2 − t1)2q−1

2q − 1

(
Meλt

Γ(q)

)2

|B|2
∫ t2

t1
IE|uα(s, x)|2ds.

IE|Σx
3(t2) − Σx

3(t1)|2 ≤

≤ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
(t1 − s)q−1[S (t2 − s) − S (t1 − s)]φ(s, xs)ds

∣∣∣∣∣∣2
+ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]S (t2 − s)φ(s, xs)ds

∣∣∣∣∣∣2
+ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t2

t1
(t2 − s)q−1φ(s, xs)ds

∣∣∣∣∣∣2
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≤ 3
t2q−1
1

(2q − 1)Γ2(q)

∫ t1

0
IE
∣∣∣∣[S (t2 − s) − S (t1 − s)]φ(s, xs)

∣∣∣∣2ds

+ 3
(

Meλt

Γ(q)

)2( ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]2
ds

)( ∫ t1

0
IE|φ(s, xs)|2ds

)
+ 3

(t2 − t1)2q−1

2q − 1

(
Meλt

Γ(q)

)2 ∫ t2

t1
IE|φ(s, xs)|2ds.

Similarly, using Lemma 2.4 and assumptions on the theorem we get

IE|Σx
4(t2) − Σx

4(t1)|2 ≤

≤ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
(t1 − s)q−1[S (t2 − s) − S (t1 − s)]σH(s)dBH

Q(s)

∣∣∣∣∣∣2
+ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]S (t2 − s)σH(s)dBH

Q(s)

∣∣∣∣∣∣2
+ 3IE

∣∣∣∣∣∣ 1
Γ(q)

∫ t2

t1
(t2 − s)q−1σH(s)dBH

Q(s)

∣∣∣∣∣∣2
≤

3cH(2H − 1)T 2H−1t2q−1
1

(2q − 1)Γ2(q)

∫ t1

0
IE
∣∣∣∣[S (t2 − s) − S (t1 − s)]σH(s)

∣∣∣∣2ds

+
3
Γ2(q)

cH(2H − 1)T 2H−1
( ∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]2
ds

)
×

( ∫ t1

0
IE|S (t2 − s)σH(s)|2ds

)
+

3cH(2H − 1)T 2H−1(t2 − t1)2q−1

2q − 1

(
Meλt

Γ(q)

)2 ∫ t2

t1
IE|S (t2 − s)σH(s)|2ds.

Hence using the strong continuity S (t) and Lebesgue’s dominated convergence the-
orem, we conclude that the right-hand side of the above inequalities tends to zero as
t2 − t1 → 0. Thus we conclude Pθ(x)(t) is continuous from the right in [0,T ). A sim-
ilar argument shows that it is also continuous from the left in (0,T ]. This completes
the proof of this lemma.

Theorem 3.1. Assume assumptions (H1)-(H4) are satisfied. Then the system (9) has
a mild solution on [0, T ].

Proof. We prove the existence of a fixed point of the operator Pθ by using the con-
traction mapping principle. Let x ∈ C(0, T ; L2(Ω,U)). From (13) we obtain

IE
∣∣∣∣Pθx

∣∣∣∣2
C
≤ 6

[
sup

0≤t≤T
IE|S (t)[ψ(0) − φ(0, x0)]|2 + sup

0≤t≤T
IE|φ(t, xt)|2 + sup

0≤t≤T

4∑
i=1

IE|Σx
i (t)|2

]
.

(14)
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Using assumptions (H1)-(H4) and Lemma 2.12., we get

sup
0≤t≤T

IE|S (t)[ψ(0) − φ(0, x0)]|2 ≤ M2e2λT
[
|ψ(0)|2 + |φ(0, x0)|2] (15)

and
4∑

i=1

IE|Σx
i (t)|2 ≤ 3

(
MeλT

Γ(q)

)2 T 2q−1

2q − 1
c7

(
1 + |x|2C

)
+ 3

(
MeλT

Γ(q)

)2 T 2q

2q − 1
|B|2 N

θ2

(
1 + |x|2C

)
+ c9,

(16)

where c9 is a positive constant such that

3cH(2H − 1)T 2H−1 T 2q−1

2q − 1

(
MeλT

Γ(q)

)2 ∫ t

0
|σH(s)|2LQ(V,U)ds ≤ c9.

Inequalities (15) and (16) together imply that IE
∣∣∣∣Pθx

∣∣∣∣2
C
< ∞. By Lemma 3.1., Pθx ∈

C(0,T ; L2(Ω,U)). Thus for each θ > 0, the operator Pθ maps C(0, T ; L2(Ω,U)) into
itself.
Now, we are going to use the Banach fixed point theorem to prove that Pθ has
a unique fixed point in C(0, T ; L2(Ω,U)). We claim that Pθ is a contraction on
C(0,T ; L2(Ω,U)). For x, y ∈ C(0, T ; L2(Ω,U)) we have

IE
∣∣∣∣(Pθ)(x) − Pθ)(y)

∣∣∣∣2
C

≤ 4IE
4∑

i=1

|Σx
i (t) − Σy

i (t)|2

≤ 4c9 + 4
(

MeλT

Γ(q)

)2[ T 2q−1

2q − 1
c1 +

N
θ2 |B|

2 T 2q−1

2q − 1
T 2 +

T 2q−1

2q − 1
c2

] ∫ t

0
IE|x(s) − y(s)|2ds

= 4c9 + 4
(

MeλT

Γ(q)

)2[ T 2q−1

2q − 1
c10 +

N
θ2 |B|

2 T 2q+1

2q − 1

] ∫ t

0
IE|x(s) − y(s)|2ds.

It results that

sup
0≤t≤T

IE
∣∣∣∣(Pθ)(x) − Pθ)(y)

∣∣∣∣2
C

≤
[
4c9 + 4

(
MeλT

Γ(q)

)2( c10

2q − 1
+

N|B|2

θ2(2q − 1)

)]
T 2q+2 sup

0≤t≤T
IE|x(t) − y(t)|2C .

(17)

Therefore we conclude that Pθ is a contraction mapping on C(0, T ; L2(Ω,U)). Then
the mapping Pθ has a unique fixed point x(.) ∈ C(0, T ; L2(Ω,U)), which is a mild
solution of (9).

Theorem 3.2. Assume that the assumptions (H1)-(H5) hold. If the function ϕ and φ
are uniformly bounded and {S (t); t ≥ 0} is compact, then the system (9) is approxi-
mately controllable on [0, T ].
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Proof. Let xθ be a fixed point of IPθ. By the stochastic Fubini theorem, it can be easily
seen that

xθ(T ) ≤ zT − θ(θI + Θ)−1
(
IEzT − S (T )[ψ(0) − φ(0, x0)] − φ(t, (xθ)t)

)
+

θ

Γ(q)

∫ T

0
(θI + ΘT

s )−1(T − s)q−1S (T − s)[ϕ(s, xθ(s)) + φ(s, xθ(s))]ds

+
θ

Γ(q)

∫ T

0
(θI + ΘT

s )−1[(T − s)q−1S (T − s)σH(s) − Γ(q) f (s)]dBH
Q(s).

It follows from the assumption on ϕ and φ that there exists c11 > 0 such that

|ϕ(s, xθ(s))|2 + |φ(s, xθ(s))|2 ≤ c11 (18)

Then there is a subsequence still denoted by {ϕ(s, xθ(s)), φ(s, xθ(s))} which converges
to weakly to, say, {ϕ(s), φ(s)} in U.
We have

IE
∣∣∣∣xθ(T ) − zT

∣∣∣∣2
≤ 7IE

∣∣∣∣∣∣θ(θI + ΘT
0 )−1

(
IEzT − S (T )[ψ(0) − φ(0, x0)] − φ(t, (xθ)t)

)∣∣∣∣∣∣2
+ 7c6H(2H − 1)T 2H−1

( ∫ T

0
|θ(θI + ΘT

s )−1|2
L0

Q
ds

)
+ 7IE

( ∫ T

0
(T − s)q−1|θ(θI + ΘT

s )−1|
∣∣∣∣S (T − s)(ϕ(s, xθ(s)) − ϕ(s)

∣∣∣∣ds
)2

+ 7IE
( ∫ T

0
(T − s)q−1|θ(θI + ΘT

s )−1S (T − s)ϕ(s)|ds
)2

+ 7IE
( ∫ T

0
(T − s)q−1|θ(θI + ΘT

s )−1|
∣∣∣∣S (T − s)(φ(s, xθ(s)) − φ(s)

∣∣∣∣ds
)2

+ 7IE
( ∫ T

0
(T − s)q−1|θ(θI + ΘT

s )−1S (T − s)φ(s)|ds
)2

+ 7cH(2H − 1)T 2H−1
( ∫ T

0
|θ(θI + ΘT

s )−1S (T − s)σH(s)|2
L0

Q
ds

)
.

By assumption (H5), for all 0 ≤ s ≤ T the operator θ(θI + ΘT
s )−1 → 0 strongly

as θ → 0+ and moreover |θ(θI + ΘT
s )−1| ≤ 1. Finally, by the Lebesgue dominated

convergence theorem and the compactness of S (.) we get IE
∣∣∣∣xθ(T ) − zT

∣∣∣∣2 → 0 as
θ → 0+ which implies the approximate controllability of system (9).

4. AN EXAMPLE

As a specific application of the theoretical result established in the preceding The-
orem, we can consider the following example.
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Let V = L2(0, π) and en =

√
2
π sin(nx), n = 1, 2, . . .. Then {en}n is a com-

plete orthonormal basis in V . Let U = L2(0, π) and A = ∂2

∂z2 with domain D(A) =
H1

0(0, π) ∩ H2(0, π). Then, it is well-known that Av = −∑∞
n=1 n2⟨v, en⟩en for any

v ∈ U, and A is the infinitesimal generator of a strongly continuous semigroup of
bounded linear operators S (t) : U → U, where S (t)v =

∑∞
n=1 exp(−n2t)⟨v, en⟩en. In

order to define the operator Q : V → V , we choose a sequence {ηn}n≥1 ⊂ IR+ and set
Qen = ηnen, and assume that tr(Q) =

∑∞
n=1
√
ηn < ∞. Define the process BH

Q(s) by
BH

Q(t) =
∑∞

n=1
√
ηnBH

n (t)en, where H ∈ (1/2, 1) and {BH
n }n≥0 is a sequence of mutually

independent two-sided one-dimensional fractional Brownian motions.
We consider the following fractional stochastic control system of the form

cDq
t [x(t, z) − φ(t, xt(z))] =

∂2x(t, z)
∂z2 + y(t, z) + ϕ(t, xt(z)) + σH(t)

dBH
Q(t)

dt
x(t, 0) = x(t, π) = 0, t ≥ 0
x(t, z) = ψ(t, z); t ∈ [−r, 0], z ∈ [0, π],

(19)
where 0 < q < 1, r ∈ (0, 1) and T > 0. We define x(t)(z) = x(t, z), ϕ(t, xt)(z) =
ϕ(t, xt(z)) and the bounded linear operator B : Ũ → U by Bu(t)(z) = y(t, z), 0 ≤ z ≤ π,
u ∈ Ũ. On the other hand, it can be easily seen that the deterministic linear fractional
control system corresponding to (18) is approximately controllable on [0, π] (see [5]).
Therefore, with the above choices, the system (18) may be written in the abstract form
(9) and all conditions of Theorem 3.3 are satisfied. Thus, by its conclusion, the frac-
tional stochastic control system (18) is approximately controllable on [0, π].
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FEKETE-SZEGÖ TYPE INEQUALITIES FOR
CERTAIN SUBCLASSES OF SAKAGUCHI TYPE
FUNCTIONS

ROMAI J., v.8, no.2(2012), 119–127

Bhaskara Srutha Keerthi
Department of Applied Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur,

Chennai, India

laya@svce.ac.in, sruthilaya06@yahoo.co.in

Abstract The purpose of the present paper is to derive the coefficient inequality for the class
C(λ, ϕ, t) of certain Sakaguchi type functions f (z) defined on the open unit disk for which
(1−t)[λz3 f ′′′(z)+(1+2λ)z2 f ′′(z)+z f ′(z)]
λz2[ f ′′(z)−t2 f ′′(tz)]+z[ f ′(z)−t f ′(tz)] , (|t| ≤ 1, t , 1, 0 ≤ λ ≤ 1) lies in the region starlike with

respect to 1 and is symmetric with respect to real axis. As a special case of this result,
coefficient inequality for a class of functions defined through fractional derivatives are
obtained.
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1. INTRODUCTION

Let A be the class of analytic functions of the form

f (z) = z +
∞∑

n=2

anzn (z ∈ ∆ := {z ∈ C|z| < 1}) (1)

and S be the subclass of A consisting of univalent functions.
Let f (z) and g(z) be analytic functions in the unit disk ∆. We say that f (z) is

subordinate to g(z) if there exists a Schwarz function w(z), analytic in ∆with w(0) = 0
and |w(z)| < 1, such that f (z) = g(w(z)). We denote the subordination by f (z) ≺
g(z). In particular, if g(z) is univalent in ∆, the above subordination is equivalent to
f (0) = g(0) and f (∆) ⊂ g(∆).

Let P be the class of all functions of the form p(z) = 1 +
∑∞

n=1 pnzn which are in
∆. If p(z) ∈ P, then it satisfies Re (p(z)) > 0 in ∆ and p(0) = 1 .

A function f (z) ∈ A is said to be starlike of order α if it satisfies Re ( z f ′(z)
f (z) ) > α.

The class of starlike functions is denoted by S ∗(α).
A function f (z) ∈ A is said to be in the class C(λ, α, t) if it satisfies

Re
{

(1 − t)[λz3 f ′′′(z) + (1 + 2λ)z2 f ′′(z) + z f ′(z)]
λz2[ f ′′(z) − t2 f ′′(tz)] + z[ f ′(z) − t f ′(tz)]

}
> α,

|t| ≤ 1, t , 1, 0 ≤ λ ≤ 1, 0 ≤ α < 1 (2)
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and a function f (z) ∈ A is said to be in the class S ∗(α, t) if it satisfies

Re
{

(1 − t)z f ′(z)
f (z) − f (zt)

}
> α, |t| ≤ 1, t , 1. (3)

The class S ∗(α, t) was introduced and studied by Owa et al. [9, 10] for some
α ∈ [0, α) and and for all z ∈ ∆.

For α = 0 and t = −1 in S ∗(α, t) we get the class S ∗(0,−1) studied be Sakaguchi
[11]. A function f (z) ∈ S ∗(α,−1) is called Sakaguchi function of order α.

In this paper, we define below the class C(λ, ϕ, t). For earlier works see also [1, 2,
3, 4, 12].

Definition 1.1. Let ϕ(z) = 1 + B1z + B2z2 + · · · be univalent starlike function with
respect to ‘1’ which maps the unit disk ∆ onto a region in the right half plane which
is symmetric with respect to the real axis, and let B1 > 0. Then function f ∈ A is said
to be in the class C(λ, ϕ, t) if{

(1 − t)[λz3 f ′′′(z) + (1 + 2λ)z2 f ′′(z) + z f ′(z)]
λz2[ f ′′(z) − t2 f ′′(tz)] + z[ f ′(z) − t f ′(tz)]

}
≺ ϕ(z),

|t| ≤ 1, t , 1, 0 ≤ λ ≤ 1 (4)

In the present paper, we obtain the Fekete-Szegö inequality for the functions in the
subclass C(λ, ϕ, t). We also give application of our results to certain functions defined
through convolution (or Hadamard product) and in particular, we consider the class
Cδ(λ, ϕ, t) defined by fractional derivatives.

To prove our main results, we need the following lemma:

Lemma 1.1. [6] If p(z) = 1 + c1z + c2z2 + · · · is an analytic function with positive
real part in ∆, then

|c2 − vc2
1| ≤


−4v + 2 if v ≤ 0,
2 if 0 ≤ v ≤ 1,
4v − 2 if v ≥ 1.

When v < 0 or v > 1, the equality holds if and only if p(z) is (1 + z)/(1 − z) or one of
its rotations. If 0 < v < 1, then the equality holds if and only if p(z) is (1+ z2)/(1− z2)
or one of its rotations. If v = 0, the equality holds if and only if

p(z) =
(
1
2
+

1
2
λ

)
1 + z
1 − z

+

(
1
2
− 1

2
λ

)
1 − z
1 + z

(0 ≤ λ ≤ 1)

or one of its rotations. If v = 1, the equality holds if and only if p(z) is the
reciprocal of one of the functions such that the equality holds in the case of v = 0.

Also the above upper bound is sharp, and it can be improved as follows when
0 < v < 1:

|c2 − vc2
1| + v|c1|2 ≤ 2 (0 < v ≤ 1/2)
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and
|c2 − vc2

1| + (1 − v)|c1|2 ≤ 2 (1/2 < v ≤ 1).

Lemma 1.2. [5] If p(z) = 1 + c1z + c2z2 + · · · is a function with positive real part,
then

|c2 − µc2
1| ≤ 2 max{1, |2µ − 1|},

where µ is complex and the result is sharp for the functions given by

p(z) =
1 + z2

1 − z2 , p(z) =
1 + z
1 − z

.

2. MAIN RESULTS

Our main result is contained in the following theorem:

Theorem 2.1. If f (z) given by (1) belongs to C(λ, ϕ, t), then

|a3 − µa2
2|

≤


1

3(1+2λ)(2+t)(1−t)

[
B2 + B2

1

(
1+t
1−t

)
− 3µB2

1(1+2λ)(2+t)
4(1+λ)2(1−t)

]
if µ ≤ σ1

1
3(1+2λ)(2+t)(1−t) if σ1 ≤ µ ≤ σ2

− 1
3(1+2λ)(2+t)(1−t)

[
B2 + B2

1

(
1+t
1−t

)
− 3µB2

1(1+2λ)(2+t)
4(1+λ)2(1−t)

]
if µ ≥ σ2

where

σ1 =
4(1 + λ)2(1 − t)

3B1(1 + 2λ)(2 + t)

{
−1 +

B2

B1
+

B1(1 + t)
(1 − t)

}
and

σ2 =
4(1 + λ)2(1 − t)

3B1(1 + 2λ)(2 + t)

{
1 +

B2

B1
+

B1(1 + t)
(1 − t)

}
.

The result is sharp.

Proof. Let f ∈ C(λ, ϕ, t). Then there exists a Schwarz function w(z) ∈ A such that

(1 − t)[λz3 f ′′′(z) + (1 + 2λ)z2 f ′′(z) + z f ′(z)]
λz2[ f ′′(z) − t2 f ′′(tz)] + z[ f ′(z) − t f ′(tz)]

= ϕ(w(z))

(z ∈ ∆; |t| ≤ 1, t , 1) (5)

Using subordination the class P can also be characterized as p1(z) ∈ P if and only if
p1(z) ≺ 1+z

1−z in ∆, so

p1(z) =
1 + w(z)
1 − w(z)

= 1 + c1z + c2z2 + · · · (z ∈ ∆). (6)
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From (6), we obtain 1 + w(z) = (1 − w(z))(1 + c1z + c2z2 + · · · ),

w(z) =
c1

2
z +

1
2

c2 −
c2

1

2

 z2 + · · · . (7)

Let

p(z) =
(1 − t)[λz3 f ′′′(z) + (1 + 2λ)z2 f ′′(z) + z f ′(z)]
λz2[ f ′′(z) − t2 f ′′(tz)] + z[ f ′(z) − t f ′(tz)]

= 1 + b1z + b2z2 + · · · (z ∈ ∆), (8)

which gives

b1 = 2(1 + λ)(1 − t)a2 and

b2 = 4(1 + λ)2(t2 − 1)a2
2 + 3(1 + 2λ)(2 − t − t2)a3. (9)

Since ϕ(z) is univalent and p ≺ ϕ, therefore using (7), we obtain

p(z) = ϕ(w(z)) = 1 +
B1c1

2
z +

1
2

c2 −
c2

1

2

 B1 +
1
4

c2
1B2

 z2 + · · · (z ∈ ∆), (10)

Now from (8), (9) and (10), we have

2(1 + λ)(1 − t)a2 =
B1c1

2
,

4(1 + λ)2(t2 − 1)a2
2 + 3(1 + 2λ)(2 − t − t2)a3 =

1
2

c2 −
c2

1

2

 B1 +
1
4

c2
1B2,

|t| ≤ 1, t , 1, 0 ≤ λ ≤ 1.

Therefore we have

a3 − µa2
2 =

B1

6(1 + 2λ)(2 + t)(1 − t)
[c2 − vc2

1], (11)

where

v =
1
2

[
1 − B2

B1
− B1

(
1 + t
1 − t

)
+

3µB1(1 + 2λ)(2 + t)
4(1 + λ)2(1 − t)

]
.

Our result now follows by an application of Lemma 1.1. To shows that these bounds
are sharp, we define the functions Kϕn

(n = 2, 3, . . . ) by

(1 − t)[λz3K′′′ϕn
(z) + (1 + 2λ)z2K′′ϕn

(z) + zK′ϕn
(z)]

λz2[K′′ϕn
(z) − t2K′′ϕn

(tz)] + z[K′ϕn
(z) − tK′ϕn

(tz)]
= ϕ(zn−1),

Kϕn
(0) = 0 = [Kϕn

]′(0) − 1
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and the function Fη and Gη (0 ≤ η ≤ 1) by

(1 − t)[λz3F′′′η (z) + (1 + 2λ)z2F′′η (z) + zF′η(z)]

λz2[F′′η (z) − t2F′′η (tz)] + z[F′η(z) − tF′η(tz)]
= ϕ

(
z(z + η)
(1 + ηz)

)
,

Fη(0) = 0 = [Fη]′(0) − 1

and
(1 − t)[λz3G′′′η (z) + (1 + 2λ)z2G′′η (z) + zG′η(z)]

λz2[G′′η (z) − t2G′′η (tz)] + z[G′η(z) − tG′η(tz)]
= ϕ

(
−z(z + η)
(1 + ηz)

)
,

Gη(0) = 0 = [Gη]′(0) − 1.

Obviously the functions Kϕn
, Fη, Gη ∈ C(λ, ϕ, t). Also we write Kϕ := Kϕ2 . If µ < σ1

or µ > σ2, then equality holds if and only if f is Kϕ or one of its rotations. When
σ1 < µ < σ2, the equality holds if and only if f is Kϕ3 or one of its rotations. µ = σ1
then equality holds if and only if f is Fη or one of its rotations. µ = σ2 then equality
holds if and only if f is Gη or one of its rotations.

If σ1 ≤ µ ≤ σ2, in view of Lemma 1.1, Theorem 2.1 can be improved.

Theorem 2.2. Let f (z) given by (1) belongs to C(λ, ϕ, t) and σ3 be given by

σ3 =
σ1 + σ2

2
=

4(1 + λ)2(1 − t)
3B1(1 + 2λ)(2 + t)

[
B2

B1
+ B1

(
1 + t
1 − t

)]
If σ1 < µ ≤ σ3, then

|a3 − µa2
2 | +

4
3B2

1

(B1 − B2)
(

(1 + λ)2(1 − t)
(1 + 2λ)(2 + t)

)
− B2

1

(
(1 + λ)2(1 + t)
(1 + 2λ)(2 + t)

)
+

3µB2
1

4

 |a2 |2

≤ B1

3(1 + 2λ)(2 + t)(1 − t)
.

If σ3 < µ ≤ σ2, then

|a3 − µa2
2 | +

4
3B2

1

(B1 + B2)
(

(1 + λ)2(1 − t)
(1 + 2λ)(2 + t)

)
+ B2

1

(
(1 + λ)2(1 + t)
(1 + 2λ)(2 + t)

)
−

3µB2
1

4

 |a2 |2

≤ B1

3(1 + 2λ)(2 + t)(1 − t)
.

Theorem 2.3. If f (z) is given by (1) belongs to C(λ, ϕ, t) then

|a3 − µa2
2|

≤ B1

3(1 + 2λ)(2 + t)(1 − t)
max

{
1,

∣∣∣∣∣B2

B1
+

B1(1 + t)
(1 − t)

− 3(1 + 2λ)(2 + t)
4(1 + λ)2(1 − t)

µB1

∣∣∣∣∣} .
The result is sharp.

Proof. By applying the Lemma 1.2 in (11) we get Theorem 2.3. The result is sharp
for the functions defined by

(1 − t)[λz3 f ′′′(z) + (1 + 2λ)z2 f ′′(z) + z f ′(z)]
λz2[ f ′′(z) − t2 f ′′(tz)] + z( f ′(z) − t f ′(tz))]

= ϕ(z2)



124 Bhaskara Srutha Keerthi

and
(1 − t)[λz3 f ′′′(z) + (1 + 2λ)z2 f ′′(z) + z f ′(z)]
λz[ f ′′(z) − t2 f ′′(tz)] + z( f ′(z) − t f ′(tz))]

= ϕ(z).

3. APPLICATIONS TO FUNCTIONS DEFINED
BY FRACTIONAL DERIVATIVES

For two analytic functions f (z) = z+
∞∑

n=0

anzn and g(z) = z+
∞∑

n=0

gnzn, their convolu-

tion (or Hadamard product) is defined to be the function ( f ∗ g)(z) = z+
∑∞

n=0 angnzn.
For a fixed g ∈ A, let Cg(λ, ϕ, t) be the class of functions f ∈ A for which ( f ∗ g) ∈
C(λ, ϕ, t).

Definition 3.1. Let f (z) be analytic in a simply connected region of the z-plane con-
taining origin. The fractional derivative of f of order δ is defined by

0Dδ
z f (z) :=

1
Γ(1 − δ)

d
dz

∫ z

0
(z − ζ)−δ f (ζ)dζ (0 ≤ δ < 1), (12)

where the multiplicity of (z − ζ)−δ is removed by requiring that log(z − ζ) is real for
(z − ζ) > 0.

Using Definition 3.1, Owa and Srivastava (see [7, 8]; see also [15, 14]) introduced
a fractional derivative operator Ωδ : A→ A, which is defined as

(Ωδ f )(z) = Γ(2 − δ)zδ0Dδ
z f (z), (δ , 2, 3, 4, . . . ).

The class Cδ(λ, ϕ, t) consists of the functions f ∈ A for which Ωδ f ∈ C(λ, ϕ, t).
The class Cδ(λ, ϕ, t) is a special case of the class Cg(λ, ϕ, t) when

g(z) = z +
∞∑

n=2

Γ(n + 1)Γ(2 − δ)
Γ(n + 1 − δ) zn, (z ∈ ∆).

Now applying Theorem 2.1 for the function ( f ∗ g)(z) = z+ g2a2z2 + g3a3z3 + · · · , we
get following theorem after an obvious change of the parameter µ:

Theorem 3.1. Let g(z) = z +
∞∑

n=2

gnzn (gn > 0. If f (z) is given by (1) belongs to

Cg(λ, ϕ, t) then

|a3 − µa2
2|

≤


1

3g3(1+2λ)(2+t)(1−t)

[
B2 + B2

1

(
1+t
1−t

)
− 3µg3B2

1
4g2

2

(1+2λ)(2+t)
(1+λ)2(1−t)

]
if µ ≤ η1

B1
3g3(1+2λ)(2+t)(1−t) if η1 ≤ µ ≤ η2

1
3g3(1+2λ)(2+t)(1−t)

[
B2 + B2

1

(
1+t
1−t

)
− 3µg3B2

1
4g2

2

(1+2λ)(2+t)
(1+λ)2(1−t)

]
if µ ≤ η2
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where

η1 =
4g2

2(1 + λ)2(1 − t)
3B1g3(1 + 2λ)(2 + t)

{
−1 +

B2

B1
+ B1

(
1 + t
1 − t

)}
,

η2 =
4g2

2(1 + λ)2(1 − t)
3B1g3(1 + 2λ)(2 + t)

{
1 +

B2

B1
+ B1

(
1 + t
1 − t

)}
.

The result is sharp.

Since

Ωδ f (z) = z +
∞∑

n=2

Γ(n + 1)Γ(2 − δ)
Γ(n + 1 − δ) zn.

We have
g2 :=

Γ(3)Γ(2 − δ)
Γ(3 − δ) =

2
2 − δ (13)

and
g3 :=

Γ(4)Γ(2 − δ)
Γ(4 − δ) =

6
(2 − δ)(3 − δ) . (14)

For g2, g3 given by (13) and (14) respectively, Theorem 13 reduces to the following:

Theorem 3.2. Let δ < 2. If f (z) is given by (1) belongs to Cδ(λ, ϕ, t) then

|a3 − µa2
2|

≤



(2−δ)(3−δ)
18(1+2λ)(2+t)(1−t)×[
B2 + B2

1

(
1+t
1−t

)
− 9

8µ
(

2−δ
3−δ

)
(1+2λ)(2+t)
(1+λ)2(1−t) B2

1

] if µ ≤ η∗1
(2−δ)(3−δ)B1

18(1+2λ)(2+t)(1−t) if η∗1 ≤ µ ≤ η∗1
− (2−δ)(3−δ)

18(1+2λ)(2+t)(1−t)×[
B2 + B2

1

(
1+t
1−t

)
− 9

8µ
(

2−δ
3−δ

)
(1+2λ)(2+t)
(1+λ)2(1−t) B2

1

] if µ ≤ η∗2

where

η∗1 =
8

9B1

(
3 − δ
2 − δ

) (
(1 + λ)2(1 − t)
(1 + 2λ)(2 + t)

) {
−1 +

B2

B1
+ B1

(
1 + t
1 − t

)}
,

η∗2 =
8

9B1

(
3 − δ
2 − δ

) (
(1 + λ)2(1 − t)
(1 + 2λ)(2 + t)

) {
1 +

B2

B1
+ B1

(
1 + t
1 − t

)}
.

Theorem 3.3. Let g(z) = z +
∞∑

n=2

gnzn (gn > 0). If f (z) is given by (1) belongs to

Cg(λ, ϕ, t) then

|a3 − µa2
2| ≤

B1

3g3(1 + 2λ)(2 + t)(1 − t)
×

max

1,

∣∣∣∣∣∣∣B2

B1
+ B1

(
1 + t
1 − t

)
− 3µB1g3

4g2
2

(1 + 2λ)(2 + t)
(1 + λ)2(1 − t)

∣∣∣∣∣∣∣
 .
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The result is sharp.

Theorem 3.4. If f (z) is given by (1) belongs to Cδ(λ, ϕ, t) then

|a3 − µa2
2| ≤

B1(2 − δ)(3 − δ)
18(1 + 2λ)(2 + t)(1 − t)

×

max
{

1,

∣∣∣∣∣∣B2

B1
+ B1

(
1 + t
1 − t

)
− 18µB1

16
(1 + 2λ)(2 + t)(2 − δ)
(1 + λ)2(1 − t)(3 − δ)

∣∣∣∣∣∣
}
.

The result is sharp.

Theorem 3.3, Theorem 3.4 were obtained by applying Lemma 1.2.
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Abstract As the prolongation of the article [1] on the base of the relevant stationary [2;3] and non-
stationary [1] bifurcation results the conditions are established for Lyapunov-Schmidt
branching equations and branching equations in the root-subspaces at Poincaré-Andronov-
Hopf bifurcation would be of potential type, with invariant potentials under group sym-
metry conditions.

Keywords: Banach spaces; nonlinear differential equation; small parameter; Lyapunov-Schmidt method;
Lyapunov-Schmidt branching equation and branching equation in the root-subspaces; potentiality con-
dition; group symmetry; potential invariance.
2010 MSC: 37G15, 58E09.

1. INTRODUCTION

Since this article is the direct prolongation of the previous one [1], the contained
there short presentation of the articles [2,3] basic results are omitted here. In many
applications of bifurcation theory [4-6] often the following situation arises when
the original nonlinear problem has not the variational structure, while the relevant
Lyapunov-Schmidt branching equation (BEq) and BEq in the root-subspaces (BEqR)
turn out to be potential. In the articles [2,3] for such situation in stationary problems
of branching theory sufficient conditions for the potentiality of the equivalent to bifur-
cation problem BEq and also in [7] for the potential type BEq are established. In the
article [1] such conditions are obtained for BEqRs of dynamic branching (Poincaré-
Andronov-Hopf (P-A-H) bifurcation). Here sufficient conditions are established for
the corresponding Lyapunov-Schmidt BEq and BEqR in dynamic branching theory
to be systems of potential type. Everywhere below the terminology and notations of
the works [1-7] are used.
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2. BEQ AND BEQR CONSTRUCTION

As in the article [1], in real Banach spaces E1 and E2, for differential equation with
sufficiently smooth by ε operators

A(ε)
dx
dt
= B(ε)x − R(x, ε), R(0, ε) = 0, Rx(0, ε) = 0, A0 = A(0), B0 = B(0), (1)

P-A-H bifurcation is considered under assumption that A0-spectrumσA0(B0) of densely
defined closed Fredholmian operator B0 is decomposed on two parts: σ−A0

(B0) ly-
ing strictly in the left half-plane and σ0

A0
(B0) consisting of the eigenvalues ±iα of

the multiplicity n with eigenelements u(1)
j = u j = u1 j ± iu2 j, and eigenelements

v(1)
j = v j = v1 j ± iv2 j of the conjugate operator A⋆0 : DA⋆0

→ E⋆
1 , B⋆0 : DB⋆0

→ E⋆
1 ,

i.e. (B0 − iαA0)u j = 0, (B0 + iαA0)u j = 0, (B⋆0 + iαA⋆0 )v j = 0, (B⋆0 − iαA⋆0 )v j = 0,
j = 1, n.

H. Poincaré substitution t = τ
α+µ , x(t) = y(τ), µ = µ(ε) reduces the problem of

2π
α+µ -periodic solutions construction to the determination of 2π -periodic solutions of
the equation

By = µA(ε)
dy
dτ
+ α(A(ε) − A0)

dy
dτ
− (B(ε) − B0)y + R(y, ε) ≡

≡ µC(ε)y + R(y, ε), Ry(0, ε) = 0,
(2)

By = (By)(τ) ≡ B0y(τ) − αA0
dy
dτ
, C(ε)y = (C(ε)y)(τ) ≡ A(ε)

dy
dτ
,

where the supposed Fredholmian operator B and the operators in (2) are mapping the
space Y of 2π-periodic continuously differentiable functions τ with values in E1 =

E1 u iE1 in the space E2 = E2 u iE2 with duality between Y, Y⋆ (Z, Z⋆) determined
by the functionals

≪ y, f ≫= 1
2π

2π∫
0

⟨y(τ), f (τ)⟩dτ, y ∈ Y, f ∈ Y⋆(y ∈ Z, f ∈ Z⋆), (3)

(in (3) ⟨·, ·⟩ represents the duality between E1,E
⋆
1 , (E2,E

⋆
2 )). Then the zero-subspaces

of the operators B and B⋆ are 2n-dimensional:

N(B) = span
{
φ(1)

j = φ j, φ j(τ) = u jeiτ;φ j

}n

1
,

N(B⋆) = span
{
ψ(1)

j = ψ j, ψ j(τ) = v jeiτ;ψ j

}n

1
.

Introduce the systems {γ(1)
s }n1 ∈ Y⋆ and {z(1)

s }n1 ∈ Z⋆ biorthogonal in the sense (3) to
{φ(1)

k }
n
1 ∈ N(B) and {ψ(1)

k }
n
1 ∈ N(B⋆) respectively. As such systems can be chosen
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the A⋆0 - and A0-images of the last elements of the complete A⋆0 - and A0-Jordan sets
of the elements {ψ(1)

k }
n
1 and {φ(1)

k }
n
1 respectively which are always existed (±iα are the

isolated eigenvalues) and are determined by the formulae for the generalized Jordan
chains [8,9]

(B0 − iαA0)u(k)
j = A0u(k−1)

j , (B0 + iαA0)u(k)
j = −A0u(k−1)

j ;

(B⋆0 + iαA⋆0 )v(k)
j = −A⋆0 v(k−1)

j , (B⋆0 − iαA⋆0 )v(k)
j = A⋆0 v(k−1)

j ,

z(k)
j = A0u(p j+1−k)

j , ϑ(k)
j = A⋆0 v(p j+1−k)

j , k = 1, p j, j = 1, n

with the biorthogonality conditions

⟨u(k)
j , ϑ

(l)
s ⟩ = δ jsδkl, ⟨z(k)

j , v
(l)
s ⟩ = δ jsδkl

and respectively

Bφ(k)
j = A0φ

(k−1)
j ,Bφ(k)

j = −A0φ
(k−1)
j ,

B⋆ψ(k)
j =

(
B⋆0 + αA⋆0

d
dτ

)
ψ(k)

j = −A⋆0ψ
(k−1)
j ,

B⋆
0ψ

(k)
j =

(
B⋆0 + αA⋆0

d
dτ

)
ψ

(k)
j = A⋆0ψ

(k−1)
j ,

where
φ(k)

j = u(k)
j eiτ, φ(k)

j = u(k)
j e−iτ, ψ(k)

j = v(k)
j eiτ, ψ

(k)
j = v(k)

j e−iτ

z(k)
j = z(k)

j eiτ, γ(l)
s = ϑ

(l)
s eiτ, k(l) = 1, p j(ps), j, s = 1, n

with the biorthogonality conditions

≪ φ(k)
j , γ

(l)
s ≫= δ jsδkl,≪ z(k)

j , ψ
(l)
s ≫= δ jsδkl, k(l) = 1, p j(ps), j, s = 1, n (4)

K = p1 + p2 + ... + pn is the root-number.
Introduce the following notations, available further for the writing of the projec-

tors: Φ = (φ(1)
1 , ..., φ

(p1)
1 , φ(1)

n , ..., φ
(pn)
n ). The vectors γ, Ψ and Z are defined analo-

gously.

Lemma 2.1. [10, 11] Biorthogonality conditions (4) allow to introduce the projectors

P =
n∑

j=1

pi∑
k=1

≪ ·, γ(k)
j ≫ φ(k)

j =≪ ·, γ ≫ Φ, P =≪ ·, γ ≫ Φ, P = P + P,

Q =
n∑

j=1

pi∑
k=1

≪ ·, ψ(k)
j ≫ z(k)

j =≪ ·, ψ ≫ z,Q =≪ ·, ψ ≫ z, Q = Q +Q,
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generating expansions of the spaces Y and Z in direct sums Y = Y2K+̇Y∞−2K , Z =

Z2K+̇Z∞−2K , Y2K = span{φ(k)
j , φ

(k)
j } j=1,n,k=1,p j

is the root-subspace of A-adjoint ele-

ments of the operator B,Z2K = span{zk
j, z

k
j} j=1,n,k=1,p j

. The operators B and A0 are

intertwined by the projectors P and Q, P and Q , BPu = QBu on DB, BΦ = A0Z,
B⋆Ψ = Aγ, A = diag{B1, ..., Bn} is cell-diagonal matrix, Bi is pi×pi-matrix with units
along secondary subdiagonal and zeros on other places; A0P = QA0, C0P = QC0
on DA0 , C0 = C(0), A0Φ = A1Z, A⋆0Ψ = A1γ, A1 = diag{B1, ..., Bn} is cell-diagonal
matrix, Bi is pi × pi-matrix with units along secondary diagonal and zeros on other
places. Operators A0 and B act in invariant pairs of subspaces Y2K , Z2K and Y∞−2K ,
Z∞−2K and B : Y∞−2K ∩

DB → Z∞−2K , A0 : Y2K → Z2K are isomorphisms.

Remark 2.1. [9, 10, 4]. Because of the invariance property of the root-number K
under perturbation we can work with A0-adjoint elements of the operator B, the
more so parameter µ enters linearly in the equation (2).

Consider now the Lyapunov-Schmidt BEqR construction [4,11]. The usage of the
E.Schmidt regularizator [4]

B̃ = B +

n∑
s=1

[≪ ·, γ(1)
i ≫ z(1)

i + ≪ ·, γ
(1)
i ≫ z(1)

i ], B̃−1 = Γ

allows to rewrite the equation (2) in the form of the system

B̃y = µC(ε)y + R(y, ε) +
n∑

i=1
(ξi1z(1)

i + ξi1z(1)
i ),

ξsσ =≪ y, γ(σ)
s ≫, ξsσ =≪ y, γ(σ)

s ≫, σ = 1, ps, s = 1, n
(5)

the unique solution of the first equation of which is sought in the form

y = u + ξ · Φ + ξ · Φ = u + v(ξ, ξ, µ, ε), ξ = ξ(µ(ε), ε), ξ = ξ(µ(ε), ε). (6)

Then the first equation of the system (5) gives

u = −(I − µΓC0)−1
n∑

i=1

pi∑
j=1

(ξi jφ
( j)
i + ξi jφ

( j)
i ) + µ(I − µΓC0)−1ΓC0(ξ · Φ + ξ · Φ)+

+µ(I − µΓC0)−1Γ(C(ε) − C0)u + µ(I − µΓC0)−1Γ(C(ε) − C0)(ξ · Φ + ξ · Φ)+

+µ(I − µΓC0)−1ΓR(u + v, ε) =

−
n∑

i=1

pi∑
j=2

(ξi jφ
( j)
i + ξi jφ

( j)
i ) + µΓC0(I − µΓC0)−1

n∑
i=1

(ξi1φ
(1)
i + ξi1φ

(1)
i )+

+µΓ(I − µC0Γ)−1(C(ε) − C0)u + µΓ(I − µC0Γ)−1(C(ε) − C0)(ξ · Φ + ξ · Φ)+
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+µΓ(I − µC0Γ)−1R(u + v, ε).

Taking into account the relations µΓC0φ
(1)
i = iµφ(2)

i , µ2(ΓC0)2φ(1)
i = (iµ)2φ(3)

i ,...,
µpi−1(ΓC0)pi−1φ(1)

i = (iµ)pi−1φ
(pi)
i , µpi(ΓC0)piφ(1)

i = (iµ)piφ(1)
i , and generally,

µl(ΓC0)lφ(1)
i = (iµ)lφ

(l+1−[ l+1
pi

]pi)

i according to the formulae Γ⋆γ(1)
s = ψ(1)

s , Γ⋆γ(σ)
s =

ψ
(ps+2−σ)
s [10,11] from the second equalities of the system (5) E. Schmidt BEqR fol-

lows

ts1(ξ, ξ, µ, ε) ≡ − ≪ u, γ(1)
s ≫= − (iµ)ps

1−(iµ)ps ξs1 − µ ≪ (I − µC0)Γ)−1(C(ε)−
−C0)(u + v), ψ(1)

s ≫ − ≪ (I − µC0Γ)−1R(u + v, ε), ψ(ps+2−σ)
s ≫= 0,

tsσ(ξ, ξ, µ, ε) ≡ − ≪ u, γ(σ)
s ≫= ξsσ −

(iµ)σ−1

1−(iµ)ps ξs1 − µ ≪ (I − µC0Γ)−1(C(ε)−
−C0)(u + v), ψ(ps+2−σ)

s ≫ − ≪ (I − µC0Γ)−1R(u + v, ε), ψ(ps+2−σ)
s ≫= 0,

σ = 2, ps, s = 1, n.

(7)

For the BEq construction, write the equation (2) in the form of the system

B̃y = µC(ε)y + R(y, ε) +
n∑

i=1
(ξi1z(1)

i + ξi1z(1)
i ),

ξs =≪ y, γ(1)
s ≫, ξs =≪ y, γ(1)

s ≫ .
(8)

The unique solution of the first equation (8)

y = Γ(µC(ε)y) + ΓR(y, ε) +
n∑

j=1
(ξ jφ j + ξ jφ j) (9)

find in the form

y =
n∑

j=1
(ξ jφ j + ξ jφ j) + u(ξ, ξ, µ, ε) (10)

Then the second equalities (8) by using the relations Γz(1)
j = φ(1)

j , Γz(1)
j = φ(1)

j ,

Γ⋆γ(1)
j = ψ

(1)
j , Γ⋆γ(1)

j = ψ
(1)
j , Y = Y2n u Y∞−2n, Z = Z2n u Z∞−2n, Y2n = N(B), Z2n =

span{zs, zs}ns=1, Y2n = (Pn+Pn)Y = PnY , Pn =
n∑

j=1
≪ ·, γ j ≫ φ j, Pn =

n∑
j=1
≪ ·, γ(1)

j ≫

φ(1)
j , Z2n = (Qn + Qn) = QnZ, Qn =

n∑
j=1
≪ ·, ψ(1)

j ≫ z(1)
j , Qn =

n∑
j=1
≪ ·, ψ(1)

j ≫ z(1)
j

give E. Schmidt BEq

ts(ξ, ξ, µ, ε) ≡ − ≪ u, γ(1)
s ≫= − (iµ)ps

1−(iµ)ps ξs − µ ≪ (I − µC0Γ)−1(C(ε)−
−C0)(u + v), ψ(1)

s ≫ − ≪ (I − µC0Γ)−1R(u + v, ε), ψ(1)
s ≫= 0,

ts(ξ, ξ, µ, ε) ≡ − ≪ u, γ(1)
s ≫= 0, s = 1, n.

(11)
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3. CONDITIONS OF BEQ AND BEQR
POTENTIALITY TYPES A(B)

Definition 3.1. [7] BEq t(ξ, ξ, µ, ε) = 0, ξ = (ξ1, ξ2, ..., ξn) (BEqR t(ξ, ξ, µ, ε) =
0,ξ = (ξ11, ξ12, ξ1p1

, ..., ξn1, ξn2, ..., ξnpn
, )) for dynamic branching problem of branch-

ing theory is called BEq of potential type A or BEq of potential type B if t(ξ, ξ, µ, ε) =
d · gradξ,ξU(ξ, ξ, µ, ε) ∼ (t1, t1, . . . , tn, tn)T =

= d ·
∂U

∂ξ1

,
∂U
∂ξ1

, . . . ,
∂U

∂ξn

,
∂U
∂ξn

 or t(ξ, ξ, µ, ε) = gradξ,ξU(ξ, ξ, µ, ε) · d ∼

∼ (t1, t1, . . . , tn, tn) =
 ∂U

∂ξ1

,
∂U
∂ξ1

, . . . ,
∂U

∂ξn

,
∂U
∂ξn

 ·d with an invertible matrix d (respec-

tively t(ξ, ξ, µ, ε) = d · gradξ,ξU(ξ, ξ, µ, ε) ∼
∼ (t11, t11, . . . , t1p1 , t1p1 , . . . , tn1, tn1, . . . , tnpn , tnpn)T =

= d·
 ∂U

∂ξ11

,
∂U
∂ξ11

, . . . ,
∂U

∂ξ1p1

,
∂U
∂ξ1p1

, . . . ,
∂U

∂ξn1

,
∂U
∂ξn1

, . . . ,
∂U

∂ξnpn

,
∂U
∂ξnpn

 or t(ξ, ξ, µ, ε) =

gradξ,ξU(ξ, ξ, µ, ε) · d ∼
∼ (t11, t11, . . . , t1p1 , t1p1 , . . . , tn1, tn1, . . . , tnpn , tnpn) =

=

 ∂U

∂ξ11

,
∂U
∂ξ11

, . . . ,
∂U

∂ξ1p1

,
∂U
∂ξ1p1

, . . . ,
∂U

∂ξn1

,
∂U
∂ξn1

, . . . ,
∂U

∂ξnpn

,
∂U
∂ξnpn

 · d).

Remark 3.1. Note here that potentiality conditions for BEq and BEqR of potentiality
type A(B) in stationary branching are obtained and proved in [7] and respectively in
our communication to Int.Conf. [12].

In the development of the article [1] results here similarly to n.2 and n.4 of [1]
sufficient potentiality conditions are established for BEq (11) and BEqR (7) would
be of potential type A(B). Since the notions of the operators symmetrizability [2,
3] here are introduced for the equation (2) in the spaces Y, Z, elements of which are
complex-valued functions in the definition 3.1 and analogs of n.2 , 4 assertions of
[1] in the notion of matrices symmetricity the complex conjugation must be used as
this is accepted in [1]. As there it is used for the proofs of operators B, C(ε) and Ry
symmetrizability. The finite-dimensional symmetrizators

Jn =

n∑
j=1

(≪ ·, ψ j ≫ γ j+ ≪ ·, ψ j ≫ γ j)

for BEq and

Jn =

n∑
j=1

p j∑
k=1

[≪ ·, ψ(k)
j ≫ γ(k)

j + ≪ ·, ψ
(k)
j ≫ γ(k)

j ]

for BEqR are used.
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A.

Lemma 3.1. . For the BEq (11) would be of potential type A(B) it is sufficient the

symmetricity of the matrices [
∂(d−1 · t)
∂ξ∂ξ

] , [
∂(t · d−1)

∂ξ∂ξ
] ,i.e.

n∑
s=1

(
d2p−1,2s−1

∂ts

∂ξq
+ d2p−1,2s

∂ts

∂ξq

)
=

n∑
s=1

(
d2q−1,2s−1

∂ts

∂ξp
+ d2q−1,2s

∂ts

∂ξp

)
,

n∑
s=1

d2p,2s−1
∂ts

∂ξq

+ d2p,2s
∂ts

∂ξq

 = n∑
s=1

d2q,2s−1
∂ts

∂ξp

+ d2q,2s
∂ts

∂ξp

,
n∑

s=1

d2p−1,2s−1
∂ts

∂ξq

+ d2p−1,2s
∂ts

∂ξq

 = n∑
s=1

(
d2q,2s−1

∂ts

∂ξp
+ d2q,2s

∂ts

∂ξp

)
,

(12)

for the type A and

n∑
s=1

(
∂ts

∂ξq
d2s−1,2p−1 +

∂ts

∂ξq
d2s,2p−1

)
=

n∑
s=1

(
∂ts

∂ξp
d2s−1,2q−1 +

∂ts

∂ξp
d2s,2q−1

)
,

n∑
s=1

 ∂ts

∂ξq

d2s−1,2p +
∂ts

∂ξq

d2s,2p

 = n∑
s=1

 ∂ts

∂ξp

d2s−1,2q +
∂ts

∂ξp

d2s,2q

,
n∑

s=1

 ∂ts

∂ξq

d2s−1,2p−1 +
∂ts

∂ξq

d2s,2p−1

 = n∑
s=1

(
∂ts

∂ξp
d2s−1,2q +

∂ts

∂ξp
d2s,2q

) (13)

for the type B.

The proof follows from the definition 3.1 at the usage of designation

d−1 =

(
d2k−1,2s−1 d2k−1,2s
d2k,2s−1 d2k,2s

)
k,s=1,n

.

The finding of solutions to (9) in the form (10) with the subsequent differentiation
leads to relations

∂y
∂ξs
= [µΓC(ε) + ΓRy]

∂y
∂ξs
+ φs ⇒

∂y
∂ξs
= [I − Γ(µC(ε) + Ry)]−1φs,

∂y
∂ξs
= φs +

∂u
∂ξs
⇒ φs +

∂u
∂ξs
= φs + Γ(µC(ε) + Ry)[I − Γ(µC(ε) + Ry)]−1φs ⇒

∂ts

∂ξq
= − ≪ ∂u

∂ξq
, γ(1)

s ≫= − ≪ µC(ε) + Ry)[I − Γ(µC(ε) + Ry)]−1φq, ψs ≫

and analogously ∂ts
∂ξq
= − ≪ µC(ε) + Ry)[I − Γ(µC(ε) + Ry)]−1φq, ψs ≫,

∂ts

∂ξq

= − ≪ µC(ε) + Ry)[I − Γ(µC(ε) + Ry)]−1φq, ψs ≫,



134 Boris V. Loginov, Luiza R. Kim-Tyan

∂ts

∂ξq

= − ≪ µC(ε) + Ry)[I − Γ(µC(ε) + Ry)]−1φq, ψs ≫ .

Corolar 3.1. When d = I the usual potentiality conditions for BEq from [1] follow:
∂tk
∂ξs
=

∂ts

∂ξk
, ∂tk
∂ξs
=

∂ts

∂ξk
and ∂tk

∂ξs
=

∂ts
∂ξk

, k, s = 1, n.

Lemma 3.2. Let the operator B : Y ⊃ DB → Z be J–symmetrizable on D = DB and
the operator J : Z → Y⋆ satisfies the requirements:

1◦. ∀y ∈ Y∞−2n ⇒ J⋆y ∈ Z⋆∞−2n = { f ∈ Z⋆| ≪ zs, f ≫= 0,≪ zs, f ≫= 0,
s = 1, n};

2◦.The matrix ≪ (φ, φ), J(z, z) ≫ is symmetric, i.e. ≪ φs, Jzk ≫= ≪ φk, Jzs ≫,
≪ φs, Jzk ≫=≪ φk, Jzs ≫,≪ φs, Jzk ≫=≪ φk, Jzs ≫.

Then the operator Γ = B̃−1 is J∗ -symmetrizable on Z.

Now the following analog of the Theorem 4.1 [1] is true.

Theorem 3.1. Let there exists a linear operator J : Z → Y⋆, such that

J⋆φp =
n∑

s=1
(d2p−1,2s−1ψs + d2p−1,2sψs), J⋆φp =

n∑
s=1

(d2p,2s−1ψs + d2p,2sψs)

(resp.J⋆φp =
n∑

s=1
(d2s−1,2p−1ψs + d2s,2pψs), J⋆φp =

n∑
s=1

(d2s−1,2pψs + d2s,2pψs) and the

following requirements are realized:
1◦. Operator B is J-symmetrizable on D;
2◦. Operator C(ε) and operators B(ε) − B0), R(y, ε) for any (y, ε) in some neigh-

borhood of the point (0, 0) are J-symmetrizable on D;
3◦. For any y ∈ Y∞−2n ∩

D follows that J⋆y ∈ Z⋆∞−2n.
Then the BEq (10) is the system of potential type A (resp. B).

The proof follows from the analogs of assertions n.3 [1] and lemmas 3.1, 3.2.

Corollary 3.1. When d = I, Theorem 3.1 coincides with Theorem 4.1 of [1].

Remark 3.2. In applications the matrix d often turns out to be diagonal.

B. For the simplicity of presentation further potential BEqRs are considered.

Lemma 3.3. For the BEqR (7) potentiality it is sufficient the symmetricity of the
matrix

D = D(
t, t
ξ, ξ

) =
D(t11, t11, . . . , t1p1 , t1p1 . . . , tn1, tn1 . . . , tnpn , tnpn)

D(ξ11, ξ11, . . . , ξ1p1
, ξ1p1

, . . . , ξn1, ξn1, . . . , ξnpn
, ξnpn

)
,

i.e. the equalities relations

∂tkl

∂ξsσ
=
∂tsσ

∂ξkl
,

∂tkl

∂ξsσ

=
∂tsσ

∂ξkl

,
∂tkl

∂ξsσ

=
∂tsσ

∂ξkl
. (14)
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Remark 3.3. From (14) the reality of diagonal elements D follows (when k = s,
σ = l).

For the shortening of computation in (6) the following designation will be used

u = −
n∑

i=1

pi∑
j=2

(ξi jφ
( j)
i + ξi jφ

( j)
i ) + µΓC0(I − µΓC0)−1

n∑
i=1

(ξi1φ
(1)
i + ξi1φ

(1)
i ))+

+Γ(I − µC0Γ)−1R(u + v, µ, ε), i.e.

R(y, µ, ε) = µ(C(ε) − C0)y + R(y, ε), v = ξ · Φ + ξ · Φ.

For the verification (14) the computation of the derivatives
∂u
∂ξsk

,
∂u

∂ξsk

is required:

∂u
∂ξs1

= µΓC0(I − µΓC0)−1φ(1)
s + Γ(I − µC0Γ)−1Ry(

∂u
∂ξs1

+ φ(1)
s )⇒

⇒ ∂u
∂ξs1

= [I − Γ(I − µC0Γ)−1Ry]−1{Γ(I − µC0Γ)−1Ryφ
(1)
s + Γ(I − µC0)Γ)−1µC0φ

(1)
s } =

= Γ(I − µC0Γ)−1[I − Γ(I − µC0)Γ)−1Ry]−1(Ry + µC0)φ(1)
s ,

∂u
∂ξsk

= −φ(k)
s + Γ(I − µC0Γ)−1Ry(

∂u
∂ξsk

+ φ(k)
s ),

whence it follows
∂u
∂ξsk

= −φ(k)
s when k > 1. Now (7) and (14) give the relations of

the following type

≪ (I − µC0Γ)−1[I − Γ(I − µC0Γ)−1Ry]−1(Ry + µC0)φ(1)
s , ψ(1)

k ≫=
=≪ (I − µC0Γ)−1[I − Γ(I − µC0Γ)−1Ry]−1(Ry + µC0)φ(1)

k , ψ(1)
s ≫,

(15)

≪ (I − µC0Γ)−1[I − Γ(I − µC0Γ)−1Ry]−1(Ry + µC0)φ(1)
k , ψ

(ps+2−σ)
s ≫= 0, (16)

for σ ≥ 2, since
∂tkl

∂ξsσ
= − ≪ φ(σ)

s , γ(l)
k ≫= −δskδσl.

Corolar 3.2. Formulae (15) and (16) mean that BEqR potentiality is equivalent to
BEq potentiality.

4. SYMMETRY IN P-A-H BIFURCATION
PROBLEM WITH POTENTIAL BRANCHING
EQUATIONS

SH(2) − symmetry. As the prolongation of the article [1] results, return now to
model example of P-A-H bifurcation with S H(2)-symmetry generated by the follow-
ing zero-subspace of the linearized operator with relevant pure imaginary eigenvalues

N = N(B) = span{φ1 = (chx + ishx)eit, φ1, φ2 = (chx − ishx)eit, φ2},
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with the following matrix representation in the definition of group invariance Bgt(ξ, ξ) =
t(Agξ,Agξ) correspondingly to the basis N

B(α0, α) = A(α0, α) =

=


eiα0chα 0 −ieiα0 shα 0
0 e−iα0chα 0 ie−iα0 shα
ieiα0 shα 0 eiα0chα 0
0 −ie−iα0 shα 0 e−iα0chα


Here the branching equation potentiality of the types A and B take place simultane-

ously. In the articles [13,14] at the usage of group analysis methods [15] the general
form of C1-BEq was constructed on allowed group symmetry (see also [1]).

t1 =
1

ξ
2
1 + ξ

2
2

[
ξ1F1(I1(ξ), I2(ξ)) + ξ2F2(I1(ξ), I2(ξ))

]
I1 =

√
|ξ1ξ1 − ξ2ξ2|, I2 =

√
|ξ1ξ2 + ξ1ξ2|,

t2 =
1

ξ
2
1 + ξ

2
2

[
ξ1F2(I1(ξ), I2(ξ)) − ξ2F1(I1(ξ), I2(ξ))

] (17)

where the functions F1,F2 are real-valued.
The definition 3.1 of potential type BEq (here simultaneously A and B) with d =

diag(1, 1,−1,−1) means the symmetricity of the matrix D, i.e. the realization of the
equalities (12) or (13).



∂t1
∂ξ1

∂t1
∂ξ1

∂t1
∂ξ2

∂t1
∂ξ2

∂t1

∂ξ1

∂t1

∂ξ1

∂t1

∂ξ2

∂t1

∂ξ2

− ∂t2
∂ξ1

− ∂t2
∂ξ1

− ∂t2
∂ξ2

− ∂t2
∂ξ2

− ∂t2

∂ξ1
− ∂t2

∂ξ1

− ∂t2

∂ξ2
− ∂t2

∂ξ2


⇒

∂t1
∂ξ1
=
∂t1

∂ξ1

,
∂t2
∂ξ2
=
∂t2

∂ξ2

⇒ a)

∂t1
∂ξ1

=
∂t1

∂ξ1
,

∂t2
∂ξ2

=
∂t2

∂ξ2
⇒ b)

∂t1
∂ξ2
= − ∂t2

∂ξ1
,

∂t1

∂ξ2

= − ∂t2

∂ξ1

⇒ c)

∂t1
∂ξ2

= − ∂t2

∂ξ1
,

∂t1

∂ξ2
= − ∂t2

∂ξ1

⇒ d)

(18)

Here a) is the reality of diagonal elements, b) the partial potentiality, c) the sym-
metry along secondary subdiagonals, d) symmetry along secondary diagonal. Con-
ditions (18) lead to the following relations, where the symbols Fk,1 , Fk,2 mean the
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derivatives of Fk on the relevant invariants I1, I2:

∂t1
∂ξ1
=

1

ξ
2
1 + ξ

2
2

ξ1F1,1
ξ1

2I1
+ ξ1F1,2

ξ2

2I2
+ ξ2F2,1

ξ1

2I1
+ ξ2F2,2

ξ2

2I2

 ,
∂t1

∂ξ1

=
1

ξ2
1 + ξ

2
2

[
ξ1F1,1

ξ1

2I1
+ ξ1F1,2

ξ2

2I2
+ ξ2F2,1

ξ1

2I1
+ ξ2F2,2

ξ2

2I2

]
,

(19)

the second equality of a) and also the equalities b) are verified analogously,

∂t1
∂ξ2
= − ∂t2

∂ξ1
⇒ (−F1,1)[ξ1ξ2(ξ

2
1 + ξ

2
2) + ξ1ξ2(ξ2

1 + ξ
2
2)]I2 + F2,2[ξ1ξ2(ξ

2
1 + ξ

2
2)+

+ξ1ξ2(ξ2
1 + ξ

2
2)]I1 + F1,2[ξ

2
1(ξ2

1 + ξ
2
2) − ξ2

2(ξ
2
1 + ξ

2
2)]I1+

+F2,1[ξ2
1(ξ

2
1 + ξ

2
2) − ξ2

2(ξ2
1 + ξ

2
2)]I2 = 0,

(20)
∂t1

∂ξ2

= − ∂t2

∂ξ1

⇒ (−F1,1)[ξ1ξ2(ξ
2
1 + ξ

2
2) + ξ1ξ2(ξ2

1 + ξ
2
2)]I2 + F2,2[ξ1ξ2(ξ

2
1 + ξ

2
2)+

+ξ1ξ2(ξ2
1 + ξ

2
2)]I1 + F1,2[ξ2

1(ξ
2
1 + ξ

2
2) − ξ2

2(ξ2
1 + ξ

2
2)]I1+

+F2,1[ξ
2
1(ξ2

1 + ξ
2
2) − ξ2

2(ξ
2
1 + ξ

2
2)]I2 = 0,

(21)
∂t1
∂ξ2

= − ∂t2

∂ξ1
⇒ −F1,1I3

2 + F2,2I2
2 I1 + F2,1I2I2

1 + F1,2I3
1 = 0, (22)

∂t1

∂ξ2

= − ∂t2

∂ξ1
,
∂t1

∂ξ2
= − ∂t2

∂ξ1

⇒ −F1,1I3
2 + F2,2I2

2 I1 + F2,1I2I2
1 + F1,2I3

1 = 0. (23)

However the relations (20) and (21) are differed from (22) only by the cofactor |ξ1|2+
|ξ2|2. Consequently the following assertion is proved

Theorem 4.1. C1-BEq of potential type for P-A-H bifurcation with the symmetry
S H(2) on spatial variables has the form (17), where the functions F1 and F2 satisfy
the differential equation (22).

Corollary 4.1. The potential is determined by the following formula [16]

n∑
k=1

[

1∫
0

tk(τξ1, τξ2, µ, ε)ξkdτ +

1∫
0

tk(τξ1, τξ2, µ, ε)ξkdτ] = U(ξ, ξ, µ, ε).

In the case of analytic BEq as invariants I1 = ξ1ξ1 − ξ2ξ2 and I2 = ξ1ξ2 + ξ1ξ2
are chosen. As before the conditions a) and b) (18) are verified directly, while the
conditions c) and d) (18) give[−F1,1 + F2,2

]
(ξ1ξ2 + ξ1ξ2) + [F1,2 + F2,1](ξ1ξ1 − ξ2ξ2) =

= [−F1,1 + F2,2]I2 + [F1,2 + F2,1]I1 = 0.
(24)
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Theorem 4.2. Analytic BEq of potential type for P-A-H bifurcation allowing the sym-
metry SH(2) has the form (17), where the functions F1(I1(ξ), I2(ξ)) and F2(I1(ξ), I2(ξ))
satisfy the differential equation (24) with invariants I1(ξ) = ξ1ξ1 − ξ2ξ2 and I2(ξ) =
ξ1ξ2 + ξ1ξ2.

Remark 4.1. Accepted in [12,13] potentiality conditions of BEq mean the symmetry

of the matrix
D(t1, t1,−t2,−t2)

D(ξ1, ξ1, ξ2, ξ2)
, where only its coincidence with transposed one was

taken into account. Therefore in [1] we could not construct the finite dimensional
symmetrizator (symmetryzing operator) and could not prove Theorem 4.1 for C1-
BEq. However, for analytic case ( in [12] and [13] and correspondingly in [1]), it is
said erroneously that C1-BEq is considered) the results of [12,13] about the general
form of analytic BEq and its potential turn out to be valid.

Remark 4.2. As in the previous our article, we assume in the future to investigate
dynamic bifurcation problems with symmetries S O(2) and S H(2) at high order de-
generation of the linearized operator.

5. EXISTENCE OF BIFURCATION POINT

Similarly to the articles [1,3], by using the approach of Section 3, the existence
theorem of P-A-H bifurcation can be proved.

Lemma 5.1. Let be A(ε) ≡ A0 and µC0y + (B(ε) − B0)y + R(y, ε) = µC0y + R(y, ε),
R(0, ε) ≡ 0. Then at the realization of the Th.3.1 conditions, potential U(ξ, ξ̃, µ, ε) of
the potential type A(B) BEq is generated by the symmetric matrices
d−1· ≪ ρ(0, µ(ε), ε)(φ;φ), (ψ;ψ) ≫ for the case A and≪ ρ(0, µ(ε), ε)(φ;φ), (ψ;ψ) ≫
·d−1 for the case B with relevant square form on ξ, ξ and residual term ω(ξ, ξ, µ(ε), ε),

∥ω∥ = o(
√
|ξ|2 + |ξ|2) as ξ → 0. Components of the symmetric matrices are contin-

uous functions in some neighborhood of the point µ = 0, ε = 0, the function ω is
continuous in the same neighborhood together with partial derivatives on ξ, ξ up to
second order. The symmetricity of the matrix in the main part of potential is under-
standing in the sense of (12) for the case A ((13) for the case B), i.e. (here the symbol
[. . .]⋆ means the complex conjugation to the expression [. . .])

n∑
s=1

[d2p−1,2s−1 ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ +d2p−1,2s ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ

(1)
s ≫] =

=

n∑
s=1

[d2q−1,2s−1 ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ +d2q−1,2s ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ

(1)
s ≫]⋆,

n∑
s=1

[d2p,2s−1 ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ +d2p,2s ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫] =
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=

n∑
s=1

[d2q,2s−1 ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ +d2q,2s ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫]⋆,

n∑
s=1

[d2p−1,2s−1 ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ +d2p−1,2s ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫] =

=

n∑
s=1

[d2q,2s−1 ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ +d2q,2s ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ

(1)
s ≫]⋆,

for the case A and

n∑
s=1

[≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ d2s−1,2p−1+ ≪ ρ(0, µ(ε), ε)φ(1)
q , ψs

(1) ≫ d2s,2p−1] =

=

n∑
s=1

[≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ d2s−1,2q−1+ ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ

(1)
s ≫ d2s,2q−1]⋆,

n∑
s=1

[≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ d2s−1,2p+ ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ d2s,2p] =

=

n∑
s=1

[≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ d2s−1,2q+ ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ

(1)
s ≫ d2s,2q]⋆,

n∑
s=1

[≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ d2s−1,2p−1+ ≪ ρ(0, µ(ε), ε)φ(1)
q , ψ(1)

s ≫ d2s,2p−1] =

n∑
s=1

[≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ d2s−1,2q+ ≪ ρ(0, µ(ε), ε)φ(1)
p , ψ(1)

s ≫ d2s,2q]⋆,

for the case B.

Here ρ(0, µ(ε), ε) = (µC(ε)+Ry)[I − Γ(µC(ε)+Ry)]−1, in accordance with [1] and
sections 2,3. The proof follows from the definition 3.1 and Lemma 3.1.

Similarly to the article [3] introduce the condition suitable also for ε belonging to
some normed space Λ: α) let in some neighborhood of ε = 0 there exists the set S ,
containing the point ε = 0, which is continuum presented in the form S = S +

∪
S −,

0 ∈ ∂S +
∩
∂S − . Let be

det[d−1 ≪ ρ(0, µ(ε), ε), (φ, φ), (ψ, ψ ≫)]ε∈S +
∪

S − , 0,

(resp. det[≪ ρ(0, µ(ε), ε), (φ, φ), (ψ, ψ ≫) · d−1]ε∈S +
∪

S − , 0) and the matrix [d−1· ≪
ρ(0, µ(ε), ε), (φ, φ), (ψ, ψ ≫)] in case A (resp.the matrix [≪ ρ(0, µ(ε), ε), (φ, φ), (ψ, ψ ≫
) · d−1] for the case B) has at ε ∈ S − (ε ∈ S +) precisely ν1 negative eigenvalues (ν2
negative eigenvalues).
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Lemma 5.2. [3]. Let the condition α) with ν1 , ν2 be realized. Then for any δ > 0
there exists ε⋆ in a neighborhood |ε| < δ such that the function U(ξ, ξ, µ(ε⋆), ε⋆) has
in it a stationary point ξ⋆ , 0.

The proof follows from homotopic invariance of Conley-Morse index [17,Th.1.4,p.67].

Theorem 5.1. Let the branching equation of the problem (1), under Lemma 5.1 con-
ditions, be potential type A(or B) and the condition α) be fulfilled with ν1 , ν2 . Then
ε = 0 ∈ S is the bifurcation point.

Remark 5.1. The results [2,3] can be found in the more available collective mono-
graph [6].

References

[1] Loginov B. V., Kim-Tyan L. R., Branching Equations Potentiality Conditions for Andronov-Hopf
bifurcation, ROMAI Journal v.7, No. 2 , p.99-116 (2011)

[2] Trenogin V.A., Sidorov N.A., Loginov B.V., Potentiality, group symmetry and bifurcation in the
theory of branching equation, Differential and Integral Equations. An Int. Journal on Theory and
Applications, v.3, No. 3, 145-154 (1990).

[3] Trenogin V.A., Sidorov N.A., Potentiality conditions of branching equation and bifurcation
points of nonlinear equation, Uzbek Math J., No.2, 40-49 (1992) (in Russian).

[4] M.M. Vainberg, V.A. Trenogin, Branching theory of solutions of nonlinear equations, Moscow,
Nauka, 1969; Engl. transl. Volters-Noordorf Int. Publ., Leyden 1974.

[5] Loginov B.V., Branching of solutions of nonlinear equations and group symmetry, Vestnik of
Samara state University, No.4(10) , 15-75, (1998).

[6] N.Sidorov, B.Loginov , A. Sinitsyn, M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Anal-
ysis and Applications, Kluwer Acad. Publ. Dordrecht, Math. and its Appl. v. 550 (2002).

[7] Kim-Tyan L.R., Loginov B.V., Potentiality conditions to branching equations and branching
equations in the root subspaces in stationary and dynamic bifurcation, Materials of Sci. Confer-
ence “Herzen chtenia-2012”, St. Peterburg Pedagogical Univ., 16-20.04.2012, v. 65, 64-70

[8] Loginov B.V., Rousak Yu.B., Generalized Jordan structure in the branching theory, in “Direct
and Inverse Problems for Partial Differential Equations”. Tashkent, “Fan”, AN UzbekSSR, 133-
178 (1978) (in Russian)

[9] Rousak Yu.B., Some relations between Jordan sets of analytic operator-function and adjoint to
it, Izvestya Akad. Nauk UzbekSSR, fiz-mat.No.2, 15-19 (1978)

[10] B.V. Loginov, Yu.B. Rousak, Generalized Jordan structure in the problem of the stability of
bifurcating solutions, Nonlinear Analysis. TMA, v.17, 3(1991), 219-232.

[11] B.V. Loginov, Branching equations in the root subspace, Nonlinear Analysis TMA, v.32, No. 3,
439-448 (1998)

[12] Loginov B.V. , Kim-Tyan L.R., Potentiality conditions of branching systems in the root subspaces
and stability of bifurcating solutions, Proc X-th International Chetaev’s Conference. Analytical
mechanics, stability and control. Kazan’ 12-16.06.2012, v.2, p. 343-352

[13] Loginov B.V., Konopleva I.V., Makeev O.V., Rousak Yu.B., Poincaré-Andronov-Hopf bifurcation
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Abstract We study the existence and nonexistence of positive solutions for a system of nonlinear
higher-order ordinary differential equations with multi-point boundary conditions.
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1. INTRODUCTION

We consider the system of nonlinear higher-order ordinary differential equations

(S )
{

u(n)(t) + α(t) f (v(t)) = 0, t ∈ (0,T ),
v(m)(t) + β(t)g(u(t)) = 0, t ∈ (0, T ),

with the multi-point boundary conditions

(BC)


u(0) =

p−2∑
i=1

aiu(ξi) + a0, u′(0) = · · · = u(n−2)(0) = 0, u(T ) = 0,

v(0) =
q−2∑
i=1

biv(ηi) + b0, v′(0) = · · · = v(m−2)(0) = 0, v(T ) = 0,

where n, m, p, q ∈ N, n ≥ 2, m ≥ 2, p ≥ 3, q ≥ 3, 0 < ξ1 < · · · < ξp−2 < T and
0 < η1 < · · · < ηq−2 < T .

By using the Schauder fixed point theorem, we shall prove the existence of positive
solutions of problem (S )− (BC). By a positive solution of (S )− (BC) we mean a pair
of functions (u, v) ∈ Cn([0, T ]) × Cm([0,T ]) satisfying (S ) and (BC) with u(t) > 0,
v(t) > 0 for all t ∈ [0, T ). We shall also give sufficient conditions for the nonexistence
of positive solutions for this problem.

143
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The system (S ) with the boundary conditions

(BC1)


u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(T ) =

p−2∑
i=1

aiu(ξi) + a0,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(T ) =
q−2∑
i=1

biv(ηi) + b0,

has been investigated in [7]. In [26], the authors used the fixed point index theory
to prove the existence of positive solutions for the system (S ) where f and g are
dependent of u and v, and the boundary conditions (BC1) with a0 = b0 = 0 and
1
2 ≤ ξ1 < · · · < ξp−2 < 1, 1

2 ≤ η1 < · · · < ηq−2 < 1, T = 1. For multi-point boundary
value problems for nonlinear higher-order ordinary differential equations we mention
the papers [1], [19].

Multi-point boundary value problems for systems of ordinary differential equa-
tions which involve positive eigenvalues were studied in recent years by J. Hender-
son, R. Luca, S. K. Ntouyas and I. K. Purnaras, by using the Guo-Krasnosel’skii fixed
point theorem. Namely, in [2], the authors give sufficient conditions for λ, µ, f and
g such that the system of differential equations

(S 1)
{

u(n)(t) + λα(t) f1(u(t), v(t)) = 0, t ∈ (0, T ),
v(m)(t) + µβ(t)g1(u(t), v(t)) = 0, t ∈ (0, T ),

with the boundary conditions (BC1) with a0 = b0 = 0 has positive solutions. The
system (S 1) with f1(u, v) = f̃ (v), g1(u, v) = g̃(u) and n = m (denoted by (S̃ 1)) with
the boundary conditions (BC1) with a0 = b0 = 0, where n = m, p = q, ai = bi, ξi = ηi
for i = 1, ..., p − 2, has been studied in [22]. In [9], the authors studied the system
(S̃ 1) with T = 1 and the boundary conditions u(0) = u′(0) = · · · = u(n−2)(0) = 0,
u(1) = αu(η), v(0) = v′(0) = · · · = v(n−2)(0) = 0, v(1) = αv(η), where 0 < η < 1 and
0 < αηn−1 < 1.

The systems (S ) and (S 1) with n = m = 2 subject to various boundary conditions
were studied in [3], [4], [10], [11], [13], [14], [23]. Some discrete versions of these
nonlinear second-order boundary value problems have been investigated in [5], [6],
[12], [15], [21], [24].

Our results obtained in this paper were inspired by the paper [20], where the au-
thors studied the existence and nonexistence of positive solutions for the m-point
boundary value problem on time scales

u∆∇(t) + a(t) f (u(t)) = 0, t ∈ (0, T̃ ),

βu(0) − γu∆(0) = 0, u(T̃ ) −
m−2∑
i=1

aiu(ξi) = b, m ≥ 3, b > 0,

where (0, T̃ ) denotes a time scale interval.
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Multi-point boundary value problems for ordinary differential equations or finite
difference equations have applications in a variety of different areas of applied math-
ematics and physics. For example the vibrations of a guy wire of a uniform cross-
section and composed of N parts of different densities can be set up as a multi-point
boundary value problem (see [25]); also many problems in the theory of elastic sta-
bility can be handled as multi-point problems (see [27]). The study of multi-point
boundary value problems for second order differential equations was initiated by Il’in
and Moiseev (see [16], [17]). Since then such multi-point boundary value problems
(continuous or discrete cases) have been studied by many authors, by using differ-
ent methods, such as fixed point theorems in cones, the Leray-Schauder continuation
theorem, nonlinear alternatives of Leray-Schauder and coincidence degree theory.

In Section 2, we shall present some auxiliary results which investigate a boundary
value problem for a n-th order differential equation (problem (1) − (2) below), and in
Section 3, we shall give our main results.

2. AUXILIARY RESULTS

In this section, we shall present some auxiliary results from [18] related to the
following n-th order differential equation with p-point boundary conditions

u(n)(t) + y(t) = 0, t ∈ (0, T ), (1)

u(0) =
p−2∑
i=1

aiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(T ) = 0. (2)

We shall present these results for the interval [0, T ] of the t-variable. Their proofs are
similar to those from [18] where T = 1.

Lemma 2.1. If d = T n−1 −
p−2∑
i=1

ai(T n−1 − ξn−1
i ) , 0, 0 < ξ1 < · · · < ξp−2 < T and

y ∈ C([0, T ]), then the solution of (1)-(2) is given by

u(t) = −
∫ t

0

(t − s)n−1

(n − 1)!
y(s) ds +

tn−1

d

p−2∑
i=1

ai

∫ ξi

0

(ξi − s)n−1

(n − 1)!
y(s) ds

+

1 − p−2∑
i=1

ai

 ∫ T

0

(T − s)n−1

(n − 1)!
y(s) ds

 + 1
d

p−2∑
i=1

aiξ
n−1
i

∫ T

0

(T − s)n−1

(n − 1)!
y(s) ds

−T n−1

d

p−2∑
i=1

ai

∫ ξi

0

(ξi − s)n−1

(n − 1)!
y(s) ds.

Lemma 2.2. Under the assumptions of Lemma 2.1, the Green’s function for the
boundary value problem (1)-(2) is

G1(t, s) = g1(t, s) +
T n−1 − tn−1

d

p−2∑
i=1

aig1(ξi, s),
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where

g1(t, s) =
1

(n − 1)!T n−1

{
tn−1(T − s)n−1 − T n−1(t − s)n−1, 0 ≤ s ≤ t ≤ T,
tn−1(T − s)n−1, 0 ≤ t ≤ s ≤ T.

Using the above Green’s function the solution of problem (1)-(2) is expressed as

u(t) =
∫ T

0
G1(t, s)y(s) ds.

Lemma 2.3. The function g1 has the properties
a) g1 is a continuous function on [0, T ] × [0, T ] and g1(t, s) ≥ 0 for all (t, s) ∈

[0, T ] × [0,T ];
b) g1(t, s) ≤ g1(θ1(s), s), for all (t, s) ∈ [0, T ] × [0,T ];
c) For any c ∈

(
0, T

2

)
,

min
t∈[c,T−c]

g1(t, s) ≥ cn−1

T n−1 g1(θ1(s), s), for all s ∈ [0,T ],

where θ1(s) = s if n = 2 and θ1(s) =


s

1 −
(
1 − s

T

) n−1
n−2

, s ∈ (0, T ],

T (n−2)
n−1 , s = 0,

if n ≥ 3.

In the case n ≥ 3, we choose the values of θ1 in s = 0 and s = T such that θ1 be a
continuous function on [0, T ] (see also [8]).

Lemma 2.4. Assume that ai ≥ 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T
and d > 0. Then the Green’s function G1 of problem (1)-(2) has the properties

a) G1 is a continuous function on [0, T ] × [0,T ] and G1(t, s) ≥ 0 for all (t, s) ∈
[0, T ] × [0,T ];

b) G1(t, s) ≤ J1(s) for all (t, s) ∈ [0,T ] × [0, T ] and for any c ∈ (0, T/2) we have

min
t∈[c,T−c]

G1(t, s) ≥ cn−1

T n−1 J1(s) for all s ∈ [0,T ],

where J1(s) = g1(θ1(s), s) +
T n−1

d

p−2∑
i=1

aig1(ξi, s), ∀ s ∈ [0, T ].

Lemma 2.5. If ai ≥ 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T, d > 0,
y ∈ C([0, T ]) and y(t) ≥ 0 for all t ∈ [0, T ], then the solution of problem (1)-(2)
satisfies u(t) ≥ 0 for all t ∈ [0, T ].

Lemma 2.6. Assume that ai ≥ 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T,
d > 0, y ∈ C([0, T ]) and y(t) ≥ 0 for all t ∈ [0,T ]. Then the solution of problem

(1)-(2) satisfies min
t∈[c,T−c]

u(t) ≥ cn−1

T n−1 max
t′∈[0,T ]

u(t′).

We can also formulate similar results as Lemma 2.1 - Lemma 2.6 above for the
boundary value problem

v(m)(t) + h(t) = 0, t ∈ (0, T ), (3)
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v(0) =
q−2∑
i=1

biv(ηi), v′(0) = · · · = v(m−2)(0) = 0, v(T ) = 0, (4)

where 0 < η1 < · · · < ηq−2 < T , bi ≥ 0 for all i = 1, . . . , q − 2 and h ∈ C([0, T ]). If

e = T m−1−
q−2∑
i=1

bi
(
T m−1 − ηm−1

i

)
, 0, we denote by G2 the Green’s function associated

to problem (3)-(4) and defined in a similar manner as G1. We also denote by g2, θ2
and J2 the corresponding functions for (3)-(4) defined in a similar manner as g1, θ1
and J1, respectively.

3. MAIN RESULTS

We present the assumptions that we shall use in the sequel:
(H1) 0 < ξ1 < · · · < ξp−2 < T , 0 < η1 < · · · < ηq−2 < T , ai ≥ 0, i = 1, . . . , p − 2,

bi ≥ 0, i = 1, . . . , q−2, d = T n−1−
p−2∑
i=1

ai(T n−1−ξn−1
i ) > 0, e = T m−1−

q−2∑
i=1

bi(T m−1−

ηm−1
i ) > 0.

(H2) The functions α, β : [0, T ] → [0,∞) are continuous and for any c ∈ (0,T/2)
there exist t0, t̃0 ∈ [c, T − c] such that α(t0) > 0, β(̃t0) > 0.

(H3) The functions f , g : [0,∞) → [0,∞) are continuous and there exists r0 > 0
such that f (u) <

r0

L
, g(u) <

r0

L
for all u ∈ [0, r0], where

L = max
{∫ T

0
J1(s)α(s) ds,

∫ T

0
J2(s)β(s) ds

}
.

(H4) The functions f , g : [0,∞) → [0,∞) are continuous and satisfy the condi-

tions lim
u→∞

f (u)
u
= ∞, lim

u→∞
g(u)

u
= ∞.

First, we present an existence result for the positive solutions of (S ) − (BC).

Theorem 3.1. Assume that the assumptions (H1), (H2) and (H3) hold. Then the
problem (S )−(BC) has at least one positive solution for a0 > 0 and b0 > 0 sufficiently
small.

Proof. We consider the problems
h(n)(t) = 0, t ∈ (0, T ),

h(0) =
p−2∑
i=1

aih(ξi) + 1, h′(0) = · · · = h(n−2)(0) = 0, h(T ) = 0,
(5)


w(m)(t) = 0, t ∈ (0,T ),

w(0) =
q−2∑
i=1

biw(ηi) + 1, w′(0) = · · · = w(m−2)(0) = 0, w(T ) = 0.
(6)
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The above problems (5) and (6) have the solutions

h(t) =
T n−1 − tn−1

d
, w(t) =

T m−1 − tm−1

e
, t ∈ [0, T ]. (7)

We define the functions x(t) and y(t), t ∈ [0, T ] by

x(t) = u(t) − a0h(t), y(t) = v(t) − b0w(t), t ∈ [0, T ],

where (u, v) is a solution of (S ) − (BC). Then (S ) − (BC) can be equivalently written
as {

x(n)(t) + α(t) f (y(t) + b0w(t)) = 0, t ∈ (0, T ),
y(m)(t) + β(t)g(x(t) + a0h(t)) = 0, t ∈ (0,T ), (8)

with the boundary conditions
x(0) =

p−2∑
i=1

aix(ξi), x′(0) = · · · = x(n−2)(0) = 0, x(T ) = 0,

y(0) =
q−2∑
i=1

biy(ηi), y′(0) = · · · = y(m−2)(0), y(T ) = 0.

(9)

Using the Green’s functions given in Section 2, a pair (x, y) is a solution of the
problem (8)-(9) if and only if (x, y) is a solution for the nonlinear integral equations

x(t) =
∫ T

0
G1(t, s)α(s) f

(∫ T

0
G2(s, τ)β(τ)g(x(τ) + a0h(τ)) dτ + b0w(s)

)
ds,

y(t) =
∫ T

0
G2(t, s)β(s)g(x(s) + a0h(s)) ds, 0 ≤ t ≤ T,

(10)
where h(t) and w(t) for t ∈ [0, T ] are given by (7).

We consider the Banach space X = C([0, T ]) with the supremum norm ∥ · ∥ and
define the set

K = {x ∈ C([0,T ]), 0 ≤ x(t) ≤ r0, ∀ t ∈ [0, T ]} ⊂ X.

We also define the operator A : K → X by

A(x)(t) =
∫ T

0
G1(t, s)α(s) f

(∫ T

0
G2(s, τ)β(τ)g(x(τ) + a0h(τ))dτ + b0w(s)

)
ds,

0 ≤ t ≤ T, x ∈ K.

For sufficiently small a0 > 0 and b0 > 0, by (H3), we deduce

f (y(t) + b0w(t)) ≤ r0

L
, g(x(t) + a0h(t)) ≤ r0

L
, ∀ t ∈ [0, T ], ∀ x, y ∈ K.
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Then, by using Lemma 2.3, we obtain A(x)(t) ≥ 0 for all t ∈ [0, T ] and x ∈ K. By
Lemma 2.4, for all x ∈ K, we have∫ T

0
G2(s, τ)β(τ)g(x(τ) + a0h(τ)) dτ ≤

∫ T

0
J2(τ)β(τ)g(x(τ) + a0h(τ)) dτ

≤ r0

L

∫ T

0
J2(τ)β(τ) dτ ≤ r0, ∀ s ∈ [0, T ],

and

A(x)(t) ≤
∫ T

0
J1(s)α(s) f

(∫ T

0
G2(s, τ)β(τ)g(x(τ) + a0h(τ)) dτ + b0w(s)

)
ds

≤ r0

L

∫ T

0
J1(s)α(s) ds ≤ r0, ∀ t ∈ [0, T ].

Therefore A(K) ⊂ K.
Using standard arguments, we deduce that A is completely continuous (A is com-

pact, that is for any bounded set B ⊂ K, A(B) ⊂ K is relatively compact by Arzèla-
Ascoli theorem, and A is continuous). By the Schauder fixed point theorem, we
conclude that A has a fixed point x ∈ K. This element together with y given by

y(t) =
∫ T

0
G2(t, s)β(s)g(x(s) + a0h(s)) ds, t ∈ [0, T ]

represents a solution for (8)-(9). This shows that our problem (S )−(BC) has a positive
solution u = x + a0h, v = y + b0w for sufficiently small positive a0 and b0.

In what follows, we present sufficient conditions for the nonexistence of the posi-
tive solutions of (S ) − (BC).

Theorem 3.2. Let the assumptions (H1), (H2) and (H4) be satisfied. Then the prob-
lem (S ) − (BC) has no positive solution for a0 and b0 sufficiently large.

Proof. We suppose that (u, v) is a positive solution of (S ) − (BC). Then x = u −
a0h, y = v−b0w is a solution for (8)-(9), where h and w are the solutions of problems
(5) and (6) (given by (7)). By Lemma 2.5, we have x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [0, T ],
and by (H2) we deduce that ∥x∥ > 0, ∥y∥ > 0. Using Lemma 2.6, for c ∈ (0,T/2), we
also have

inf
t∈[c,T−c]

x(t) ≥ cn−1

T n−1 ∥x∥ and inf
t∈[c,T−c]

y(t) ≥ cm−1

T m−1 ∥y∥.

Using now (7), we deduce that inf
t∈[c,T−c]

h(t) = [T n−1 − (T − c)n−1]/d. Therefore

inf
t∈[c,T−c]

h(t) =
T n−1 − (T − c)n−1

T n−1 ∥h∥ ≥ cn−1

T n−1 ∥h∥.



150 Rodica Luca, Ciprian Deliu

In a similar manner we obtain inf
t∈[c,T−c]

w(t) ≥ cm−1/T m−1∥w∥.
Therefore, we obtain

inf
t∈[c,T−c]

(x(t) + a0h(t)) ≥ inf
t∈[c,T−c]

x(t) + a0 inf
t∈[c,T−c]

h(t)

≥ cn−1

T n−1 (∥x∥ + a0∥h∥) ≥
cn−1

T n−1 ∥x + a0h∥,
inf

t∈[c,T−c]
(y(t) + b0w(t)) ≥ inf

t∈[c,T−c]
y(t) + b0 inf

t∈[c,T−c]
w(t)

≥ cm−1

T m−1 (∥y∥ + b0∥w∥) ≥
cm−1

T m−1 ∥y + b0w∥.

We now consider

R =
T n+m−2

cn+m−2

(
min

{∫ T−c

c
J1(s)α(s) ds,

∫ T−c

c
J2(s)β(s) ds

})−1

> 0.

By (H4), for R defined above, we deduce that there exists M > 0 such that f (u) >
2Ru, g(u) > 2Ru for all u ≥ M.

We consider a0 > 0 and b0 > 0 sufficiently large such that

inf
t∈[c,T−c]

(x(t) + a0h(t)) ≥ M and inf
t∈[c,T−c]

(y(t) + b0w(t)) ≥ M.

By using Lemma 2.4 and the above considerations, we have

y(c) =
∫ T

0
G2(c, s)β(s)g(x(s) + a0h(s)) ds ≥

≥
∫ T−c

c
G2(c, s)β(s)g(x(s) + a0h(s)) ds ≥

≥ cm−1

T m−1

∫ T−c

c
J2(s)β(s)g(x(s) + a0h(s)) ds ≥

≥ 2Rcm−1

T m−1

∫ T−c

c
J2(s)β(s)(x(s) + a0h(s)) ds ≥

≥ 2Rcm−1

T m−1 inf
τ∈[c,T−c]

(x(τ) + a0h(τ))
∫ T−c

c
J2(s)β(s) ds ≥

≥ 2Rcn+m−2

T n+m−2 ∥x + a0h∥
∫ T−c

c
J2(s)β(s) ds ≥ 2∥x + a0h∥ ≥ 2∥x∥.

Therefore, we obtain

∥x∥ ≤ y(c)/2 ≤ ∥y∥/2. (11)
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In a similar manner, we deduce

x(c) =
∫ T

0
G1(c, s)α(s) f (y(s) + b0w(s)) ds ≥

≥
∫ T−c

c
G1(c, s)α(s) f (y(s) + b0w(s)) ds ≥

≥ cn−1

T n−1

∫ T−c

c
J1(s)α(s) f (y(s) + b0w(s)) ds ≥

≥ 2Rcn−1

T n−1

∫ T−c

c
J1(s)α(s)(y(s) + b0w(s)) ds ≥

≥ 2Rcn−1

T n−1 inf
τ∈[c,T−c]

(y(τ) + b0w(τ))
∫ T−c

c
J1(s)α(s) ds ≥

≥ 2Rcn+m−2

T n+m−2 ∥y + b0w∥
∫ T−c

c
J1(s)α(s) ds ≥ 2∥y + b0w∥ ≥ 2∥y∥.

So, we obtain
∥y∥ ≤ x(c)/2 ≤ ∥x∥/2. (12)

By (11) and (12), we obtain ∥x∥ ≤ ∥y∥/2 ≤ ∥x∥/4, which is a contradiction, because
∥x∥ > 0. Then, for a0 and b0 sufficiently large, our problem (S )−(BC) has no positive
solution.
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Abstract We analyze the ruin probability in infinite and finite time horizon for some risk models.
This is the probability that an insurer will face ruin when it starts with some initial re-
serve and is subjected to independent and identical distributed claims over time. Closed
form expressions for this probability are available only in few cases, therefore actuaries
dwell with approximations. In this paper, we consider a perturbed risk model in which a
current premium rate will be adjusted after a claim occurs and the adjusted rate is deter-
mined by the amount of the claim. At the same time, in this risk model the surplus of the
insurer is perturbed by a standard Brownian motion which is independent of the number
of claims process and of claim sizes. We focus on an integro-differential equation for the
survival probabilities and on a discrete-time model for the ruin probabilities. We give a
numerical illustration on the latter risk model.
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Keywords: surplus process, ruin and survival probability, diffusion approximation, perturbed risk
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1. INTRODUCTION

An actuarial risk model has two main components: one characterizing the fre-
quency of events and another describing the claim size resulting from the occurrence
of a catastrophic event. In examining the nature of the risk associated with a portfolio
of policies, it is often of interest to assess how the portfolio performs over an extended
period of time. One approach focuses on the use of ruin theory, which is concerned
with the insurer’s surplus, i.e. the excess of the income over the outgo, or claims paid,
with respect to a portfolio of business. Ruin is said to occur if the insurer’s surplus
reaches a specified lower bound. The ruin probability is the probability of suchlike
event.

There are various ways to model the surplus process of an insurance company and
to define the ruin probability as well as the survival probability.

In this paper, we consider a perturbed risk model in which a current premium
rate will be adjusted after a claim occurs and the adjusted rate is determined by the
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amount of the claim. At the same time, in this risk model the surplus of the insurer
is perturbed by a standard Brownian motion which is independent of the number of
claims process and of claim sizes. We focus on an integro-differential equation for
the survival probabilities and on a discrete-time model for the ruin probabilities, as
well as for the level of the insurer’s surpluss process.

The paper is organized as follows. Section 2 discusses the Cramer-Lundberg risk
model using a martingale approach. Section 3 describes the diffusion approximation
for the maximum of a random walk. Section 4 is devoted to perturbed risk models:
in continous time, involving survival probabilities, and in discrete time, giving the
ruin probability after a certain number of periods. Section 5 contains a numerical
illustration on the latter risk model.

2. MARTINGALE APPROACH IN THE
CRAMER-LUNDBERG RISK MODEL

The theory of martingales provides a quick way of calculating the ruin probability.
We shall assume that the evolution of the capital of a insurance company takes place
in a probability space (Ω,K, P) as follows.

The initial capital (initial reserve) is U (0) = u > 0. Insurance premiums are
cashed continuously at a constant rate c > 0 and claims are received at random times
(moments) T1,T2, ... (0 = T0 < T1 < T2 < ...) and the amounts to be paid out at these
moments are described by the nonnegative random variables X1, X2, .... Thus, taking
into account receipts and claims, the capital U (t) at time t ≥ 0 is

U (t) = u + ct − S (t) , (1)

where S (t) =
∑

i≥1 Xi · I (Ti ≤ t), with S (0) = 0. Let Θi = Ti − Ti−1, i ≥ 1, be the
inter-ocurrence times; N (t) =

∑
i≥1 I (Ti ≤ t), N = {N (t) ; t ≥ 0} , with N (0) = 0, is

the claim arrival process.
The first time the insurance company’s capital becomes less than zero is the time

of ruin
τ = inf {t ≥ 0 : U (t) < 0} , (2)

and τ = ∞, if U (t) ≥ 0,∀t ≥ 0. The probability of ruin is

Ψ (u) = P (τ < ∞) , (3)

and the probability of ruin before some moment T is

Ψ (u,T ) = P (τ ≤ T ) . (4)

The Cramer-Lundberg model is characterized by the following assumptions:

i) the random variables Θi, i ≥ 1 are independent and identically distributed (iid)
having an exponential distribution Exp (λ) , expectation 1/λ;
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ii) the random variables Xi, i ≥ 1 are iid with cumulative distribution function (cdf)
B (x) such that B (0) = 0, µB =

∫
R+

xdB (x) < ∞;

iii) the sequences {Xi}i≥1 and {Ti}i≥1 are independent.
Since {Tk > t} = {N (t) < k}, the stochastic process N is a homogenous Pois-

son process with parameter rate λ > 0. Let B̂ (ω) = E
[
eωX

]
=

∫
R+

eωxdB (x)
be the moment generating function (mgf), B̃ (z) = B̂ (−z) be the Laplace-Stieltjes
transform, k (ω) = log B̂ (ω) be the cumulant generating function (cdf), h (ω) =∫
R+

(eωx − 1) dB (x) and g (ω) = λ · h (ω) − c · ω. We have h (z) = B̃ (−z) − 1, for
all z ≥ 0.

We consider the exponential family {Bω} generated by B, i.e. Bω (dx) = eωx−k(ω)B (dx)
or equivalently, in terms of the cdf of Bω, kω (α) = k (α + ω) − k (ω).

It is natural to consider the models which have the property that there exists a

constant ρ such that 1
t

N(t)∑
i=1

Xi
a.s.−→ ρ, t → ∞, ρ is the average amount of claim per unit

of time. In this model, it is easy to see that ρ = λµ, i.e. on average, λ claims arrive

per unit of time with µ the mean of a single claim, and also lim
t→∞

E[ 1
t

N(t)∑
i=1

Xi] = ρ. We

consider the safety loading or the loading θ defined as the relative amount by wich
the premium rate c exceeds ρ; it is necessary for the net profit condition. Indeed,
from assumption (iii) we find that

E[U (t) − U (0)] = ct − E[S (t)]
= ct −∑

i
E[Xi]E[I (Ti ≤ t)]

= ct − µ∑
i

P (Ti ≤ t)

= ct − µ∑
i

P (N (t) ≥ i)

= ct − µE[N (t)]
= t (c − λµ) .

Thus, a natural requirement for an insurance company to operate with a clear profit
is that c > λµ.

Taking X0 = 0, we find for r > 0 with h (r) < ∞,

E[e−r(U(t)−U(0))] = e−rctE[e
r

N(t)∑
i=1

Xi
]

= e−rct
∞∑

n=0
E[e

r
n∑

i=1
Xi

]P (N (t) = n)

= e−rct
∞∑

n=0
(1 + h (r))n e−λt (λt)n

n!

= et(λh(r)−cr) = etg(r).
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Analogously, it can be shown that for any s < t, E[e−r(U(t)−U(s))] = e(t−s)g(r).
Let Ft = σ (U (s) , s ≤ t). Since the stochastic process U = {U (t) ; t ≥ 0} is a

process with independent increments, we have

E[e−r(U(t)−U(s)) |Fs ] = E[e−r(U(t)−U(s))] = e(t−s)g(r),

then
E[e−rU(t)−tg(r) |Fs ] = e−rU(s)−sg(r).

Denoting Zt = e−rU(t)−tg(r), t ≥ 0, we have E[Zt |Fs ] = Zs, s ≤ t is a continuous
analogue of the martingale property.

The stochastic process Z = {Zt; t ≥ 0} is nonnegative with E[Zt] = e−ru < ∞, thus
the stochastic process with continuous time is a martingale. Therefore, E[Zt∧r] =
E[Z0] for any Markov time r (in particular, for r stopping time). For time r = τ, we
have

e−ru = E[e−rU(t∧τ)−(t∧τ)g(r)]
≥ E[e−rU(t∧τ)−(t∧τ)g(r) |τ ≤ t ]P (τ ≤ t)
= E[e−rU(τ)−τg(r) |τ ≤ t ]P (τ ≤ t)
≥ E[e−τg(r) |τ ≤ t ]P (τ ≤ t)
≥ inf

0≤s≤t
e−sg(r)P (τ ≤ t) .

So,

P (τ ≤ t) ≤ e−ru

inf
0≤s≤t

e−sg(r)

= e−ru sup
0≤s≤t

esg(r).

Clearly, g (0) = 0, g′ (0) = λµ−c < 0, and g′′ (r) = λh′′ (r) ≥ 0. There exists a unique
positive value r = γ so that g (γ) = 0. Because

∞∫
0

erx (1 − B (x)) dx =
∞∫
0

∞∫
x

erxdB (y) dx

=
∞∫
0

(
∞∫
x

erxdx)dB (y)

=
1
r

h (r) ,

γ may be asserted to be the unique root of the equation

λ
∞∫
0

erx (1 − B (x)) dx = c.



On survival and ruin probabilities in a perturbed risk model 157

Let r = γ (γ is called the adjustment coefficient), then for any t > 0,

P (τ ≤ t) ≤ e−γu,

whence P (τ < ∞) ≤ e−γu. But Ψ (u) = P (τ < ∞) is the ruin probability, so the
Lundberg’s inequality is obtained.

Proposition 2.1. (Lundberg’s Inequality) For all u ≥ 0,

Ψ (u) ≤ e−γu. (5)

Proposition 2.2. (Cramer’s asymptotic ruin formula) If the adjustment coefficient γ
exists, then

Ψ (u) ∼ ΨCL (u) = C · e−γu, u −→ ∞, (6)

where C = c−ρ
λB̂′(γ)−c

.

Remark 1. If B ∼ Exp(α), then ΨCL (u) = Ψ (u).

3. DIFFUSION APPROXIMATION FOR THE
MAXIMUM OF A RANDOM WALK

Closed form expressions for the ruin probability are available only in few cases,
therefore actuaries are interested in approximations. There is a huge amount of re-
search in this direction, and in this paper we focuse on the diffusion approximation.

The idea behind the diffusion approximation is first to approximate the claim sur-
plus process by a Brownian motion with drift by matching the two first moments.

Let {Xn; n ≥ 1} be a sequence of iid random variables and let S = {S n; n ≥ 0} be its
associated random walk with drift µ. The aim is to develop high accuracy approxi-
mations for the distribution of the maximum random variable M = max {S n : n ≥ 0} ,
which can be thought as the maximum of the aggregate loss or claim.

Clearly, −µ = E (X1) must be negative in order that M is finite-valued. For u > 0,
{M > u} = {τ (u) < ∞}, where τ (u) = inf {n ≥ 1 : S n > u}, so that calculating the tail
of M is equivalent to calculating a level crossing probability for the random walk S .
In insurance risk theory, P (τ (u) < ∞) is the probability that an insurer will face ruin
when the initial reserve is u and is subjected to iid claims over time. One important
approximation holds as µ↘ 0. This asymptotic regime corresponds in risk theory to
the setting in which the safety loading θ is small (i.e. the premium charged is close
to the typical pay-out for claims). The approximation

P (M > u) ≈ exp
(
−2µu/σ2

)
(7)

is valid as µ↘ 0, whereσ2 = Var (X1). Because the right hand side of (7) is the exact
value of the level crossing probability for the natural Brownian approximation to the
random walk S , (7) is often called the diffusion approximation to the distribution of
M.
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There are applications for which the diffusion approximation gives poor results.
Siegmund (1979) suggested a so-called “corrected diffusion approximation” (CDA)
that reflects information in the increment distribution beyond the mean and variance.
Blanchet and Glynn (2006) developed this method to the full asymptotic expansion
initiated by Siegmund.

The first problem considered by Siegmund is to find the expected value of the
maximum of a random walk with small, negative drift, and the second problem is to
find the distribution of the same quantity.

The result in the first case is the following: consider an exponential family Pω,
ω belongs to a neighborhood of 0, such that under Pω, X1, X2, ... are independent
random variables with density function exp (ωx − k (ω)) relative to a non-arithmetic
distribution F, where k (ω) is the cumulant generating function. We assume that the
problem is normalized such that E0 [X1] = k′ (0) = 0, Var0 [X1] = k′′ (0) = 1.

Let S n =
n∑

i=1
Xi, τ (u) = inf {n : S n > u}, τ+ = τ (0) and M = supn {S n}, which is

almost surely finite if ω < 0. Then, as ω ↗ 0, Eω [M] = 1
∆
− E0[S 2

τ+]
2E0[S τ+]

+ o (∆),
where ∆ = ω1 − ω, and ω1 > 0 is such that k (ω1) = k (ω). The random walk is
assumed to belong to a translation family, i.e., Pω (X1 ∈ A) = P0 (X1 − ω ∈ A), where

E0
∣∣∣X3

1

∣∣∣ < ∞. Then, we have Eω [M] = −1
2ω −

E0[S 2
τ−]

2E0[S τ−]
+ o (1), which is the result of

Siegmund in the form he gave it. From the Wiener-Hopf factorization it is not hard

to show that
E0S 2

τ+

2E0S τ+
+

E0S 2
τ−

2E0S τ−
=

E0X3
1

3 .
The distribution of the maximum is given considering such probabilities as

Pω (τ (u) < ∞) = Pω (M > u). The appropriate normalization in the exponential fam-
ily case is to take u = 2ξ

∆
, in which case it was showed that as ω↗ 0,

Pω

(
τ

(
2ξ
∆

)
< ∞

)
= e−2ξ

1 − ∆ E0
[
S 2
τ+

]
2E0

[
S τ+

] + o (∆)

 . (8)

The probabilityΨ (u) of ruin in a compound Poisson risk process U = {U (t) : t ≥ 0},
with initial reserve u, is defined as Ψ (u) = P (inft≥0 U (t) < 0), assuming the condi-
tions of the Cramer-Lundberg model. Also, the net premium is considered to be
received at a constant rate c over time, c = (1 + θ) λµB, where θ > 0 is the relative
safety loading. Thus the insurance surplus at time t is

U (t) = u + ct − S (t) , t ≥ 0. (9)

The standard diffusion approximation (Grandell 1977) is

Ψ (u) ≈ ΨD (u) = exp
−2θu

µB

µ2
B + σ

2
B

 , (10)

where σ2
B denotes the variance of B. For light-tailed random walk problems, Sieg-

mund (1979) derived a correction which was adapted to ruin probabilities by As-
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mussen and Binswanger (1997). An alternative covering also certain heavy-tailed
cases was given in Hogan (1986). The result will be the corrected diffusion approxi-
mation

Ψ (u) ≈ ΨCD (u) =

1 + 4θ2um2
1m3

3m3
2

− 2θm1m3

3m2
2

 exp
(
−2θu

m1

m2

)
, (11)

when m5 < ∞, where mi is the i-th moment of B.
We remind that if ξ is a random variable with cumulative distribution function B

and cumulant generating function k (ω) = ln E
[
eωξ

]
= ln B̂ (ω), the standard defini-

tion of the exponential family {Bω} generated by B is

Bω (dx) = eωx−k(ω)B (dx) (12)

or equivalently
kω (α) = k (α + ω) − k (ω) . (13)

The question that naturally arises is whether kω is the cgf corresponding to a com-
pound Poisson risk process in the sense that for a suitable arrival intensity λω and
a suitable claim-size distribution Bω, we have kω (α) = λω

(
B̂ω (ω) − 1

)
− α. The

answer is yes, the solution is

λω = λB̂ (ω),
Bω (dx) = exp(ωx)

B̂(ω)
B (dx) (14)

or equivalently

B̂ω (ω) =
B̂ (ω + α)

B̂ (ω)
. (15)

In the following, we formalize this for the purpose of studying the whole process.
Let P be the probability measure on D[0,∞) governing a given compound Poisson
risk process with arrival intensity λ and claim size distribution B, and define λω, Bω by
(14). Then Pω denotes the probability measure governing the compound Poisson risk
process with arrival intensity λω and claim size distribution Bω; the corresponding
expectation operator is Eω.

Since Brownian motion is skip-free, the idea to replace the risk process by a Brow-
nian motion ignores the presence of the overshoot and other things. The objective
of the corrected diffusion approximation is to take this and other deficits into con-
sideration. The set-up is the exponential family of compound risk processes with
parameters λω and Bω. However, if we let the given risk process with safety loading
θ > 0 correspond to ω = 0, it is more convenient here to use some value ω0 < 0
and let ω = 0 correspond to θ = 0 (zero drift). This is because in the regime of the
diffusion approximation, θ is close to zero, and we want to consider the limit θ ↘ 0
corresponding to ω0 ↗ 0.
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In terms of the given risk process with Poisson intensity λ, claim size distribution
B, k (α) = λ

(
B̂ (α) − 1

)
− α and ρ = λµB < 1, η = 1

ρ − 1, this means the following:
1) Determine γm > 0 such that k′

(
γm

)
= 0 and let ω0 = −γm.

2) Let P0 refer to the risk process with parameters λ0 = λB̂ (−ω0), B0 (dx) =
exp(−ω0 x)

B̂(−ω0)
B (dx). Then E0[Xk] = B̂(k)

0 (0) = B̂(k)(−ω0)
B̂(−ω0)

and k0 (r) = k (r − ω0)−k (ω − ω0),
k′0 (0) = 0.

3) For each ω, let Pω refer to the risk process with parameters λω = λ0B̂ (ω) =
λB̂ (ω − ω0), Bω (dx) = exp(ωx)

B̂0(ω)
B0 (dx) = exp((ω−ω0)x)

B̂(ω−ω0)
B (dx). Then kω (r) = k0 (r + ω)−

k0 (ω) = k (r + ω − ω0) − k (ω − ω0) and the given risk process corresponds to Pω0

where ω0 = γm. In this set-up we are studying Ψ (u, T ) = Pω0 (τ (u) ≤ T ) for
ω0 < 0, ω0 ↗ 0.

Recall that IG(x; ζ, u) (inverse Gaussian) denotes the distribution function of the
passage time of the Brownian motion

{
Wζ (t)

}
with unit variance and drift ζ from

level 0 to level u > 0. One has IG(x; ζ, u) = IG( x
u2 ; ζu, 1). The corrected diffusion

approximation to be derived is

Ψ (u,T ) ≈ ΨCD (u,T ) = IG(
Tv1

u2 +
v2

u
;−γu

2
, 1 +

v2

u
), (16)

where γ is the adjustment coefficient (i.e. k (γ) = 0) and v1 = λB̂′′
(
γm

)
, v2 =

E0(X3)
2E0(X2) =

B̂′′′(γm)
3B̂′′(γm) . The initial reserve u for the given risk process is written as u =

ζ/ω0 and, for brevity, we write τ = τ (u), ξ = ξ (u) = S τ − u.
Note that µ = k′0 (ω0) ∼ ω0k′′0 (ω0) = v1, Varω0 (S 1) ∼ Var0 (S 1) = v1, ω0 ↗ 0,{
1

u
√

v1

}
t≥0

D−→
{
Wζ
√

v1 (t)
}
t≥0

,

Ψ
(
u, tu2

)
−→ IG(t; ζ

√
v1,

1
ζ
√

v1
) = IG(tv1; ζ, 1). (17)

Let {Wt, t ≥ 0} denote the Wiener process with drift with mean µt function and vari-
ance function σ2t. We consider the probability of ruin in a time interval (0,T ). Let
τ = inft≥0 {t : u +Wt < 0}. The probability of ruin before T is Ψ (u,T ) = P (τ < T ) =
P (inf0<t<T Wt < −u).

Proposition 3.1.

Ψ (u, T ) = Φ
(
−u + µT

σ
√

T

)
+ e−2 µ

σ2 u
Φ

(
−u − µT

σ
√

T

)
. (18)

Letting T → ∞, the ultimate ruin probability is Ψ (u) = e−2 µ

σ2 u (i.e. the diffusion
approximation).

Proposition 3.2. The probability density function of the time length until ruin is given
by

fT (t) =
u

σ
√

2π
t−

3
2 e−

(u−µt)2

2σ2 t , t > 0. (19)
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4. PERTURBED RISK MODEL

4.1. INTEGRO-DIFFERENTIAL EQUATION

In the classical risk model, the premium rate c is a positive constant which does
not depend on the history of claims. However, in practice, especially in car insur-
ance, the premium rate is adjusted according to previous claims. Thereby, the con-
stant premium rate hypothesis is quite restrictive and departs the model from reality.
Lately, there have been developed risk models in which the premium rate depends on
stochastic elements of the insurer’s surplus process. For example, in Dufresne and
Gerber (1991) a diffusion is added at the Poisson compound process, the diffusion de-
scribes the uncertainty on the total income from premiums or on the aggregate claim.
Asmussen (2000) worked out a model in which the premium rates are adjusted ac-
cording to the current level of the insurer’s surplus. Albrecher and Asmussen (2006)
studied a premium rate which is dinamically adjusted in accordance to the history of
claims. Albrecher and Boxma (2004) considered (examined) a model in which the
rate of the next claim arrival is induced by the size of the previous claim. They ex-
tended their model to a new one with Markov dependence such that the arrival rates
as well as the claim size distributions are determined by the state of a Markov chain in
continuous time. Albrecher and Teugels (2006) studied risk models with dependence
between the inter-occurence times and claims size.

In the following, we will study a perturbed risk model with dependence between
the premium rates and claim sizes. We will consider that the current premium rate
is adjusted after the ocurrence of a claim and the adjusted rate is determined by the
claime size. Moreover, the diffusion coefficient of the model will be modified ad-
equately. Therefore, the premium rate in period [τn, τn+1) is a random variable de-
pending on the random variable Xn which gives the size of the claim at the moment
τn, n = 1, 2, ... .We will denote by c (Xn) this premium rate suitable for the time in-
terval [τn, τn+1). In addition, it is considered that the insurer’s surplus is perturbed
by a standard brownian motion {Wt, t ≥ 0} which is independent of N = {N (t) ; t ≥ 0}
and {Xi}i=1,2,.... The diffusion coefficient for the time period [τn, τn+1) is denoted by
σ (Xn), as it depends also on Xn.

The insurer’s surplus at moment t ∈ [τn, τn+1) , n ≥ 1, is U (t) , given by:

U (t) = U (τn) + c (Xn) (t − τn) + σ (Xn)
(
Wt −Wτn

)
(20)

and
U (τn+1) = U (τn) + c (Xn) Tn+1 − Xn+1 + σ (Xn)

(
Wτn+1 −Wτn

)
. (21)

Regarding the claims sizes, we will consider that there exists a threshold b > 0,
such that when Xn > b, the premium rate is c (Xn) = c2, and when Xn ≤ b, the
premium rate is c (Xn) = c1. Thus, it is considered that the base premium rate of the
portfolio is c1, and when there ocurrs a high loss, the rate premium will be increased
to the level c2. Obviously, it is reasonable to assume that c2 ≥ c1 > 0. In this
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interpretation, c1 can be regarded as an acceptable income rate, while c2 is a penalty
for a high demand or loss. We have:

c (x) =
{

c1, x ≤ b
c2, x > b ,

and appropriately

σ (x) =
{
σ1, x ≤ b
σ2, x > b ,

where σ1 > 0 and σ2 > 0 are constants that describe changes of diffusion coefficients
due to changes in the premium rate.

We assume that the conditions for safety loading are met, ie c1 > λE [Xn |Xn ≤ b ]
and c2 > λE [Xn |Xn > b ].

Let {Ui (t) , t ≥ 0} , i = 1, 2, be the surplus process with the initial premium rate ci,
the initial diffusion coefficient σi, over the first period between claims [0, τi). The
functions f1 (x) = f (x) · I {x ≤ b} and f2 (x) = f (x) · I {x > b} , x ≥ 0, are introduced,
where f is the pdf of the distribution function B of the claim sizes.

The survival probability of the process {Ui (t) , t ≥ 0} is

ϕi (u) = P (Ui (t) ≥ 0,∀t ≥ 0 |Ui (0) = u ) , i = 1, 2.

Let us assume that ϕi (u) , i = 1, 2, are twice differentiable.

Theorem 4.1. For any u > 0, ϕi (u) , i = 1, 2, satisfy the following system of equa-
tions:

1
2
σ2

1ϕ
′′
1 (u) + c1ϕ

′
1 (u) = λϕ1 (u) − λ

u∫
0

(
ϕ1 (u − x) f1 (x) + ϕ2 (u − x) f2 (x)

)
dx (22)

and

1
2
σ2

2ϕ
′′
2 (u) + c2ϕ

′
2 (u) = λϕ2 (u) − λ

u∫
0

(
ϕ1 (u − x) f1 (x) + ϕ2 (u − x) f2 (x)

)
dx. (23)

with the frontier conditions ϕi (0) = 0, ϕi (∞) = 1, and ϕ′′1 (0) = −2ciϕ
′
i (0) /σ2

i ,
i = 1, 2.

Proof. We pursue Zhou M. and Cai J. (2009). Considering U1 (t) in a small time
interval (0, t] we have that

Φ1 (u) = λtE[

s(t)∫
0

(Φ1 (s (t) − x) I (x ≤ b) + Φ2 (s (t) − x) I (x > b)) dB (x)]

+ (1 − λt) E [Φ1 (s (t))] + o (t) ,
(24)
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where s (t) = u + c1 · t + σ1 ·Wt. By Itô’s formula, we obtain

Φ1 (s (t)) = Φ1 (u) +

t∫
0

(
1
2
σ2

1Φ
′′
1 (s (y)) + c1Φ

′
1 (s (y))

)
dy + σ1

∫ t

0
Φ
′
1 (s (y)) dWy.

Because
{∫ t

0
Φ
′
1 (s (y)) dWy, t ≥ 0

}
is a martingale, note that E[

∫ t

0
Φ
′
1 (s (y)) dWy] =

0. Using (24) and then dividing by t on both sides, and letting t → 0, we obtain

1
2
σ2

1Φ
′′
1 (u) + c1Φ

′
1 (u) = λΦ1 (u) − λ

∫ u

0
Φ1 (u − x) f1 (x) + Φ2 (u − x) f2 (x) dx.

Analogously, we obtain the other equation. The boundary condition Φi (0) = 0
comes from the oscillation of the diffusion, and the boundary condition Φi (∞) = 1
holds because of the positive loading condition.

4.2. DISCRETE-TIME PERTURBED RISK
MODEL

Let us now consider a discrete-time insurance model, suitable for applications.
Let the increment in the surplus process in period t, usually year, be defined as

Wt = Pt + At − S t, t ≥ 1 (25)

where: Pt is the premium collected in the t-th period, S t stands for the losses paid
in the t-th period, At is any cash flow other than the premium and the payment of
claims. The most significant cash flow is the earning of investment income on the
surplus available at the beginning of the period. The surplus at the end of the t-th
period is then

Ut = Ut−1 +Wt
= Ut−1 + Pt + At − S t

= u +
t∑

j=1

(
P j + A j − S j

)
.

(26)

Let us assume that given Ut−1, the random variable Wt depends only upon Ut−1 and
not upon any other previous experience.

In order to calculate ruin probabilities, we consider a process defined as follows:

W∗t =
{

0, U∗t−1 < 0
Wt, U∗t−1 ≥ 0 ,U∗t = U∗t−1 +W∗t , t ≥ 1, (27)

where U∗0 = u.
We evaluate the ruin probability using convolutions. The calculation is recursively,

using the distribution of U∗t . Let us suppose that we obtained the discrete probability
function (pf) of U∗t−1. Then the ruin probability is

Ψ̃ (u, t − 1) = P
(
U∗t−1 < 0

)
(28)
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and the distribution of nonnegative surplus is f j = P
(
U∗t−1 = u j

)
, j = 1, 2, ..., where

u j > 0,∀ j and un is the largest possible value of U∗t−1. Let g j,k = P
(
Wt = w j,k

∣∣∣U∗t−1 = u j
)
.

Theorem 4.2. The ruin probability after t periods of time is

Ψ̃ (u, t) = Ψ̃ (u, t − 1) +
n∑

j=1

∑
w j,k+u j<0

g j,k · f j (29)

and
P

(
U∗t−1 = a

)
=

n∑
j=1

∑
w j,k+u j=a

g j,k · f j. (30)

5. NUMERICAL ILLUSTRATION

Let us assume that annual losses can take the values 0, 2, and 10 monetary units,
with probabilities 0.6, 0.3, and 0.1, respectively. Also, suppose that the initial surplus
is u, and a premium of 1 monetary unit is collected at the beginning of each year,
that interest is earned at 5% on any surplus available at the beginning of the year
because claims are paid at the end of the year. In addition, we introduce a rebate of
0.1 m.u. which is given in any year in which there are no losses. We determine the
ruin probability at the end of each of the first three years for some values of initial
capital u using (29). We present our results in Table 1, in Table 2, and Figure 1.

Table 1. The ruin probability Ψ (u, t).

u\t 1 2 3

1 0.1 0.28 0.352
2 0.1 0.19 0.298
4 0.1 0.19 0.271
8 0.1 0.13 0.163

10 0.0 0.01 0.037

Table 2. The surplus process for u = 8 m.u. at the end of the 3rd year.

j u j f j 0 2 10
0.6 0.3 0.1

1 0.8675 0.06 1.860875 −0.039125 −8.039125
2 6.8725 0.09 8.166125 6.266125 −1.733875
3 8.7725 0.18 10.161125 8.261125 0.261125
4 8.8675 0.18 10.260875 8.360875 0.360875
5 10.7675 0.36 12.255875 10.355875 2.355875
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Fig. 1. The evolution of the ruin probability on the first three years, depending on the amount of the
initial capital.
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Abstract New sharp estimates concerning distance function in certain Bergman -type spaces of
analytic functions in a certain Siegel domain of first type are obtained. Related sharp
new estimates for more general Siegel domains of second type are also provided. For
Siegel domains of second type in Cn these are the first results of this type.
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1. INTRODUCTION

In this paper we obtain sharp distance estimates in certain spaces of analytic func-
tions in Siegel domains of first type and of second type. These types of domains are
known in literature.They have been studied by many authors during last decades (see
for example [10], [6], [7], [24] and references therein). In connection with the study
of authomorphic functions of several complex variables, the notion of Siegel domains
of the first and second type was introduced by Piatetskii-Shapiro [10], [24]. We recall
basic facts that relate them to some well-known domains. The Siegel domain of first
type is a particular case of a Siegel domain of second type [10]. In particular there is
a Siegel domain isomorphic to unit ball of Cm+1, in addition, the simplest case of one
dimensional Siegel domain of the first type is the upperhalfspace C+. Note that our
results below were already proved in this case in [21]. Next the Siegel domain of first
type is a special type of a actively studied recently general tube domains over sym-
metric cones (see [19] and various references there concerning tube domains). But
there are homogeneous Siegel domains of second type which are not even symmetric
domains [10], [24]. Tube domains may be also viewed as special cases of Siegel
domains of second type. It is known that every bounded homogeneous domain in Cn

can be realized as Siegel domain of the first and the second type and that this real-
ization is unique up to affine transformations. Siegel domains are holomorphically
equivalent to a bounded domains. But there is a lot of bounded domains that are not
holomorphically isomorphic to Siegel domains [10]. We will provide definitions of
Siegel domains of first type and more general of second type below referring also to
[24] (see also, for example, [10]).

167
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Our line of investigation in this work can be considered as direct continuation of
our previous papers on extremal problems [20], [22] and [23]. Our main two new
results are contained in the second and third sections of this note. First we provide
a concrete special example of a Siegel domain of first type and we obtain a sharp
estimate for distance function in certain Bergman type analytic spaces on it. Next we
turn in our final section to Siegel domains of the second type. We remark that here
for the first time in literature we consider this extremal problem related with distance
estimates in spaces of analytic functions in Siegel domains of second type. The next
two sections partially also contain some required preliminaries on analysis on these
domains.

In the upperhalfspace C+ which is one dimensional tubular domain and also in
general tubular domains our theorems are not new and they were obtained recently
in [21], and then in general form in [19]. Moreover arguments in proofs we pro-
vided below are similar to those we have in previous cases and hence our arguments
sometimes will be sketchy below. The main tool of the proof is again the so-called
Bergman reproducing formula, but in Siegel domains (see, for example, [5], [6] for
this integral representation and it is applications). This paper first deals with a con-
crete example of Siegel domain of first type and based on some results from [5] we
present a sharp result in this direction. But then in the final part we turn to more
general situation (see [6] for notation which will be constantly needed in this second
part) and we obtain some related estimates for distances there also. Note again some
results from [6] are crucial here in last section for us.

We now shortly remind the history of this extremal problem.
After the appearance of [26] various papers appeared where arguments which can

be seen in [26] were extended and changed in various directions [22], [23], [20].
In particular in the mentioned papers various new results on distances for analytic

function spaces in higher dimension (unit ball and polydisk) were obtained. Namely
new results for large scales of analytic mixed norm spaces in higher dimension were
proved.

Later several new sharp results for harmonic function spaces of several variables
in the unit ball and upperhalfplane of Euclidean space were also obtained (see, for
example, [20] and references therein). The classical Bergman representation formula
in various domains serves as a base in all these papers in proofs of main results. Re-
cently (see[18]) concrete analogues of our theorems were proved also in some spaces
of entire functions of one and several variables. Various other extremal problems in
analytic function spaces also were considered before in various papers (see for ex-
ample [1], [15], [16], [14]). In those just mentioned papers other results around this
topic and some applications of certain other extremal problems can be found also.
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2. NEW SHARP ESTIMATES FOR DISTANCES
IN ANALYTIC BERGMAN -TYPE SPACES IN
SIEGEL DOMAINS OF FIRST TYPE

This section is devoted to one of the main results of this paper. We remark that
our notes, namely this one and [19], are first papers with sharp results on extremal
problems in higher dimension in Cn, namely in analytic function spaces in Siegel
domains in Cn. We now establish some notation from [5] which will be needed for
us. Let Ω ⊂ Cn be an open nonempty set. Let W(Ω) be the set of all weights in Ω.
We mean by this a set of all Lebesgue measurable functions acting from Ω to R+.
For each such γ function let L2(Ω, γ) be the Hilbert space of all f functions from Ω
to C so that the quasi-norm

∫
Ω
| f (z)|2γ(z)dm(z) is finite,where dm(z) is a Lebesgue

measure on Ω. By A2(Ω) we denote the analytic subspace of this space but for so
-called special (see [5]) admissible γ weights and with the same quasinorm (see [5]).
Note that the class of these weights it is a closed subspace of L2(Ω). Next according
to the well-known Riesz representation theorem there is a unique function that for
all functions from this space a certain integral representation holds with a certain
function called Bergman kernel which is from L2(Ω) (see [5]and references therein).
In certain cases and our case is of them in higher dimension this function called
Bergman kernel can be explicitly written. This last fact alone already opens a large
way for various investigations in this research area. In the present paper first we look
at the family of the following admissible weights γα(τ),

γα(τ) = (ℑτ1 − |τ̃|2)α

α > −1 on the concrete Siegel domain of the first type (see [5])

Ω =
{
τ ∈ Cn,ℑτ1 > |τ̃|2

}
,

where we denote by τ and τ̃ the vectors τ = (τ1, . . . , τn),τ̃ = (τ2, . . . , τn). Let w be a
vector from Cn. Let also dmβ(w) = (ℑw1 − |w̃|2)βdm(w),where dm(w) is a Lebesgue
measure on R2n and we also define a Bergman kernel as see[5]

Bβ(τ,w) = (τ − w)−β−n−1 = (u − 2v)−n−1−β

u = i(τ1 − w1),v = (w̃τ̃), where the last expression is as usual a scalar product of two
vectors in Cn−1. These definitions are crucial for our paper. The goal of this section to
develop further some ideas from our recent already mentioned papers and to present
a new sharp theorem in mentioned Siegel domain of first type .

For formulation of our result we will now need various standard definitions from
the theory of these Siegel domains of first type (see [10], [5]).

Let Ω be the Siegel domain . H(Ω) denotes the space of all holomorphic functions
on Ω. Let further, for all positive β,

A∞β (Ω) =

F ∈ H(Ω) : ∥F∥A∞β = sup
x+iy∈Ω

|F(x + iy)|γβ(x + iy) < ∞
 , (1)



170 Romi F. Shamoyan

(we use in this paper the following notation w = u + iv and z = x + iy, w ∈ Ω, z ∈ Ω).
It can be checked that this is a Banach space.

For 1 ≤ p < +∞ , α > −1 we denote by Ap
α(Ω) the weighted Bergman space

consisting of analytic functions f in Ω such that

∥F∥Ap
α
=

(∫
Ω

|F(z)|pγα(z)dm(z)
)1/p

< ∞.

This is a Banach space. Below we will restrict ourselves to p = 2 case following
[5]. Replacing above A by L we will get as usual the corresponding larger space
L2
ν(Ω) of all measurable functions in our domain Ω with the same quasi-norm (see

[5]). The (weighted) Bergman projection Pβ is the orthogonal projection from the
Hilbert space L2

ν(Ω) onto its closed subspace A2
ν(Ω) and it is given by the following

integral formula (see [5])

Pβ f (z) = Cβ

∫
Ω

Bβ(z,w) f (w)dmβ(w), (2)

where Cβ is a special constant (see [5]) and β > ν−1
2 . For these values of β this is

a bounded linear operator from L2
ν to A2

ν. Hence, by using these facts, we have that
for any analytic function from A2

ν(Ω) the following integral formula is valid for all
functions from A2

ν, for all β, β > ν−1
2 and ν > −1 (see[5])

f (z) = Cβ

∫
Ω

Bβ(z,w) f (w)dmβ(w). (3)

In this case sometimes below we say simply that the analytic f function allows
Bergman representation via Bergman kernel with β index.

We need also the following estimate (A) of Bergman kernel from [5]. Let t > −1
and β > 0. Then there is a positive constant c = cn,t,β so that∫

Ω

γt(τ)|Bt+β(τ,w)|dm(τ) ≤ cγ−1
β (w),

w ∈ Ω. This estimate of Bergman kernel will be used and not once below during the
proof of our first theorem.

Note here also these assertions we just mentioned have direct analogues in simpler
cases of analytic function spaces in unit disk, polydisk, unit ball, upperhalfspace C+
and in spaces of harmonic functions in the unit ball or upperhalfspace of Euclidean
space Rn. These classical facts are well- known and can be found, for example, in
some items in references (see, for example, [26], [9]).

Above and throughout the paper we write C (sometimes with indexes) to denote
positive constants which might be different each time we see them (and even in a
chain of inequalities), but is independent of the functions or variables being dis-
cussed.
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As in case of analytic functions in unit disk, polydisk, unit ball, and upperhalfspace
C+, and tubular domains over symmetric cones, and in case of spaces of harmonic
functions in Euclidean space, [26], [21], [20], [22], [23], the role of the Bergman
representation formula and estimates for Bergman kernel are crucial in these issues
related with our extremal problem and our proof will be heavily based on them.

And as it was mentioned already above a variant of Bergman representation for-
mula is available also in Bergman- type analytic function spaces in Siegel domains
and this known fact (see [5], [24], [6]), which is crucial in various problems in ana-
lytic function spaces in Siegel domains of both types is also used in our proof below.

Moreover will also need for our proof the following additional facts on integral
representation of functions on these Ω domains which follows from assertions we
already formulated above. Note first that for all functions from A∞α the integral rep-
resentations of Bergman we mentioned above with Bergman kernel

Bν(z,w)

(with ν index) is valid for large enough ν. This follows directly from the fact that
A∞α for any α is a subspace of A2

τ if τ is large enough [5]. Moreover it can be easily
shown that we have a continuous embedding A2

α ↪→ A∞β (see, for example, [5] where
the proof can be found also) for a concrete β depending on α, α > −1 and this
naturally leads to a problem of estimating

distA∞β ( f , A2
α)

for a given f ∈ A∞β ,where β = α+n+1
2 , α > −1.

This problem on distances we just formulated will be solved in our next theorem
below, which is one of the main results of this section. Let us set, for f ∈ H(Ω),
s > 0 and ϵ > 0 and z = x + iy ∈ Ω,

Nϵ,s( f ) =
{
z ∈ Ω : | f (z)|γs(z) ≥ ϵ} . (4)

We denote by N1 and by N2 two sets- the first one is Nϵ,s( f ), the other one is the
set of all those points, which are in tubular domain Ω, but not in N1. Note now, to
clarify the notation for readers again, by m(z) or by m with only one lower index we
denote in this section the Lebesgue measure on R2n.

Theorem 2.1. Let t = ν+1+n
2 . Set, for f ∈ A∞n

2+
ν+1

2
, ν > −1

l1( f ) = distA∞n
2 +

ν+1
2

( f , A2
ν), (5)

l2( f ) = inf

ϵ > 0 :
∫
Ω

(∫
Nϵ,t( f )

γβ−t(w)dw

(z − w)β+n+1

)2

γν(z)dm(z) < ∞
 . (6)

Then there is a positive number β0, so that for all β > β0, we have l1( f ) ≍ l2( f ).
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Proof. We will start the proof with the following observation, which already was
mentioned above. By our arguments before formulation of this theorem for all func-
tions from A∞τ1

the integral representations of Bergman with Bergman kernel

B(τ2)(z,w)

is valid for large enough τ2.
We denote below the double integral which appeared in formulation of theorem by

G( f ) and we will show first that l1( f ) ≤ Cl2( f ). We assume now that l2( f ) is finite.
We use the Bergman representation formula which we provided above, namely(3),

and using conditions on parameters we now have the following equalities.
First we have obviously by the remark from which we started this proof that for

large enough β

f (z) = Cβ

∫
Ω

Bβ(z,w) f (w)dmβ(w) = f1(z) + f2(z),

f1(z) = Cβ

∫
N2

Bβ(z,w) f (w)dmβ(w,

f2(z) = Cβ

∫
N1

Bβ(z,w) f (w)dmβ(w).

Then we estimate both functions separately using estimate (A) provided above
and following some arguments we provided in one dimensional case that is the case
of upperhalfspace C+ [21]. Here our arguments are sketchy since they are parallel
to arguments from [21]. Using definitions of N1 and N2 above after some calcula-
tions following arguments from [21] using the estimate (A) of Bergman kernel we
mentioned above we will have immediately

f1 ∈ A∞ν+n+1
2

and
f2 ∈ A2

ν .

We easily note the last inclusion follows directly from the fact that l2 is finite.
Moreover it can be easily seen that the norm of f1 can be estimated from above by

Cϵ, for some positive constant C ([21]), since obviously

sup
N2

| f (w)|γt(w) ≤ ϵ.

Note this last fact follows directly from the definition of N2 set and estimate (A)
above which leads to the following inequality∫

Ω

γβ−t(τ)|Bβ(τ,w)|dm(τ) ≤ Cγ−1
t (w),
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w ∈ Ω for all β so that β > β0, for some large enough fixed β0 which depends on n, ν,
where

t = (
1
2

)(ν + 1 + n).

This gives immediately one part of our theorem. Indeed, we have now obviously

l1 ≤ C2∥ f − f2∥A∞t = C3∥ f1∥A∞t ≤ C4ϵ.

It remains to prove that l2 ≤ l1. Let us assume l1 < l2. Then there are two numbers
ϵ and ϵ1,both positive such that there exists fϵ1 ,so that this function is in A2

ν and
ϵ > ϵ1 and also the condition

∥ f − fϵ1∥A∞t ≤ ϵ1

holds and G( f ) = ∞, where G is a double integral in formulation of theorem in l2
(see (6)).

Next from
∥ f − fϵ1∥A∞t ≤ ϵ1

we have the following two estimates,the second one is a direct corollary of first one.
First we have

(ϵ − ϵ1)τNϵ,t (z)γ−1
t (z) ≤ C| fϵ1(z)|

,where τNϵ,t (z) is a characteristic function of N = Nϵ,t( f ) set we defined above.
And from last estimate we have directly multiplying both sides by Bergman kernel

Bβ(z,w) and integrating by tube Ω both sides with measure dmβ

G( f ) ≤ C
∫
Ω

(L( fϵ1))2γν(z)dm(z),

where
L = L( fϵ1 , z)

and

L( fϵ1 , z) =
∫
Ω

| fϵ1(w)||Bβ(z,w)|dmβ(w).

Denote this expression by I.
Put β + n + 1 = k1 + k2, where k1 = β + 1 − n − µ, k2 = µ + 2n( 1

2 +
1
2 ) where the

additional parameter will be chosen by us later.
By classical Hölder inequality we obviously have

I2 ≤ CI1I2,

where
I1( f ) =

∫
Ω

| f1(z)|2|(z − w)s|γ2β(z)dm(z),
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I2 =

∫
Ω

|(z − w)v|dm(z)

and where f1 = fϵ1 and
s = 2µ − 2 − 2β,

v = −2n − 2µ.

Choosing finally the µ parameter, so that the estimate (A) namely∫
Ω

γt̃(τ)|Bt̃+β̃(τ,w)|dm(τ) ≤ Cγ−1
β̃

(w),

w ∈ Ω
can be used twice above with some restrictions on parameters and finally making
some additional easy calculations we will get what we need.

Indeed we have now obviously,∫
Ω

(
∫
Ω

| fϵ1(z)|Bβ(z,w)|dmβ(z))2γν(w)dm(w) ≤ C∥ fϵ1∥2A2
ν

and
G( f ) ≤ C∥ fϵ1∥A2

ν
,

but we also have
fϵ1 ∈ A2

ν.

This is in contradiction with our previous assumption above that G( f ) = ∞. So
we proved the estimate which we wanted to prove. The proof of our first theorem in
Siegel domains of first type is now complete.

3. NEW ESTIMATES FOR DISTANCES IN
BERGMAN TYPE SPACES IN SIEGEL
DOMAINS OF THE SECOND TYPE

We first recall some basic facts on Siegel domains of second type and then es-
tablish notations for our second main theorem. Recall first the explicit formula for
the Bergman kernel function is known for very few domains.The explicit forms and
zeros of the Bergman kernel function for Hartogs domains and Hartogs type domains
(Cartan-Hartogs domains) were found only recently [2]. On the other hand in strictly
pseudoconvex domains the principle part of the Bergman kernel can be expressed
explicitly by kernels closely related to so-called Henkin -Ramirez kernel see for ex-
ample [11] and references there. In [10] the Bergman kernel

b ((τ1, τ2), (τ3, τ4))

for the Siegel domain of the second type was computed explicitly. It is an integral
via V∗ a convex homogeneous open irreducible cone of rank l in Rn, a conjugate
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cone of V cone and which also contains no straight line and in that integral the fixed
Hermitian form from definition of D Siegel domain(see below for definition) par-
ticipates (see details for this [6]). This fact was heavily used in [6] in solutions of
several classical problems in Siegel domains of the second type and we will also
use one estimate from [6] for this kernel, but we define it otherwise ,representing it
otherwise in this paper (see also [6]). We will need now some short, but more con-
crete review of certain results from [6] to make this exposition more complete. To be
more precise the authors in [6] showed that on homogeneous Siegel domain of type
2 under certain conditions on parameters the subspace of a weighted Lp space for all
positive p consisting of holomorphic functions is reproduced by a concrete weighted
Bergman kernel which we just mentioned. They also obtain some Lp estimates for
weighted Bergman projections in this case. The proof relies on direct generalization
of the Plancherel-Gindikin formula for the Bergman space A2 (see[10]). We remind
the reader that the Siegel domain of type 2 associated with the open convex homo-
geneous irreducible cone V of rank l which contains no straight line,V ∈ Rn,and a
V-Hermitian homogeneous form F which act from product of two Cm into Cn is a
set of points (w, τ) from Cm+n so that the difference D of ℑw and the value of F on
(τ, τ) is in V cone. This domain is affine homogeneous and we now should recall the
following expression for the Bergman kernel of D = D(V, F). Let D be an affine-
homogeneous Siegel domain of type 2. Let dv(z) denote the Lebesgue measure on
D and let H(D) denote the space of all holomorphic functions on D. The Bergman
kernel is given by the following formula (see[6]) for (τ1, τ2) ∈ D and (τ3, τ4) ∈ D

b ((τ1, τ2), (τ3, τ4)) = (
τ1 − τ3

2i
− (F(τ2, τ4))2d−q,

where two vectors q = (qi) and d = (di) and in addition n = (ni) here the i index is
running from 1 to l are specified via ni,k, where these ni,k numbers are dimensions
of certain (Ri,k) and (Ci, j) subspaces of the certain canonical decomposition of Cm+n

and Rn via the V cone from definition of our D domain (see for some additional
details about this [10] and [6]). We will call this family of triples parameters of a
Siegel domain D of second type. They will appear in our main theorem and it is short
proof. The standard Bergman projection here on D as usual is denoted by P, it is the
orthogonal projection of L2(D, dv) onto it is analytic subspace A2(D, dv) consisting
of all holomorphic functions. The authors in [6] showed that some well-known facts
of much simpler domains holds also here, for example there is an integral operator on
L2 space defined by the certain b(τ, z) Bergman kernel. And for this types of Siegel
domains as it was mentioned above this Bergman kernel was computed explicitly
previously in [10]. Further, let ϵ be a real number. Now for all positive finite p we
define a space of integrable functions (weighted Lp spaces with b−ϵ(z, z) weights) for
all ϵ > ϵ0

Lp,ϵ(D) = Lp(D, b−ϵ(z, z)dv(z))
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and we denote as usual by Ap,ϵ the analytic subspace of this space with usual modifi-
cation when p = ∞. Note the restriction is meaningful since there is an ϵ0 so that for
all those ϵ which are smaller than this fixed ϵ0 the A2,ϵ is an empty class (see [6]). We
denote by Pϵ the corresponding Bergman projection which is the orthogonal projec-
tion of L2,ϵ to it is analytic subspace A2,ϵ . In [6] the authors give a condition on real
numbers and vectors r, p, ϵ, so that the weighted Bergman projection reproduces all
functions in Ap,r(D).This vital property for our theorem was partly deduced by them
from Plancherel-Gindikin formula and the fact that

Pϵ( f )(z) = cϵ

∫
D

f (u)b1+ϵ(z, u)b−ϵ(u)du,

so it defines as in simpler cases an integral operator on L2,ϵ(D) by the kernel b1+ϵ(τ, z)
(see for this [6]), it is a weighted Bergman projection from L2,ϵ onto A2,ϵ (see, for
example, [6] and references therein.).

The following several assertions concerning Bergman projection acting in analytic
spaces in Siegel domain of the second type and estimates of Bergman kernel which
we mentioned above and in addition to this some facts on spaces of integrable func-
tions and their analytic subspaces we defined above on these Siegel domains were
proved in [6] and some are crucial for this paper. We will formulate immediately
after them our main result on distances in Siegel domains of the second type. Then
providing a comment on a proof of that assertion which contains no new ideas when
we compare it with the proof of previous theorem we will finish this paper. We use
the following notation. The i index below is running from 1 to l everywhere and
to make the reading easier we accept this from advance. We also use below every-
where standard rules of calculations between two vectors as they were seen by us for
example in [6], also sometimes we write

dṼ(τ1, τ2)

not dv(τ) meaning
τ = (τ1, τ2) ∈ D.

In the following assertions
(ni), (qi), (di)

will always act as parameters of the Siegel domain D we introduced above and they
are playing a crucial role. We write always D below meaning

D(n, q, d)

,where n = (ni), d = (di), q = (qi). We write ci ≤ bi for two vectors from Rl below
meaning as usual that this is true for all values of i from 1 to l. If c ≤ bi (or c < bi)
then all bi are bigger or equal (or bigger)than c.
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Proposition 3.1. Let ϵ ∈ Rl, r ∈ Rl, p ∈ R+, 0 ≤ r j. Then there are two sets of
numbers (ki), (mi) depending on parameters of D Siegel domain so that if 1 ≤ p < ki
and ϵi > mi, then

Pϵ f = f

for all
f ∈ Ap,r(D).

Let ϵ ∈ Rl, r ∈ Rl, p ∈ (0,∞), vi < ri, for some vi numbers depending on pa-
rameters of D domain. Then there are two sets of numbers (k1

i ),(m1
i ), depending from

parameters of D Siegel domain, so that if

0 < p < k1
i

and if ϵi > m1
i , then

Pϵ f = f

for all
f ∈ Ap,r(D).

Proposition 3.2. If

ϵi >
n + 2

2(2d − q)i

where ϵ ∈ Rl, then Pϵ is an integral operator with

b1+ϵ(t1, z1)(t2, z2)

kernel on L2,ϵ and
Pϵ f = f

for all f ∈ Ap,0(D), when p ∈ (0, p0), where

p0 ≤
ni − 2(2d − q)i

ni
.

If there is an index i so that

2ϵi ≤
ni + 2

(2d − q)i

then we have A2,ϵ = 0, moreover if the reverse estimate holds for all i and ϵi instead
of 2ϵi then the intersection of A2,ϵ and Ap,r is dense in Ap,r, if 1 ≤ p < ∞, 0 ≤ ri,
ϵ ∈ Rl.

The following embedding which is taken also from [6] is important for us. It allows
us as in previous simpler case to pose a distance problem in this domain showing that
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Bergman spaces Ap,r are subspaces of A∞1+r
p

Bergman-type spaces. Let r ∈ Rl and

p ∈ (0,∞), then
| f (z)|p ≤ Cb1+r(z, z)∥ f ∥pp,r, z ∈ D.

Further let ϵ and r are from Rl. If

ϵi >
ni

−2(2d − q)i

and
ri >

ni + 2
2(2d − q)i

+ ϵi,

then we have
Pr( f ) = f

as soon as f belongs to A∞ϵ (see[6],[13]). This will also be needed in the proofs of
main result of this section (see for this also the parallel proof of our previous theorem
from previous section).

Proposition 3.3. Let β ∈ Rl and all βi are nonnegative then the following estimate
holds

bβ(z + τ, z + τ) ≤ bβ(z, z)

and also
|bβ(τ, z)| ≤ bβ(z, z)

for all τ and z from D.

The following estimate to be more precise it is direct analogue can be found in the
proof of previous theorem where it was used three times.

Proposition 3.4. Let α and ϵ be two vectors from Rl and (τ, z) be a point of D. Then
if

ni + 2
2(2d − q)i

< ϵ i

and
ϵi −

ni

2(2d − q)i
< αi,

then the integral ∫
D
|bα+1((τ, v), (z, u))|b−ϵ((z, u)(z, u))dṼ(z, v)

is equal with
cα,ϵbα−ϵ((τ, v), (τ, v)).

We are able now based only on last proposition and two comments concerning inte-
gral representations before previous proposition to formulate a theorem on distances
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in Siegel domains of the second type which is a direct analogue of our previous re-
sults (see, for example, [22], [23], [21]) and our previous theorem on distances in
this situation. All facts and preliminaries which are needed here for our proof can be
found above in assertions from [6] which we just formulated, all lines of arguments
for our proof of this theorem can be also found above in the proof of our previous
theorem though some not very long technical calculations with indexes should be
added. Note that one implication in this theorem below is easier and we just repeat
here arguments of our previous theorem.

Theorem 3.1. Let
Nϵ̃,r( f ) =

{
z ∈ D, | f (z)|b1+r(z, z) > ϵ̃

}
,

where ϵ̃ is a positive number. Then the following two quantities are equivalent

distA∞1+r
( f , A1,r)

and

inf
{
ϵ̃ > 0,

∫
D

(
∫

Nr,ϵ̃ ( f )
b−k+1+r(τ, τ)|b(τ, z)|k+1dv(τ))b−r(z, z)dv(z) < ∞

}
,

for all r and k so that r ∈ (r0,∞) and k ∈ (k0,∞) and for certain fixed vectors r0 and
k0 depending on parameters of the Siegel D domain (di) and (qi) and (ni).

We finally remark that the theorem above is probably valid for all p > 1 (not only
p = 1 when calculations are simpler) and the reader can formulate easily that the-
orem in general case following the formulation of our previous theorem. The proof
probably is parallel to the proof of previous theorem and it is based on estimates from
propositions above. Note also our assertion is true for all homogeneous Siegel do-
mains not only symmetric Siegel domains of the second type (see [6], [8], [12]). We
remark as r0 we can take max (r1, r2, 0) where r1 and r2 are depending on parameters
of domain r1 =

ni+2
2(2d−q)i

and r2 =
−ni

2(2d−q)i
− 1.
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Abstract The main object of the present paper is to discuss some univalence conditions for a gen-
eral integral operator Gn,m defined by means of Al-Oboudi differential operator. Many
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1. INTRODUCTION AND PRELIMINARIES

Let A denote the class of all functions of the form

f (z) = z +
∞∑

k=2

akzk, (1)

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}.

We denote by S the subclass of A consisting of functions f which are univalent in U.
For f ∈ A, Al-Oboudi [1] introduced the following operator

D0 f (z) = f (z), (2)

D1
δ f (z) = (1 − δ) f (z) + δz f ′(z), δ ≥ 0, (3)

...

Dn
δ f (z) = Dδ

(
Dn−1 f (z)

)
, (n ∈ N = {1, 2, ...}) . (4)

If f is given by (1), then from (3) and (4) we see that

Dn
δ f (z) = z +

∞∑
k=2

[1 + (k − 1) δ]nakzk, (n ∈ N0 = N ∪ 0) . (5)

It results Dn
δ f (0) = 0.
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Remark 2. When δ = 1, we get the Sǎlǎgean differential operator [5].

In the proof of our main result (Theorem 2.1) we need a univalence criterion. The
univalence criterion, asserted by Theorem 1.1, is a generalization of Ahlfor’s and
Becker’s univalence criterion; it was proved by Pescar [4].

Theorem 1.1. [4] Let β be a complex number, with Reβ > 0, and c a complex number
such that |c| ≤ 1, c , −1 and f (z) = z + ... a regular function in U. If∣∣∣∣∣c |z|2β + (

1 − |z|2β
) z f ′′ (z)
β f ′(z)

∣∣∣∣∣ ≤ 1,

for all z ∈ U, then the function

Fβ(z) =
(
β

∫ z

0
tβ−1 f ′(t)dt

) 1
β

= z + ...

is regular and univalent in U.

For the functions f ∈ A,Ozaki and Nunokawa [3] proved the following univalence
condition.

Theorem 1.2. [3] Let f ∈ A satisfy the condition∣∣∣∣∣∣z2 f ′(z)
[ f (z)]2 − 1

∣∣∣∣∣∣ ≤ 1 (z ∈ U) . (6)

Then the function f is univalent in U.

Finally, in our present investigation, we shall also need the familiar Schwarz Lemma
(see, for details, [2]).

Lemma 1. [2] Let be a regular function f in the disk UR = {z ∈ C : |z| < R}, with
| f (z)| < M for fixed M. If f has a single, unique zero with multiplicity order bigger
than m for z = 0, then

| f (z)| ≤ M
Rm |z|

m (∀z ∈ UR) .

The equality can hold only if

f (z) = eiθ M
Rm zm,

where θ is constant.

Here, in our investigation, we introduce a general integral operator by means of
the Al-Oboudi differential operator as follows:

Gn,m ( f1, ..., fn, g1, ..., gn)(z) =
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1 + n∑
i=1

αi

 ∫ z

0

n∏
i=1

(
Dm fi(t)

)αi
(
g′i(t)

)γi dt


1

(1+
∑n

i=1 αi)
, (7)

where αi, γi ∈ C, fi, gi ∈ A for all i ∈ {1, 2, ..., n} and Dm is the Al-Oboudi differential
operator for m ∈ N0.
In this paper, we study the univalence conditions involving the general integral oper-
ator defined by (7).

2. MAIN RESULTS

Theorem 2.1. Let the functions fi, gi ∈ A, where fi satisfy the condition∣∣∣∣∣∣z2 (Dm fi(z))′

[Dm fi(z)]2 − 1

∣∣∣∣∣∣ ≤ 1 (z ∈ U; m ∈ N0) , (8)

let Mi ≥ 1, Ni ≥ 1 and αi, γi, β be complex numbers such that β = 1 +
∑n

i=1 αi and

Reβ ≥
n∑

i=1

[|αi| (2Mi + 1) +
∣∣∣γi

∣∣∣ Ni] > 0

for all i ∈ {1, 2, ..., n}. If∣∣∣Dm fi(z)
∣∣∣ ≤ Mi (z ∈ U) ,

∣∣∣∣∣∣zg′′i (z)
g′i(z)

∣∣∣∣∣∣ ≤ Ni (z ∈ U)

and

|c| ≤ 1 − 1
Reβ

n∑
i=1

[|αi| (2Mi + 1) +
∣∣∣γi

∣∣∣ Ni] (9)

for all i ∈ {1, 2, ..., n}, then the integral operator Gn,m ( f1, ..., fn, g1, ..., gn)(z) defined
by (7) is in the class S.

Proof. For (5) we have

Dm fi(z)
z

= 1 +
∞∑

k=2

[1 + (k − 1) δ]mak,i zk−1 (m ∈ N0)

and
Dm fi(z)

z
, 0

for all i ∈ {1, 2, ..., n}, z ∈ U.
The integral operator Gn,m ( f1, ..., fn, g1, ..., gn)(z) defined by (7) can be rewritten as
follows:

Gn,m ( f1, ..., fn, g1, ..., gn)(z) =
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i=1

αi

 ∫ z

0
t
∑n

i=1 αi

n∏
i=1

(
Dm fi(t)

t

)αi (
g′i(t)

)γi dt

 .
Let us define the function h(z) by

h(z) =
∫ z

0

n∏
i=1

(
Dm fi(t)

t

)αi (
g′i(t)

)γi dt

where fi, gi ∈ A for all i ∈ {1, 2, ..., n}.
The function h(z) is indeed regular in U and satisfy the following usual normalization
condition:

h(0) = h′(0) − 1 = 0.

Now, calculating the derivates of the first and second orders, we readily obtain

h′(z) =
n∏

i=1

(
Dm fi(z)

z

)αi (
g′i(z)

)γi

and
zh′′(z)
h′(z)

=

n∑
i=1

[
αi

(
z (Dm fi(z))′

Dm fi(z)
− 1

)
+ γi

zg′′i (z)
g′i(z)

]
. (10)

From the equation (10), we have∣∣∣∣∣c |z|2β + (
1 − |z|2β

) zh′′(z)
βh′(z)

∣∣∣∣∣
=

∣∣∣∣∣∣∣c |z|2β + (
1 − |z|2β

) 1
β

n∑
i=1

[
αi

(
z (Dm fi(z))′

Dm fi(z)
− 1

)
+ γi

zg′′i (z)
g′i(z)

]∣∣∣∣∣∣∣
≤ |c| + 1

|β|

n∑
i=1

[
|αi|

(∣∣∣∣∣∣z (Dm fi(z))′

Dm fi(z)

∣∣∣∣∣∣ + 1
)
+

∣∣∣γi

∣∣∣ ∣∣∣∣∣∣zg′′i (z)
g′i(z)

∣∣∣∣∣∣ ]

≤ |c| + 1
|β|

n∑
i=1

[
|αi|

(∣∣∣∣∣∣z2 (Dm fi(z))′

[Dm fi(z)]2

∣∣∣∣∣∣
∣∣∣∣∣Dm fi(z)

z

∣∣∣∣∣ + 1
)
+

∣∣∣γi

∣∣∣ ∣∣∣∣∣∣zg′′i (z)
g′i(z)

∣∣∣∣∣∣ ]. (11)

From the hypothesis of Theorem 2.1, we have∣∣∣Dm fi(z)
∣∣∣ ≤ Mi (z ∈ U) ,

∣∣∣∣∣∣zg′′i (z)
g′i(z)

∣∣∣∣∣∣ ≤ Ni (z ∈ U) ,

then by the General Schwarz Lemma for the functions fi, we obtain that∣∣∣Dm fi(z)
∣∣∣ ≤ Mi |z| (z ∈ U,m ∈ N0)
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for all i ∈ {1, 2, ..., n}.
We apply this result in the inequality (11) and from (8) we obtain∣∣∣∣∣c |z|2β + (

1 − |z|2β
) zh′′(z)
βh′(z)

∣∣∣∣∣
≤ |c| + 1

|β|

n∑
i=1

[
|αi|

((∣∣∣∣∣∣z2 (Dm fi(z))′

[Dm fi(z)]2 − 1

∣∣∣∣∣∣ + 1
)

Mi + 1
)
+

∣∣∣γi

∣∣∣ Ni

]
≤ |c| + 1

|β|

n∑
i=1

[ |αi| (2Mi + 1) +
∣∣∣γi

∣∣∣ Ni
]

≤ |c| + 1
Reβ

n∑
i=1

[ |αi| (2Mi + 1) +
∣∣∣γi

∣∣∣ Ni
]
.

So, from (9), we have ∣∣∣∣∣c |z|2β + (
1 − |z|2β

) zh′′(z)
βh′(z)

∣∣∣∣∣ ≤ 1.

Applying Theorem 1.1, we obtain that the integral operator Gn,m (z) defined by (7) is
in the class S.

If we set m = 0 in Theorem 2.1, we can obtain the following interesting conse-
quence of this theorem.

Corollary 2.1. Let the functions fi, gi ∈ A, where fi satisfy the condition∣∣∣∣∣∣ z2 f ′i (z)

[ fi(z)]2 − 1

∣∣∣∣∣∣ ≤ 1 (z ∈ U) ,

let Mi,Ni ≥ 1 and αi, γi, β be complex numbers such that β = 1 +
∑n

i=1 αi and

Reβ ≥
n∑

i=1

[ |αi| (2Mi + 1) +
∣∣∣γi

∣∣∣ Ni
]
> 0

for all i ∈ {1, 2, ..., n}. If

| fi(z)| ≤ Mi (z ∈ U) ,

∣∣∣∣∣∣zg′′i (z)
g′i(z)

∣∣∣∣∣∣ ≤ Ni (z ∈ U)

and

|c| ≤ 1 − 1
Reβ

n∑
i=1

[ |αi| (2Mi + 1) +
∣∣∣γi

∣∣∣ Ni
]
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for all i ∈ {1, 2, ..., n}, then the integral operator

Gn( f1, ..., fn, g1, ...gn)(z) =1 + n∑
i=1

αi

 ∫ z

0

n∏
i=1

( fi(t))αi
(
g′i(t)

)γi dt


1

1+
∑n

i=1 αi

is in the class S.

Setting n = 1 in Theorem 2.1 we have

Corollary 2.2. Let the functions f , g ∈ A, where f satisfies the condition∣∣∣∣∣∣z2(Dm f (z))′

[Dm f (z)]2 − 1

∣∣∣∣∣∣ ≤ 1 (z ∈ U,m ∈ N0) ,

let M ≥ 1, N ≥ 1 and α, γ, β be complex numbers such that β = 1 + α and

Reβ ≥ [ |α| (2M + 1) + |γ|N]
> 0.

If ∣∣∣Dm f (z)
∣∣∣ ≤ M (z ∈ U) ,

∣∣∣∣∣zg′′(z)
g′(z)

∣∣∣∣∣ ≤ N (z ∈ U)

and
|c| ≤ 1 − 1

Reβ
[ |α| (2M + 1) + |γ|N]

then the integral operator

Gm( f , g)(z) =
(
(1 + α)

∫ z

0

(
Dm f (t)

)α (
g′(t)

)γ dt
) 1

1+α

is in the class S.

Setting m = 0 in Corollary 2.2 we have

Corollary 2.3. Let the functions f , g ∈ A, where f satisfies the condition (6), let
M ≥ 1, N ≥ 1 and α, γ, β be complex numbers such that β = 1 + α and

Reβ ≥ [ |α| (2M + 1) + |γ|N]
> 0.

If

| f (z)| ≤ M (z ∈ U) ,
∣∣∣∣∣zg′′(z)

g′(z)

∣∣∣∣∣ ≤ N (z ∈ U)

and
|c| ≤ 1 − 1

Reβ
[ |α| (2M + 1) + |γ|N]
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then the integral operator

G(z) =
(
(1 + α)

∫ z

0
( f (t))α

(
g′(t)

)γ dt
) 1

1+α

is in the class S.
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[5] G.S. Sǎlǎgean, Subclasses of univalent functions, complex Analysis-Fifth Romanian-Finnish sem-

inar, Part 1 (Bucharest, 1981), Lecture Notes in Math., Vol. 1013, Springer, Berlin, 1983, pp.
362-372.





FUNCTIONAL CONTRACTIONS IN
LOCAL BRANCIARI METRIC SPACES

ROMAI J., v.8, no.2(2012), 189–199

Mihai Turinici
”A. Myller” Mathematical Seminar; ”A. I. Cuza” University; Iaşi, Romania
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1. INTRODUCTION

Let X be a nonempty set. By a symmetric over X we shall mean any map d :
X × X → R+ with (cf. Hicks [11])

(a01) d(x, y) = d(y, x), ∀x, y ∈ X (d is symmetric);

the couple (X, d) will be referred to as a symmetric space. Further, let T : X → X be
a selfmap of X, and put Fix(T) = {z ∈ X; z = Tz}; any such point will be called fixed
under T . According to Rus [24, Ch 2, Sect 2.2], we say that x ∈ X is a Picard point
(modulo (d,T )) if 1a) (T nx; n ≥ 0) is d-convergent, 1b) each point of limn(T nx) is
in Fix(T ). If this happens for each x ∈ X, then T is referred to as a Picard operator
(modulo d); if (in addition) Fix(T ) is a singleton (x, y ∈ Fix(T ) =⇒ x = y), then T is
called a global Picard operator (modulo d). [We refer to Section 2 for all unexplained
notions]. Sufficient conditions for these properties to be valid require some additional
conditions upon d; the usual ones are

(a02) d(x, y) = 0 iff x = y (d is reflexive sufficient)

(a03) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X (d is triangular);

when both these hold, d is called a (standard) metric on X. In this (classical) setting,
a basic result to the question we deal with is the 1922 one due to Banach [3]; it says
that, whenever (X, d) is complete and (for some λ in [0, 1[)

(a04) d(T x,Ty) ≤ λd(x, y), ∀x, y ∈ X,

then, T is a global Picard operator (modulo d). This result found various applications
in operator equations theory; so, it was the subject of many extensions. A natural
way of doing this is by considering ”functional” contractive conditions like
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(a05) d(T x,Ty) ≤ F(d(x, y), d(x,T x), d(y, Ty), d(x, Ty), d(y, T x)), ∀x, y ∈ X;

where F : R5
+ → R+ is an appropriate function. For more details about the possible

choices of F we refer to the 1977 paper by Rhoades [23]; see also Turinici [28].
Another way of extension is that of conditions imposed upon d being modified. For
example, in the class of symmetric spaces, a relevant paper concerning the contractive
question is the 2005 one due to Zhu et al [29]. Here, we shall be interested in fixed
point results established over generalized metric spaces, introduced as in Branciari
[5]; where, the triangular property (a03) is to be substituted by the tetrahedral one:

(a06) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y),
whenever x, y, u, v ∈ X are distinct to each other.

Some pioneering results in the area were given by Das [7], Miheţ [21], and Samet
[25]; see also Azam and Arshad [2]. In parallel to such developments, certain tech-
nical problems involving these structures were considered. For example, Sarma et al
[27] observed that Branciari’s result may not hold, in view of the Hausdorff property
for (X, d) being not deductible from (a06). This remark was followed by a series
of results founded on this property being ab initio imposed; see, in this direction,
Chen and Sun [6] or Lakzian and Samet [18]. However, in 2011, Kikina and Kikina
[16] noticed that such a regularity condition is ultimately superfluous for the ambient
space; so, the initial setting will suffice for these results being retainable. It is our aim
in the present exposition to confirm this, within a class of ”local” Branciari metric
spaces. Further aspects will be delineated elsewhere.

2. PRELIMINARIES

Let N = {0, 1, ...} denote the set of all natural numbers. For each n ≥ 1 in N, let
N(n, >) := {0, ..., n − 1} stand for the initial interval (in N) induced by n. Any set P
with P ∼ N (in the sense: there exists a bijection from P to N) will be referred to
as effectively denumerable; also denoted as: card(P) = ℵ0. In addition, given some
n ≥ 1, any set Q with Q ∼ N(n, >) will be said to be n-finite; and we write this:
card(Q) = n; when n is generic here, we say that Q is finite. Finally, the (nonempty)
set Y is called (at most) denumerable iff it is either effectively denumerable or finite.

(A) Let (X, d) be a symmetric space. Given k ≥ 1, any ordered system C =
(x1, ..., xk) in Xk will be called a k-chain of X; the class of all these will be re-denoted
as chain(X; k). Given such an object, put [C] = {x1, ..., xk}. If card([C]) = k, then
C will be referred to as a regular k-chain (in X); denote the class of all these as
rchain(X; k). In particular, any point a ∈ X may be identified with a regular 1-chain
of X. For any C ∈ chain(X; k), where k ≥ 2, denote

Λ(C) = d(x1, x2) + ... + d(xk−1, xk), whenever C = (x1, ..., xk)

(the ”length” of C). Given h ≥ 1 and the h-chain D = (y1, ..., yh) in X, let (C; D) stand
for the (k + h)-chain E = (z1, ..., zk+h) in X introduced as
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zi = xi, 1 ≤ i ≤ k; zk+ j = y j, 1 ≤ j ≤ h;

it will be referred to as the ”product” between C and D. This operation may be
extended to a finite family of such objects.

Having these precise, let us say that the symmetric d is a local Branciari metric
when it is reflexive sufficient and has the property: for each effectively denumerable
M ⊆ X, there exists k = k(M) ≥ 1 such that

(b01) d(x, y) ≤ Λ(x; C; y), for all x, y ∈ M, x , y, and
all C ∈ rchain(M; k), with (x; C; y) ∈ rchain(M; 2 + k)

(referred to as: the (2+ k)-polyhedral inequality). Note that, the triangular inequality
(a03) and the tetrahedral inequality (a06) are particular cases of this one, correspond-
ing to k = 1 and k = 2, respectively. On the other hand, (b01) is not reducible to (a03)
or (a06); because, aside from k > 2 being allowed, the index in question depends on
each effectively denumerable subset M of X.

Suppose that we introduced such an object. Define a d-convergence structure over
X as follows. Given the sequence (xn) in X and the point x ∈ X, we say that (xn),

d-converges to x (written as: xn
d−→ x) provided d(xn, x)→ 0; i.e.,

(b02) ∀ε > 0, ∃i = i(ε): n ≥ i =⇒ d(xn, x) < ε.

(This concept meets the standard requirements in Kasahara [14]; we do not give de-
tails). The set of all such points x will be denoted limn(xn); when it is nonempty, (xn)
is called d-convergent. Note that, in this last case, limn(xn) may be not a singleton,
even if (a06) holds; cf. Samet [26]. Further, call the sequence (xn), d-Cauchy when
d(xm, xn)→ 0 as m, n→ ∞, m < n; i.e.,

(b03) ∀ε > 0, ∃ j = j(ε): j ≤ m < n =⇒ d(xm, xn) < ε.

Clearly, a necessary condition for this is

d(xm, xm+i)→ 0 as m→ ∞, for each i > 0;

referred to as: (xn) is d-semi-Cauchy; but the converse is not in general true. Note
that, by the adopted setting, a d-convergent sequence need not be d-Cauchy, even
if d is tetrahedral; see the quoted paper for details. Despite of this, (X, d) is called
complete, if each d-Cauchy sequence is d-convergent.

(B) As already precise, the (nonempty) set of limit points for a convergent se-
quence is not in general a singleton. However, in the usual (metric) fixed point argu-
ments, the convergence property of this sequence comes from the d-Cauchy property
of the same. So, we may ask whether this supplementary condition upon (xn) will
suffice for such a property. Call (X, d), Cauchy-separated if, for each d-convergent
d-Cauchy sequence (xn) in X, limn(xn) is a singleton.
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Proposition 2.1. Assume that d is a local Branciari metric (see above). Then, (X, d)
is Cauchy-separated.

Proof. Let (xn) be a d-convergent d-Cauchy sequence. Assume by contradiction that
limn(xn) has at least two distinct points:

(b04) ∃u, v ∈ X with u , v, such that xn
d−→ u, xn

d−→ v.

i) Denote A = {n ∈ N; xn = u}, B = {n ∈ N; xn = v}. We claim that both A
and B are finite. In fact, if A is effectively denumerable, then A = {n( j); j ≥ 0},
where (n( j); j ≥ 0) is strictly ascending (hence n( j) → ∞ as j → ∞) and xn( j) = u,
∀ j ≥ 0. Since, on the other hand, xn( j) → v as j → ∞, we must have d(u, v) = 0; so
that, u = v, contradiction. An identical reasoning is applicable when B is effectively
denumerable; hence the claim. As a consequence, there exists p ∈ N, such that:
xn , u, xn , v, for all n ≥ p. Without loss, one may assume that p = 0; i.e.,

{xn; n ≥ 0} ∩ {u, v} = ∅ [xn , u and xn , v, for all n ≥ 0]. (1)

ii) Put h(0) = 0. We claim that the set S 0 = {n ∈ N; xn = xh(0)} is finite. For,
otherwise, it has the representation S 0 = {m( j); j ≥ 0}, where (m( j); j ≥ 0) is strictly
ascending (hence m( j) → ∞ as j → ∞) and xm( j) = x0, ∀ j ≥ 0. Combining with
(b04) gives x0 = u, x0 = v; hence, u = v, contradiction. As a consequence of this,
there exists h(1) > h(0) with xh(1) , xh(0). Further, by a very similar reasoning,
S 0,1 = {n ∈ N; xn ∈ {xh(0), xh(1)}} is finite too; hence, there exists h(2) > h(1) with
xh(2) < {xh(0), xh(1)}; and so on. By induction, we get a subsequence (yn := xh(n); n ≥
0) of (xn) with

yi , y j, for i , j; yn
d−→ u, yn

d−→ v as n→ ∞. (2)

The subset M = {yn; n ≥ 0}∪{u, v} is effectively denumerable; let k = k(M) ≥ 1 stand
for the natural number assured by the local Branciari metric property of d. From the
(2 + k)-polyhedral inequality (b01) we have, for each n ≥ 0,

d(u, v) ≤ d(u, yn+1) + ... + d(yn+k, v).

(The possibility of writing this is assured by (1) and (2) above). On the other hand,
(yn) is a d-Cauchy sequence; because, so is (xn); hence d(ym, ym+1) → 0 as m → ∞.
Passing to limit in the above relation gives d(u, v) = 0; whence, u = v, contradiction.
So, (b04) is not acceptable; and this concludes the argument.

(B) Let F(R+) stand for the class of all functions φ : R+ → R+. Denote

(b05) Fr(R+) = {φ ∈ F(R+);φ(0) = 0; φ(t) < t, ∀t > 0};

each φ ∈ Fr(R+) will be referred to as regressive. Note that, for any such function,

∀u, v ∈ R+ : v ≤ φ(max{u, v}) =⇒ v ≤ φ(u). (3)
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Call φ ∈ Fr(R+), strongly regressive, provided

(b06) ∀γ > 0, ∃β ∈]0, γ[, (∀t): γ ≤ t < γ + β =⇒ φ(t) ≤ γ;
or, equivalently: 0 ≤ t < γ + β =⇒ φ(t) ≤ γ.

Some basic properties of such functions are given below.

Proposition 2.2. Let φ ∈ Fr(R+) be strongly regressive. Then,
i) for each sequence (rn; n ≥ 0) in R+ with rn+1 ≤ φ(rn), ∀n, we have rn → 0 [we

then say that φ is iteratively asymptotic]
ii) in addition, for each sequence (sn; n ≥ 0) in R+ with sn+1 ≤ φ(max{sn, rn}), ∀n

we have sn → 0.

Proof. i) Let (rn; n ≥ 0) be as in the premise of this assertion. As φ is regressive,
we have rn+1 ≤ rn, ∀n. The sequence (rn; n ≥ 0) is therefore descending; hence
γ := limn(rn) exists in R+. Assume by contradiction that γ > 0; and let β ∈]0, γ[
be the number indicated by the strong regressiveness of φ. As rn ≥ γ > 0, ∀n (and
φ=regressive), one gets rn+1 < rn, ∀n; hence, rn > γ, ∀n. Further, as rn → γ, there
exists some rank n(β) in such a way that (combining with the above) n ≥ n(β) =⇒
γ < rn < γ + β. The strong regressiveness of φ then gives (for the same ranks, n)
γ < rn+1 ≤ φ(rn) ≤ γ; contradiction. Consequently, γ = 0; and we are done.

ii) Let (rn; n ≥ 0) and (sn; n ≥ 0) be as in the premise of these assertions. Denote
for simplicity (tn := max{sn, rn}; n ≥ 0). For each n, we have rn+1 ≤ rn ≤ tn and (as
φ is regressive) sn+1 ≤ φ(tn) ≤ tn; hence [tn+1 ≤ tn, ∀n]. The sequence (tn; n ≥ 0) is
therefore descending; wherefrom, t := limn(tn) exists in R+ and tn ≥ t, ∀n. Assume by
contradiction that t > 0. As rn → 0, there must be some rank n(t) such that n ≥ n(t)
=⇒ rn < t. Combining with the above, one gets tn ≥ t > rn, for all n ≥ n(t); whence
tn = sn, for all n ≥ n(t). But then, the choice of (sn; n ≥ 0) gives sn+1 ≤ φ(sn), for
all n ≥ n(t). This, along with the first part of the proof, gives sn → 0; hence tn → 0;
contradiction. Consequently, t = 0; and, from this, the conclusion follows.

Now, let us give two basic examples of such functions.
B1) Suppose that φ ∈ Fr(R+) is a Boyd-Wong function [4]; i.e.

(b07) lim supt→s+ φ(t) < s, for all s > 0.

Then, φ is strongly regressive. The verification is immediate, by definition; so, we do
not give details.

B2) Suppose that φ ∈ Fr(R+) is a Matkowski function [20]; i.e.

(b08) φ is increasing and [φn(t)→ 0 as n→ ∞, for all t > 0].

(Here, for each n ≥ 0, φn stands for the n-th iterate of φ). Then, φ is strongly re-
gressive. The verification of this assertion is to be found to Jachymski [12]; however,
for completeness reasons, we shall provide it, with some modifications. Assume by
contradiction that φ is not strongly regressive; that is (for some γ > 0)
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∀β ∈]0, γ[, ∃t ∈ [γ, γ + β[: φ(t) > γ (hence, γ < t < γ + β).

As φ=increasing, this yields φ(t) > γ, ∀t > γ. By induction, we get φn(t) > γ, for
all n, and all t > γ. Fixing some t > γ, we have (passing to limit as n → ∞) 0 ≥ γ,
contradiction; hence the claim.

3. MAIN RESULT

Let X be a nonempty set; and d(., .) be a local Branciari metric over it, with

(c01) (X, d) is complete (each d-Cauchy sequence is d-convergent).

Note that, by Proposition 2.1, for each d-Cauchy sequence (xn) in X, limn(xn) is a
(nonempty) singleton, {z}; as usually, we write limn(xn) = {z} as limn(xn) = z.

Let T : X → X be a selfmap of X. We say that x ∈ X is a Picard point (modulo
(d,T )) if 3a) (T nx; n ≥ 0) is d-Cauchy (hence d-convergent), ii) limn(T nx) is in
Fix(T ). If this happens for each x ∈ X, then T is referred to as a Picard operator
(modulo d); if (in addition) Fix(T ) is a singleton, then T is called a globally Picard
operator (modulo d).

Now, concrete circumstances guaranteeing such properties involve functional con-
tractive (modulo d) conditions upon T . Precisely, denote for x, y ∈ X:

(c02) M(x, y) = max{d(x, y), d(x, T x), d(y, Ty)}.

It is easy to see that

M(x, T x) = max{d(x, T x), d(T x,T 2x)}, ∀x, y ∈ X. (4)

Given φ ∈ Fr(R+), we say that T is (d,M;φ)-contractive if

(c03) d(T x,Ty) ≤ φ(M(x, y)), ∀x, y ∈ X.

The main result of this note is

Theorem 3.1. Suppose that T is (d,M;φ)-contractive, where φ ∈ Fr(R+) is strongly
regressive. Then, T is a globally Picard operator (modulo d).

Proof. First, we check the singleton property. Let z1, z2 ∈ Fix(T ) be arbitrary fixed.
By this very choice,

M(z1, z2) = max{d(z1, z2), 0, 0} = d(z1, z2).

Combining with the contractive condition yields

d(z1, z2) = d(Tz1,Tz2) ≤ φ(d(z1, z2));

wherefrom d(z1, z2) = 0; hence z1 = z2; so that, Fix(T ) is (at most) a singleton. It
remains now to establish the Picard property. Fix some x0 ∈ X; and put xn = T nx0,
n ≥ 0. There are several steps to be passed.
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I) If xn = xn+1 for some n ≥ 0, we are done. So, it remains to discuss the remaining
situation; i.e. (by the reflexive sufficiency of d)

(c04) ρn := d(xn, xn+1) > 0, for all n ≥ 0.

By the contractive property and (4), ρn+1 ≤ φ(max{ρn, ρn+1}), for all n ≥ 0; so that
(taking (3) into account)

ρn+1 ≤ φ(ρn), ∀n ≥ 0. (5)

Combining with (c04) one gets that (ρn; n ≥ 0) is strictly descending; moreover, by
Proposition 2.2, ρn → 0 as n→ ∞.

II) Fix i ≥ 1, and put (σi
n := d(xn, xn+i); n ≥ 0). Again by the contractive condi-

tion, we get the evaluation

σi
n+1 = d(T xn,T xn+i) ≤ φ(M(xn, xn+i)) = φ(max{σi

n, ρn, ρn+i}), ∀n ≥ 0;

wherefrom, by (5)
σi

n+1 ≤ φ(max{σi
n, ρn}), ∀n ≥ 0. (6)

This yields (again via Proposition 2.2) σi
n → 0, for each i ≥ 1; that is,

d(xn, xn+i)→ 0 as n→ ∞, for each i ≥ 1; (7)

or, in other words: (xn) is d-semi-Cauchy.
III) Suppose that

(c05) there exists i, j ∈ N such that i < j, xi = x j.

Denoting p = j − i, we thus have p > 0 and xi = xi+p; so that (by the very definition
of our iterative sequence)

xi = xi+np, xi+1 = xi+np+1, for all n ≥ 0.

By the introduced notations this yields (via (c04) and (7))

0 < ρi = ρi+np → 0 as n→ ∞;

contradiction. Hence, (c05) cannot hold; wherefrom, we must have

for all i, j ∈ N: i , j implies xi , x j. (8)

IV) As a consequence of this fact, the map n 7→ xn is injective; so that, Y :=
{xn; n ≥ 0} is effectively denumerable. Let k = k(Y) ≥ 1 be the natural number
attached to it, by the local Branciari property of d. Also, let γ > 0 be arbitrary fixed;
and β ∈]0, γ[ be given by the strong regressivity of φ. By the d-semi-Cauchy property
(7), there exists j(β) ∈ N such that

d(xn, xn+i) < β/2k (≤ β/2 < γ + β/2), ∀n ≥ j(β), ∀i ∈ {1, ..., k + 1}. (9)
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We now claim that

(∀q ≥ 1) : d(xn, xn+q) < γ + β/2, ∀n ≥ j(β); (10)

and, from this, the d-Cauchy property for (xn; n ≥ 0) follows. The case of q ∈
{1, ..., k + 1} is clear, via (9). Assume that (10) holds, for all q ≤ p (where p ≥ k + 1);
we show that it holds as well for q = p+ 1. So, let n ≥ j(β) be arbitrary fixed. By the
inductive hypothesis and (9),

d(xn+k, xn+p) < γ + β/2 < γ + β
d(xn+k, xn+k+1) < β/2k < β < γ + β
d(xn+p, xn+p+1) < β/2k < β < γ + β;

whence, by definition,
M(xn+k, xn+p) < γ + β.

This, by the contractive condition and (b06), gives

d(xn+k+1, xn+p+1) ≤ φ(M(xn+k, xn+p)) ≤ γ.

Combining with the (2 + k)-polyhedral inequality (for C = (xn+2, ..., xn+k+1)),

d(xn, xn+p+1) ≤ d(xn, xn+2) + ... + d(xn+k, xn+k+1) + d(xn+k+1, xn+p+1)
< kβ/2k + γ ≤ β/2 + γ;

and the assertion follows. As (X, d) is complete, we have

xn
d−→x as n→ ∞, for some z ∈ X; (11)

moreover, by Proposition 2.1, z is uniquely determined by this relation. We claim
that this is our desired point. Assume by contradiction that z , Tz; or, equivalently,
ρ := d(z, Tz) > 0.

V) Denote A = {n ∈ N; xn = z}, B = {n ∈ N; xn = Tz}. If A is effectively
denumerable, we have A = {m( j); j ≥ 0}, where (m( j); j ≥ 0) is strictly ascending
(hence m( j) → ∞). As xm( j) = z, ∀ j ≥ 0, we have xm( j)+1 = Tz, ∀ j ≥ 0. Combining

with xm( j)+1
d−→z as j → ∞, we must have d(z,Tz) = 0; hence z = Tz, contradiction.

On the other hand, if B is effectively denumerable, we have B = {n( j); j ≥ 0}, where
(n( j); j ≥ 0) is strictly ascending (hence n( j) → ∞). As xn( j) = Tz, ∀ j ≥ 0, one

gets (via xn( j)
d−→z as j → ∞) d(z, Tz) = 0; whence z = Tz, again a contradiction. It

remains to discuss the case of both A and B being finite; i.e.,

(c06) there exists h ≥ 0 such that: {xn; n ≥ h} ∩ {z,Tz} = ∅.

The subset Y := {xn; n ≥ h} ∪ {z, Tz} is therefore effectively denumerable. Let k =
k(Y) ≥ 1 be the natural number attached to it, by the local Branciari property of
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d. We have, for each n ≥ k (by the (2 + k)-polyhedral inequality applied to C :=
(xn+2, ..., xn+k+1))

ρ ≤ d(z, xn+2) + ... + d(xn+k, xn+k+1) + d(xn+k+1,Tz) (12)

By (7) and (11), there exists j(ρ) ≥ h in such a way that

n ≥ j(ρ) =⇒ d(xn, z), d(xn, xn+1) < ρ/2.

As a consequence, we must have

M(xn+k, z) = ρ, ∀n ≥ j(ρ).

so that, by the contractive condition,

d(xn+k+1,Tz) ≤ φ(ρ),∀n ≥ j(ρ).

Replacing in (12), we get an evaluation like

ρ ≤ d(z, xn+2) + ... + d(xn+k, xn+k+1) + φ(ρ), ∀n ≥ j(ρ).

Passing to limit as n tends to infinity gives ρ ≤ φ(ρ); wherefrom (as φ is regressive)
ρ = 0; contradiction. Hence, z = Tz; and the proof is complete.

In particular, when the regressive function φ is a Boyd-Wong one, our main result
covers the one due to Das and Dey [8]; note that, by the developments in Jachymski
[13], it includes as well the related statements in Di Bari and Vetro [9]. On the
other hand, when d(., .) is a standard metric, Theorem 3.1 reduces to the statement in
Leader [19]. Further aspects may be found in Kikina et al [17]; see also Khojasteh et
al [15].

4. FURTHER ASPECTS

A direct inspection of the proof above shows that conclusion of Theorem 3.1 is
retainable even if one works with orbital completeness of the ambient space. Some
conventions are in order. Let X be a nonempty set; and d(., .) be a reflexive sufficient
symmetric over it; supposed to be a local Branciari metric. Further, take a selfmap T
of X. Call the sequence (yn; n ≥ 0) in X, T-orbital when yn = T nx, n ≥ 0, for some
x ∈ X. In this case, let us say that (X, d) is T-orbital complete when each T -orbital
d-Cauchy sequence is d-convergent.

The following extension of Theorem 3.1 is available. Let the general conditions
above be fulfilled; as well as (in place of (c01))

(d01) (X, d) is T -orbital complete.

Theorem 4.1. Suppose that T is (d,M;φ)-contractive, where φ ∈ Fr(R+) is strongly
regressive. Then, T is a global Picard operator (modulo d).
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The proof mimics the one of Theorem 3.1; so, we omit it.
Call the regressive function φ ∈ Fr(R+), admissible provided

(d02) φ is increasing, usc and
∑

n φ
n(t) < ∞, ∀t > 0.

Clearly, φ is a Matkowski function; hence, in particular, a strongly regressive one.
This, in the particular case of d fulfilling the tetrahedral inequality, tells us that the
main result in Fora et al [10] is a particular case of Theorem 4.1 above. In addition,
we note that the usc condition posed by the authors may be removed. Note that, the
introduced framework may be also used to get an extension of the contributions due
to Akram and Siddiqui [1]; see also Moradi and Alimohammadi [22]. These will be
discussed elsewhere.
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Abstract In the paper the constants of adsorption equilibrium have been applied for calculation of
adsorption isotherms of fluoride ions from model aqueous solutions with initial concen-
trations from 5·10−4 to 0,50mmol/l. As fluorine adsorbents the aluminum oxihydroxides
obtained by calcination at 200 and 800◦C (A200 and A800) the electrochemical dimen-
sional machining products of aluminum alloy have been used.
Comparison is given of theoretically calculated and experimentally obtained adsorption
isotherms in the system Al2O3 – H2O – NaF. It has been shown a satisfactory correlation
of experimental and theoretically calculated values of isotherms of fluorine adsorption
on studied samples.

Keywords: adsorption, adsorption isotherms, constants of equilibrium, fluorine, aluminum oxihydrox-
ides, activity coefficient.
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1. INTRODUCTION

The isotherm of adsorption equilibrium calculation is very important from the-
oretical viewpoint and for practical application of an adsorption method in water
purification technology. Knowing the isotherm form and equilibrium constant, one
can estimate the dose of adsorbent and the method of its application – in a static or
dynamic mode, as well as to conclude, what is the mechanism of capture of adsor-
bate on the adsorbent surface. To calculate the isotherm, we first should determine
the constant of adsorption equilibrium.

The constant of adsorption equilibrium (Ka) is widely used for calculation of many
thermodynamic functions of an adsorption process – standard diminution of mole ad-
sorption energy (-∆F0), standard adsorption enthalpy (∆H0) and standard adsorption
entropy (∆S 0) [1-4].

There are a lot of references for these calculations presented in the literature
with well-known models of adsorption application: Freundlich, Langmuir, Dubinin-
Radushkevich, Riedlich-Peterson adsorption models and others [5-10].

However, not always the experimental data can be linearized with these equations.
Therefore, the authors have based the calculation of the constant on the ratio of the
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concentration of adsorbed substance on the solid surface to its concentration in the
equilibrium solution [11-13].

2. RESULTS AND DISCUSSION

The method for calculation of the apparent adsorption equilibrium constant, which
has been used at adsorption of non-polar low-molecular organic molecules from
aqueous solutions on activated carbon [14], can be also applied for description of
adsorption equilibrium of other systems, in particular at fluoride ions adsorption on
pore aluminum oxide sorbents [15].

We deal in our investigation with a binary solution where water is a solvent (com-
ponent 1) and NaF molecules – are a solute (component 2). For the constant calcula-
tion the following formula has been used [14,15]:

Ka2 =
Θ2[

1 − Θ2

(
v0

2−v0
1

v0
2

)]
·C2 · v0

2

· γa2

γ2
(1)

In equation (1) Θ2 – the NaF molecules surface covering degree which is equal to
a2·v◦2

vm
where a2 – the adsorption value, mmol/g, v◦1 and v◦2 – mole volumes of water

and adsorbed NaF equal 0.0180 and 0.0217cm3/mmol, respectively, vm – the sorbent
maximum adsorption pore volume cm3/g, C2 – NaF solution equilibrium concentra-
tion, mmol/l, γ2 and γa2 – the NaF molecules activity coefficients in the equilibrium
bulk solution and in the adsorption layer, respectively. Substituting numerical values
of mole volumes of the water and sodium fluoride into equation (1) and expressing
NaF bulk concentration in mmol/cm3 we obtain:

Ka2 =
4.6 · 104 · Θ2 · γa2

(1 − 0.172 · Θ2) ·C2 · γ2
(2)

At the constant Ka2 calculation it has been accepted that the relation of activity
coefficients γa2/γ2 in rather dilute solutions is equal to 1. In that case if the exper-
imental adsorption data are presented in coordinates lg ·Θ2

(1−0.172·Θ2)·C2
versus Θ2 one

can get linear extrapolation dependence and the intercept is numerically equal to ad-
sorption constant logarithm (lgKa2).

The adsorption equilibrium constant for the oxyhydroxide aluminum sample A200
has been calculated in such a way [14].

However for more concentrated NaF solutions (more than 0,01mol/l) it is neces-
sary to take into account the activity coefficients both in the adsorption layer γŕ2 and
in the equilibrium bulk solution γ2 and to use activities instead of concentrations.

Knowing the adsorption constant Ka2 value we can make estimation of adsorption
isotherms, i.e. to find the adsorption sodium fluoride dependence on its equilibrium
concentration in solution (C2) it is enough to get a functional dependence of γŕ2 on
surface covering degree Θ2.
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The adsorption isotherms calculation are carried out as follows: fixed values of
Θ2 (or that is the same – adsorption values, a2) are defined and for these values the
equilibrium NaF concentrations in bulk solution (C2) (or its activities) are computed
from equation (2). Calculated adsorption values are determined for any Θ2 from the
expression ŕ2calc. = Θ2 am, where am – the maximum adsorption, mmol/g which is
calculated from the relation:

va = am · v0
2 (3)

Then the isotherm is constructed in coordinates a2 vs C2 (or a2vs C2 · γ2) and
compared with experimental determined adsorption values a2exp for corresponding
equilibrium NaF concentrations or activities in solution.

It is known [14] that the coefficient γa2 includes 3 items: γc2 , γa2−2, and γa2−H2O,
which characterize different types of interactions in the adsorption layer and can be
presented as their sum:

RTlnγa2 = RTlnγC2 + RTlnγa2−2 + RTlnγa2−H2O (4)

The term γc2 reflects the influence of NaF concentration growth in equilibrium
solution on its content in the adsorption layer of the sorbent. The second term γa2−2
is responsible for interaction between the adsorbed substance molecules and the term
γa2−H2O notes the degree of interaction of adsorbed substance molecules with water
in the adsorption layer.

Taking into account that in the system NaF-H2O there is no association of NaF
molecules (i.e there is no interaction between NaF molecules in adsorption layer) we
can accept that γa2−2 = 1 and lgγa2−2 = 0. On the other hand it is known [16] that
sodium fluoride do not hydrolyze in water and therefore we can suppose the coeffi-
cient γa2−H20 = 1 and hence, lgγa2−H2O = 0 as well. Thus, the activity coefficient
γa2 will mainly be defined by γC2 that allows the term γa2 to be substituted for γC2
in equation (2) and makes concentration (activity) computation from the following
expression:

C2 · γ2 =
4.6 · 104 · Θ2 · γC2

(1 − 0.172 · Θ2) · Ka2
(5)

The maximum γc2 value takes place at Θ2 = 1 when the total sorbent surface is
occupied with NaF molecules (H2O molecules are absent). Since in that case the ad-
sorption layer is at equilibrium with saturated NaF solution, lgγc2 will be determined
by adsorption equilibrium constant Ka2 (at Θ2 = 1) and NaF solubility in water at
corresponding temperature CsNaF (CsNaF – saturated NaF solution concentration i.e.
maximum solubility of NaF salt in water, mol/kg of water).

lg γC2Θ2=1
= lg

Ka2 ·CsNaF

CsNa f +CH2O
= lg

Ka2

56, 5
, (6)
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since CsNaF = 1 mol/kg [17] and CH2O = 55.5mol/kg.
As lgγC2 changes from 0 at Θ2 = 0 to lgγc2 = lg Ka2

56,5 at Θ2 = 1, γC2 for any Θ2
value can be estimated from interpolation dependence of γC2 on Θ2:

γC2 =

(
Ka2

56, 5

)Θ2

, (7)

or
lgγc2 = Θ2 · lg γC2Θ2=1

. (8)

As to NaF activity coefficient in equilibrium bulk solution γ2, it can be calculated
from a well-known equation [18, 19]:

ln γ2± = −0, 5066 · z2 ·
 √

I

1 +
√

I
− 0, 2I

 , (9)

where I – ionic strength of the solution which for 1-1 electrolyte NaF is equal to
molar solution concentration, mol/kg, z – atomic charge. The calculated data are
shown in Table 1.

In Table 2 there are shown the calculated NaF adsorption isotherms on A200 sam-
ple with surface area 358m2/g and sorption pore volume 0,457cm3/g [20]. The equi-
librium NaF solution concentration was calculated from equation (5) under the as-
sumption that γa2/γ2 , 1.

Ka2 = 3311, V0
2 = 0.0217cm3/mmol, Ssp = 358m2/g, am calc. = 36.0mmol NaF/g,

a2 calc. = θ2 · 36.0 mmol NaF/g, Ka2 = 358 at θ2 = 1.
The NaF adsorption isotherms on the sample of Al oxide A800 (surface area is

145,6m2/g and sorption pore volume – 0,221cm3/g) calculated from equation (5) tak-
ing into account the NaF activity coefficients in adsorption layer and in equilibrium
bulk solution (Table 1) are shown in Table 3 and Fig. 1.

Ka2 = 5937, V0
2 = 0.0217cm3/mmol, Ssp. = 145.6m2/g, vm = 0.221cm3/g, am

calc. = vm/v0
2 = 10.18mmol NaF/g, Ka2 = 367 at θ2 = 1, a2 calc. = θ2 · 10.18

mmol/g.
As it is seen from the listed data in both cases there is a good agreement of cal-

culated from equation (5) values of NaF adsorption – a2 calc. with experimentally
determined ones – a2 exp. Discrepancies of calculated and experimental adsorption
data do not exceed 12% for A200 and 8.5% for A800 oxides.

3. CONCLUSION

Experimental and theoretically calculated values of isotherms of fluorine adsorp-
tion on studied samples are in good agreement.

For adsorption equilibrium isotherm calculation in the system aluminum oxide –
aqueous NaF solution is quite enough data of adsorption equilibrium constants and
NaF solubility data.
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Table 1 Activity coefficients of NaF molecules in the equilibrium bulk solution in the system NaF –
H2O – Al2O3

A200 A800

C2,
mmol/l

γ2 NaF activity,
mmol/l

C2,
mmol/l

γ2 NaF activity,
mmol/l

1.7 0.980 1.7 1.4 0.982 1.4

4.2 0.970 4.1 3.5 0.973 3.4

7.8 0.961 7.5 6.6 0.964 6.4

12.8 0.952 12.2 11.5 0.954 11.0

20.3 0.942 19.1 17.1 0.946 16.2

29.4 0.933 27.4 25.6 0.936 24.0

43.4 0.923 40.1 36.8 0.927 34.1

61.4 0.913 56.1 52.2 0.917 47.9

85.5 0.902 77.2 63.7 0.911 58.0

96.7 0.899 86.9 73.2 0.907 66.7

100.1 0.897 89.8 80.7 0.904 73.0

105.2 0.896 94.3 84.2 0.903 76.0

113.0 0.894 101.1 94.5 0.899 85.0

- - - 101.4 0.897 91.0

For NaF solutions concentrations more than 0.01mol/L at adsorption equilibrium
constants calculation one should take into account the activity coefficients of NaF
molecules in the adsorption layer and in the bulk equilibrium solution.
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Table 2 Adsorption isotherms of NaF from aqueous solutions by the sample A200 at 200C

θ2
Θ2

(1−0.172·Θ2) lgγa2 γa2 C2 · γ2,
calc. by
eq. (5),
mmol/l

a2,
calc.,
mmol/g

a2, ex-
perim.,
mmol/g

Relative
devia-
tion, ∆,
%

0.1 0.101 0.08 1.17 1.7 3.6 4.1 12.2

0.2 0.207 0.15 1.41 4.1 7.2 7.6 5.3

0.3 0.316 0.23 1.70 7.5 10.8 11.6 6.7

0.4 0.429 0.31 2.04 12.2 14.4 15.7 8.3

0.5 0.547 0.40 2.51 19.1 18.0 19.8 9.1

0.6 0.669 0.47 2.95 27.4 21.6 23.2 6.7

0.7 0.796 0.56 3.63 40.1 25.2 26.6 5.2

0.8 0.926 0.64 4.36 56.1 28.8 28.6 0.7

0.9 1.060 0.72 5.24 77.2 32.4 30.8 5.2

0.95 1.140 0.74 5.49 86.9 34.2 31.7 7.9

0.96 1.150 0.75 5.62 89.8 34.7 31.8 9.1

0.98 1.180 0.76 5.75 94.3 35.5 32.2 10.2

1.0 1.208 0.78 6.02 101.0 36.0 32.8 9.8

Fig. 1. Calculated and experimental adsorption isotherms of NaF on oxyhydroxides aluminum
samples: (a) – A200, (b) – A800
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Table 3 Adsorption isotherms of NaF from aqueous solutions by the sample A800 at 200C

θ2
Θ2

(1−0.172·Θ2) lgγc2 γc2 C2 · γ2,
calc. by
eq. (5),
mmol/l

a2,
calc.,
mmol/g

a2, ex-
perim.,
mmol/g

Relative
devia-
tion, ∆,
%

0.1 0.101 0.081 1.20 1.4 1.2 0.94 8.5

0.2 0.207 0.162 1.45 3.4 2.04 1.88 8.5

0.3 0.316 0.243 1.75 6.4 3.05 2.82 8.2

0.4 0.429 0.324 2.11 11.0 4.07 3.76 8.2

0.5 0.547 0.405 2.54 16.2 5.09 4.70 8.3

0.6 0.669 0.486 3.06 24.0 6.10 5.64 8.2

0.7 0.796 0.567 3.69 34.1 7.13 6.58 8.4

0.8 0.926 0.648 4.45 47.9 8.14 7.66 6.3

0.86 1.00 0.697 4.98 58.0 8.75 8.10 8.0

0.9 1.065 0.729 5.36 66.4 9.16 8.46 8.3

0.93 1.107 0.753 5.66 73.0 9.46 8.74 8.2

0.95 1.136 0.769 5.87 76.0 9.67 8.93 8.3

0.98 1.178 0.794 6.22 85.0 9.97 9.21 8.2

1.00 1.207 0.810 6.46 91.0 10.18 9.3 9.5



208 Veaceslav I. Zelentsov, Tatiana Ya. Datsko

References

[1] Z. Zawani, L. Chuah, A. Thomas, S. Y. Choong, Equilibrium, Kinetics and Thermodynamic
Studies: Adsorption of Remazol Black 5 on the Palm Kernel Shell Activated Carbon (PKS-AC),
European Journal of Scientific Research, Vol.37 No.1 (2009), 63-71.

[2] J. He, S. Hong, L. Zhang, F. Gan, Y.- S. Ho, Equilibrium And Thermodynamic Parameters of
Adsorption of Methylene Blue Onto Rectorite, Fresenius Environmental Bulletin, 2010, V. 19,
No 11 a, 2651-2656.

[3] S. Hong, C. Wen, J. He, F. Gan, Y.- S. Ho, Adsorption thermodynamics of Methylene Blue onto
bentonite, Journal of Hazardous Materials, 2009, 167, 630-633.
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