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Introduction

Compactness is one of the most important notions. A quasi-compactness
is a class of spaces which is multiplicative, hereditary with respect to closed
subspaces and contains an infinite T0-space.

The concept of a compact space was introduced by L. Vietoris [117], P.S.
Alexandroff and P.S. Urysohn [2] and is due to the works of E. Borel, H.
Lebesgue, K. Kuratowski, W. Serpinski, S. Saks (see [34, 44, 90]).

The general notion of compactness is due to the works of P. S. Alexandroff
and P. S. Urysohn [2], E. Hewitt [64], R. Arens and J. Dugundji [7], L. Nachbin
[83], S. Mrowka and R. Engelking [43,81], H. Herrlich [62], H. Herrlich and J.
Vander Slot [63], M. Hušek and J. de Vries [67], Z. Frolik [51], R. N. Bhanmik
and D. N. Misra [19], G. Viglino [118], A. P. Shostak [140] (see [44]).

For every space E there exists the minimal quasi-compactness P such that
E ∈ P (see [43, 44, 81]).

Theory of compactifications is a wide and vast branch of topology and its
applications.

One-point compactification of the plane was studied by G. Riemann and
compactifications of open subsets of the plane were studied by C. Caratheodory
in connection with some problems of analytic functions. The notion of the ex-
tension was used by R. Dedekind and G. Cantor in the theory of real numbers
and by F. Hausdorff in the theory of metric spaces (see [30, 34, 44, 90, 121]).

Let P be a quasi-compactness. A generalized P -extension of a space X is
a pair (eX, f), where eX ∈ P , f : X → eX is a continuous mappings and the
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set f(X) is dense in eX. If f is an embedding, then eX is called a P -extension
or a P -compactification of the space X.

The general problems of the theory of P -extensions are the following.
First General Problem: To find the methods to construct and study the

P -extensions and special P -extensions of a given space X.
Second General Problem: To study the class GE (X) of all generalized P -

extensions of a given space X.
Third General Problem. Under which conditions the class GE (X) is a com-

plete lattice?
Fourth General Problem. Let GE(X) be a lattice and let βPX be the maxi-

mal element in GE (X). To study the properties of spaces βPX and βPX \X.
Fifth General Problem. Let X and Y be spaces. Under which conditions

there exists a P -extension eX ofX such that Y and eX\X are homeomorphic?
Various important problems of the theory of extensions were formulated

in [3, 12, 17, 34, 49, 59, 90, 103, 119, 121, 129].
The purpose of the present paper is to investigate the class of P -extensions

of topological spaces and the methods of constructing of new P -extensions of
topological spaces.

In Section 1 we discuss the general notions and problems. We introduce
the notion of double compactness. In the final part of the section we give
examples and concrete problems of the theory of extensions.

Section 2 is devoted to investigation of the methods of construction of ex-
tensions.

The method of perfect mappings was used by M. C. Raybom [89] in the
constructions of Hausdorff compactifications for locally compact spaces. We
introduce the method of superperfect mappings for arbitrary spaces. These
methods are used for investigation of the lattice of compactifications (see
[1, 5, 27, 32, 55, 58, 68, 71,
72, 74, 76, 82, 95, 106, 114, 116, 119, 124]).

The method of singular mappings was introduced in [32] for construction of
the Hausdorff compactifications of locally compact spaces.

The Wallman-Shanin method was introduced by W. H. Wallman [122] and
N. A. Shanin [96, 97, 98, 99]. The notion of the base-ring was introduced by
O. Frink [50], E. F. Steiner [106, 109], V. I. Zaitsev [128]. In [50] O. Frink
formulated the problem: Is every Hausdorff compactification of a completely
regular space of the Wallman-Shanin type? The problem of O. Frink was
studied by many authors (see [49, 55, 79, 85, 90, 105, 106, 109, 113]) and it was
negatively solved by V. M. Uljanov [115].

The spectrum of rings (see [15, 29, 52, 53, 58, 65, 66, 84, 90, 110, 111, 119, 124])
was used by L. I. Calmutskii [24, 28, 131, 132, 133] to introduce the notion of
spectral compactifications.
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In Section 3 we study the uniform extensions of completely regular spaces.
The construction of maximal uniform extension µX of a space X is due to J.
Diendonné and to F. Hausdorff [44]. The concept of a uniform space and the
notion of a complete uniform space were introduced by A. Weil (see [44]). The
completions of separable metric spaces were studied by J. M. Aarts and P. V.
van Emde Boas [1]. The completions of arbitrary metric spaces were studied
by V. K. Bel’nov [20,127]. An important part of the methods of construction
of extensions of a space is to present the “new points” of the extension as a
space with concrete properties. We simplify and extend the “Bel’nov’s gluing
method” to theory of uniform completions of arbitrary completely regular
spaces.

In this article we shall use the following notation:
We denote by clXA or clA the closure of a set A in a space X.
We denote by |A| the cardinality of a set A.
We denote by w(X) the weight of a space X.
The interval [0, 1] is denoted by I.
On the set N ={1, 2, . . . } we consider only the discrete topology.
We use the terminology from [44,34,90].

General notions and problems

Let L be a partially ordered set. Fix a non-empty subset A of L. We
consider that a = ∨A if a ≥ x for every x ∈ A and if b ≥ x for each x ∈ A,
then b ≥ a. We consider that c = ∧A if c ≤ x for every x ∈ A and if b ≤ x for
each x ∈ A, then b ≤ c.

The set L is called:
- an upper semi-lattice if there exists the element ∨L and for every two

elements x, y ∈ L there exists the element x ∨ y = ∨{x, y};
- a lower semi-lattice if there exists the element ∧L and for every two ele-

ments x, y ∈ L there exists the element x ∧ y = ∧{x, y};
- a complete upper semi-lattice if for every non-empty subset A ⊆ L there

exists the element ∨A;
- a lattice if L is an upper semi-lattice and a lower semi-lattice;
- a complete lattice if L is a lower semi-lattice and a complete upper semi-

lattice.
We mention that in the complete lattice L for every non-empty subset A ⊆ L

there exists the element ∧A.
Let L be a complete upper semi-lattice and M be a non-empty subset of L.

If for every two elements x, y ∈ M we have x ∨ y ∈ M , then M is called an
upper subsemi-lattice of L. In the similar way there are defined the notions
of a lower subsemi-lattice and of a sublattice.

1.1. Extensions of spaces
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1.1.1. Definition. A g-extension of a space X is called a pair (Y , f),
where Y is a non-empty T0-space, f : X → Y is a continuous mapping and
{clY f(A) : A ⊆ X} is a closed base of the space Y .

1.1.2. Definition. A g-extension (Y , f) of a space X is called an extension
of X if f is an embedding of X in Y .

1.1.3. Remark. If (Y , f) is a g-extension of a space X, then the set f(X)
is dense in Y .

Denote by E(X) the family of all extensions of a space X and by GE (X)
the family of all g-extensions of the space X. The family GE (X) is partially
ordered in the standard way: (Y1, f1) ≤ (Y2, f2) if there exists a continuous
mapping ϕ : Y2 → Y1 such that f1(x) = ϕ(f2(x)) for every x ∈ X, i. e.
f1 = ϕ ◦ f2.

If (Y1, f1), (Y2, f2) ∈ GE(X), ϕ : Y2 → Y1 and ψ : Y1 → Y2 are continuous
mappings, f1 = ϕ ◦ f2 and f2 = ψ ◦ f1, then ψ = ϕ−1 and ϕ and ψ are
homeomorphisms. Thus (Y1, f1) = (Y2, f2) provided (Y1, f1) ≤ (Y2, f2) and
(Y2, f2) ≤ (Y1, f1).

If i ∈ {0, 1, 2, 3, 31
2}, then GE(X) = {(Y, f) ∈ GE(X) : Y is a Ti-space}

and Ei(X) = E(X) ∩GEi(X) = {(Y, f) ∈ E(X) : Y is a Ti-space}.
1.1.4. Proposition. Let f : X → Y be a continuous mapping of a

space X into a Ti-space Y , the set f(X) is dense in Y and i ≥ 3. Then
(Y, f) ∈ GEi(X).

Proof. Let F be a closed non-empty subset of Y and y ∈ Y \F . There exist
two open subsets U and V of Y such that F ⊆ U , y ∈ V and U ∩ V =Ø. We
put Φ = clY (f(X) ∩ U). Then F ⊆ Φ and y /∈ Φ. Hence {clYA : A ⊆ f(X)}
is a closed base of the space Y . The proof is complete.

1.1.6. Definition. A pair (Y , f) is called a weak g-extension (wg-
extension) of a space X if f : X → Y is a continuous mapping, Y is a T0-space
and the set f(X) is dense in Y .

We denote by WGE (X) the family of all wg-extensions of a space X,
WE(X) = {(Y, f) ∈WGE(X) : f is an embedding},
WGEi(X) = {(Y, f) ∈WGE(X) : Y is a Ti-space} and

WGEi(X) = WE(X) ∩WGEi(X).

1.1.7. Proposition. Let X be a non-empty T0-space. Then:
1. WE (X) is not a set.
2. WGE (E) is not a set.
3. If i ≥ 2, then WGEi(X) is a set.
4. GE(X)is a set.
Proof. Let Z be a non-empty T0-space and Z ∩ X =Ø. We put Y =

X ∪ Z, f(x) = x for every x ∈ X,- Im 0 = {H ⊆ X : H is open in X} ∪
{X ∪ V : V ⊆ Z and V is open in Z}. Then Im 0 is a T0-topology on Y and
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(Y, f) ∈ WE(X). Thus WE(X) is not a set. Hence WGE(X) is not a set,
too.

Let m = |X| and τ = 22τ
. If (Y, f) ∈ GE(X) ∪WGE2(X), then |Y | ≤ τ .

Therefore WGE2(X) ∪GE(X) is a set. The proof is complete.
1.1.8. Proposition. Let X be an infinite T1-space. Then WE1(X) is not

a set. In particular, WE1(X) is not a set.
Proof. Let Z be a non-empty T1-space and Z ∩ X = Ø. We put Y =

X ∪Z, f(x) = x for every x ∈ X and Γ1 = {H ⊆ X : H is open in X}∪{V ⊆
Y : V ∩ Z is open in Z and the set X\V is finite}. Then Γ1 is a T1-topology
on Y , Γ0 ⊆ Γ1 and ((Y, Γ1), f) ∈WE(X). The proof is complete.

1.1.9. Remark. If in the proof of Proposition 1.1.7 or of Proposition 1.1.8
the space Z is compact, then the space (Y, Γ0) or (Y, Γ1) is compact, too.

If (Y1, f1), (Y2, f2) ∈ WGE(X), then (Y1, f1) ≤ (Y2, f2) if there exists a
continuous mapping ϕ : Y2 → Y1 such that f1 = ϕ ◦ f2.

1.1.10. Proposition. The relation ≤ is an ordering on WGE2(X).
Proof. Is obvious.
1.1.11. Example. LetX be a non-empty space. Then ≤ is not an ordering

on WE (X).
Let Z be a non-empty T0-space, Z ∩X = Ø and b ∈ Z. Consider the space

Y1 = Z ∪X with the topology Γ0 = {U ⊆ X : U is open in X}∪{V ∪X : V
is open in Z} and subspace Y2 = {b} ∪X of Y1. Let f(x) = x for each x ∈ X.
Then (Y1, f), (Y2, f) ∈ WE(X). We put ϕ(y) = y for every y ∈ Y2, f =
ψ |X and ψ(y) = b for every y ∈ Z. Then the mappings ϕ : Y2 → Y1 and
ψ : Y1 → Y2 are continuous and ϕ(x) = ψ(x) = x for each x ∈ X . Thus
(Y1, f) ≤ (Y2, f), (Y2, f) ≤ (Y, f) and (Y, f) 6= (Y2, f) provided |Z| ≥ 2.

1.1.12. Example. Let X be an infinite T1-space. Then ≤ is not an
ordering on WE1(X).

Let Z be a T1-space, |Z| ≥ 2, b ∈ Z, Y1 = Z ∪ X be a space with the
topology Γ1 = {U ⊆ X : U is open in X} ∪ {V ⊆ Y1 : V ∩ Z is open in Z and
the set X\V infinite}, Y2 = {b}∪X be a subspace of Y1 and f(x) = x for each
x ∈ X. Then (Y1, f), (Y2, f) ∈ WE1(X), (Y1, f) ≤ (Y2, f), (Y2, f) ≤ (Y1, f)
and (Y1, f) 6= (Y2, f).

LetX be a space. On the class WGE (X) we consider the relation∼:(Y1, f1) ∼
(Y2, f2) iff (Y1, f1) ≤ (Y2, f2) and (Y2, f2) ≤ (Y1, f1). Obviously, ∼ is a re-
lation of equivalence. Denote by WGE0(X) the classes of equivalence on
WGE (X) and by WE0(X) the classes of equivalence on WE (X).

Obviously ≤ is an ordering on the a class WGE0(X).
1.1.13. Proposition. Let H = {(Yα, fα) ∈ WGE(X) : α ∈ A} be a set,

f(x) = (fα(x) : α ∈ A) for every x ∈ X and Y be the closure of the set f(X)
in the space Π{Yα : α ∈ A}. Then:

1. (Y, f) ∈WGE(X) and we put (Y, f) = ∨H.
2. (Yα, fα) ≤ (Y, f) for each α ∈ A.
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3. If (Z, g) ∈ WGE(X) and (Yα, fα) ≤ (Z, g) for each α ∈ A, then
(Y, f) ≤ (Z, g).

4. If i ∈ {0, 1, 2, 3, 31
2} and Yα is a Ti-space, then Y is a Ti-space.

5. If H ∩WE(X) 6=Ø, then (Y, f) ∈WE(X).
Proof. For every β ∈ A we consider the projection ϕβ : Y → Yβ, where

ϕβ(yα : α ∈ A) = yβ for any (yα : α ∈ A) ∈ Y . Then fα = ϕα ◦ f for
each α ∈ A. The assertions 1, 2, 4 and 5 are proved. Let (Z, g) ∈ WGE(X)
and (Yα, fα) ≤ (Z, g) for each α ∈ A. For any α ∈ A we fix a continuous
mapping ψα : Z → Yα such that fα = ψα ◦ g. Consider the mapping ψ : Z →
Π{Yα : α ∈ A}, where ψ(z) = (ψα(z) : α ∈ A). The mapping ψ is continuous,
ψ(g(X)) = f(X) and ψ(Z) ⊆ Y . The assertion 3 and Proposition are proved.

1.1.14. Question. Is it true that WE0(X) is a set for each topological
space X?

Obviously, WE0(X) is a set for every space X iff WGE0(X) is a set for
every space X.

1.1.15. Remark. Let X be a non-empty space, D0 be a singleton space,
fm : X → D0 be the unique mapping of X into D0, fM (x) = x for each
x ∈ X. Then (X, fM ) is the maximal element in WGE (X) and (D0, fM ) is
the minimal element in WGE (X). Obviously, (X, fM ), (D0, fM ) ∈ GE(X).

1.1.16. Question. Let X be a space and H be a non-empty subset of the
set GE (X). Is it true that ∨H ∈ GE(X)?

1.1.17. Corollary. Let i ≥ 2. Then WGEi(X) is a complete lattice.
1.1.18. Corollary. Let i ≥ 2. Then WEi(X) is a complete upper semi-

lattice.
1.1.19. Corollary. Let i ≥ 3. Then GEi(X) is a complete lattice.
1.1.20. Corollary. Let i ≥ 3. Then Ei(X) is a complete upper semi-

lattice.

1.2. The canonical functor m : WGE(X)→ GE(X)

Consider a topological space X. Fix a wg-extension (Y , f) of the space X.
Let ΓY be the topology of the space Y . On Y consider a new topology ΓY f

generated by the closed base {clYH : H ⊆ f(X)}. There exist a set Yf and

a mapping PY : Y → Yf such that P−1
Y (PY (H)) = H for every H ∈ ΓY f and

Γ0
Y f = {PY (H) : H ∈ ΓY f} is a T0-topology on a set Yf .

If y ∈ Y , thenP−1
Y (PY (y)) = (∩{Y ∈ ΓY f : y ∈ U}) ∩ (∩{Y \ U : U ∈

ΓY f , y /∈ U}). Consider the mapping Pf : X → Yf , where Pf = PY ◦ f . By
construction, (Yf , Pf) ∈ GE(X). We put (Yf , Pf) = m(Y, f), Yf = m(Y )
and Pf=m(f).

The canonical functor m : WGE(X)→ GE(X) is constructed.
From the construction it follows.
1.2.1. Proposition. If (Y, f) ∈ GE(X), then m(Y , f)=(Y , f).
1.2.2. Question. Is it true that the functor m is covariant?
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1.3. The canonical functors mi : WGE(X)→WGEi(X)

Fix i ∈ {0, 1, 2, 3, 31
2}. For every space Y there exist a unique Ti-space

Y/i and a unique projection iY : Y → Y/i with the properties:
1. iY is a continuous mapping onto Y/i;
2. for every continuous mapping ϕ : Y → Z in a Ti-space Z there exists a

unique continuous mapping ϕ̄ : Y/i→ Z such that ϕ = ϕ̄ ◦ iY .
3. if ψ : Y → Z is a continuous mapping, then there exists a unique

continuous mapping ψ̄ : Y/i→ Z/i such that ψ̄ ◦ iY = iZ ◦ ψ.
The space Y/i with the projection iY is called the i-replic of the space Y.
Fix a space X. If (Y, f) ∈ WGE(X) , then we put fi = iY ◦ f and

mi(Y, f) = (Y/i, fi). From the construction it follows.
1.3.1. Proposition. mi : WGE(X) → WGEi(X) is a covariant functor.

If (Y, f) ≤ (Z, g), then mi(Y, f) ≤ mi(Z, g). If (Y, f) ∈ WGE(X), then
mi(Y, f) = (Y, f).

1.4. Compactness

The notion of compactness is due to E. Mrowka [81,43], E. Hewit [64], R.
Arens and S. Dugundji [7].

A class P of topological T0-spaces is called a strongly compactness if the
following conditions are fulfilled:

C1. the class P is non-empty;
C2. there exists a space X ∈ P such that |X| > 2;
C3. the class P is multiplicative, i. e. if {Xα ∈ P : α ∈ A} is a non-empty

set of spaces from P, then Π{Xα : α ∈ A} ∈ P ;
C4. the class P is closed hereditary, i. e. if Y is a closed subspace of a

space X ∈ P , then Y ∈ P ;
C5. if Y is a dense subspace of a space X ∈ P , then {clXA : A ⊆ Y } is a

closed base of the space X.
A class of spaces P with properties C1 − C4 is called a quasi-compactness.

A quasi-compactness P of Hausdorff spaces is called a compactness.
Fix a quasi-compactness P . For every space X we put WPGE(X) =

{(Y, f) ∈WGE(X) : Y ∈ P},WPE(X) = WPGE(X)∩WE(X), PGE(X) =
WPGE(X) ∩GE(X) and PE(X) = PGE(X) ∩ E(X).

If P is a compactness, then WPGE(X) = PGE(X) and WPE(X) =
PE(X). From Proposition 1.1.7. it follows that PGE (X) and PE (X) are
the sets for each space X.

1.4.1. Theorem. Let P be a compactness and X be a space. Then
∨H ∈WPGE(X) for every non-empty set H ⊆WPGE(X).

Proof. Follows immediately from the conditions C3, C4 and properties of
Hausdorff spaces.

1.4.2. Corollary. Let P be a compactness. Then WPGE (X) is a complete
lattice for every space X.
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Denote by (βPX, βP ) the maximal element of the lattice WPGE (X), where
P is a compactness.

1.4.3. Corollary. Let P be a compactness, X be a space and WPE(X) 6=
∅. Then:

1. WPE (X) is a complete upper semi-lattice;
2. (βPX, βP ) ∈WPE(X).
1.4.4. Theorem. Let P be a compactness. For every continuous mapping

f : X → Y of a space X into a space Y there exists a continuous mapping
βP f : βPX → βPY such that βP ◦ f = βP f ◦ βP . If every space Z ∈ P is a
T2-space, then the mapping βP f is unique.

Proof. We may consider that f(X) is dense in Y . Then g = βP ◦ f : X →
βPY is a continuous mapping, the set g(X) is dense in βPY and (βPY, g) ∈
WPGE(X). Thus there exists a continuous mapping βP f : βPX → βPY such
that g = βP ◦ f ◦ βP . The proof is complete.

1.4.5a. Corollary. Let P be a compactness and f : X → Y be a contin-
uous mapping of a space X into a space Y ∈ P . Then Y = βPY and there
exists a unique continuous mapping βP f : βPX → Y such that f = βP f ◦ βP .

1.4.5b. Remark. Let P be a quasi-compactness. Then there exists
βPX ∈WPGE(X) such that βPX ∈ ∨PGE(X).

1.4.6. Proposition. Let P be a strongly compactness. Then every space
x ∈ P is a Hausdorff space, i. e. P is a compactness.

Proof. Let d(X) = min{|H| : H ⊆ X, clXH = H} be the density of a
spaceX. Consider the space F={0,1} with the topology Im = {∅, {1}, {1, 0}}.
Suppose that X ∈ P and X is not a T1-space. Then the space F is embeddable
in X. Suppose that F ⊆ X. Denote by b, c the cardinality larger than 2c

(see Proposition 1.1.7). For some cardinal m the space Y is embeddable in
Fm ⊆ Xm([44],Theorem 2.3.26). Let Z be the closure of Y in Xm. Then the
space Z is separable and |Z| ≥ |Y | > 2c. If S ∈ P , then |S| ≤ exp(exp(d(S))).
Thus |S| ≤ 2c for every separable space S ∈ P . Therefore every space S ∈ P
is a T1-space.

Suppose that X ∈ P and X is not a T2-space. There exist two distinct
points a, b ∈ X such that V ∩W 6= ∅ provided V and W are open subsets of
X, a ∈ V and b ∈ W . Fix a cardinal number τ > exp(exp(|X|)). We put
Φ = {a, b}. In Xτ we consider the diagonal ∆(X) (see [44], p.110). Let Y be
the closure of the set ∆(X) in Xm. Then Φτ ⊆ Y , |∆(X)| = |X|, d(Y ) ≤ |X|,
|Y | ≤ exp(exp(|X)) < τ | and |Φτ | = 2τ = exp(τ), a contradiction. The proof
is complete.

1.5. Double compactness

A class P of topological T0-spaces is called a double compactness if the
following conditions are fulfiled:

D1. the class P is non-empty;
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D2. there exists a space X ∈ D such that |X| ≥ 2;
D3. if Γ is a topology of the space X ∈ P then there is determined the

completely regular topology dΓ on X such that (X, dΓ) ∈ P , Γ ⊆ dΓ and
ddΓ = dΓ;

D4. if f : X → Y is a continuous mapping of a space (X, Γ) into a space
(Y, Γ′) and X,Y ∈ P , then f is a continuous mapping of the space (X, dΓ)
into a the space (Y, dΓ′);

D5. if {(Xα, Γα) : α ∈ A} is a non-empty set of spaces, (Xα, Γα) ∈ P for
each α ∈ A, X = Π{Xα : α ∈ A}, Γ is the product of topologies Γα on X and
Γ′ is the product of topologies dΓα on X, then Γ′ ⊆ dΓ;

D6. if (X, Γ) ∈ P, Y ⊆ X and Y is a closed subset of the space (X, dΓ),
then (Y, Γ |Y ) ∈ P and d(Γ |Y ) ⊇ dΓ |Y , where Γ |Y = {U ∩ Y : U ∈ Γ} for
the topology Γ on X.

1.5.1. Proposition. Let P be a class of spaces, X be a space, {Yα : α ∈ A}
be a non-empty family of subspaces of the space X, Y = ∩{Yα : α ∈ A} and
Yα ∈ P for each α ∈ A. Then:

1. if P is a double compactness, then Y ∈ P ;
2. if P is a compactness, then Y ∈ P .
Proof. We may consider that X = Yα for some α ∈ A. If X is a T2-space,

then Y is a closed subspace of the space Π{Yα : α ∈ A}. The assertion 2
is proved. If P is a double compactness, then Y is a closed subspace of the
space Π{Yα : α ∈ A} in the topology dΓ. The assertion 1 and Proposition are
proved.

Fix a double compactness P . For every space X we put PGE(X) =
{(Y, f) ∈ WGE(X) : Y ∈ P and f(X) is a dense subset of the space (Y, dΓ)
and PE(X) = WE(X) ∩ PGE(X).

From the condition D6 it follows that PGE (X) and PE (X) are sets.
1.5.2. Theorem. Let P be a double compactness. Then PGE (X) is a

complete lattice for every space X.
Proof. Let {(Yα, fα) : α ∈ A} be a non-empty subset of the set PGE (X).

Denote by Γα the topology of the space Yα and by Γ the topology of the
space Π{Yα : α ∈ A}. Consider the mapping f : X → Π{Yα : α ∈ A}, where
f(x) = (fα(x) : α ∈ A) for each x ∈ X. Let Y be the closure of the set f(X) in
the space (Π{Yα : α ∈ A}, dΓ). Then (Y, f) ≥ (Y2, f2) for each α ∈ A. From
the condition D4 it follows that if (Z, g) ∈ PGE(X) and (Z, g) ≥ (Yα, fα) for
each α ∈ A, then (Z, g) ≥ (Y, f). Thus (Y, f) = ∨{(Yα, fα) : α ∈ A}. The
proof is complete.

1.5.3. Corollary. Let P be a double compactness, let X be a space and
PE(X) 6= ∅. Then PE (X) is a complete upper semi-lattice.

1.5.4. Theorem. Let P be a double compactness. Then:
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1. for every continuous mapping f : X → Y of a space X into a space
Y there exists a unique continuous mapping βP f : βPX → βPY , βP ◦ f =
βP f ◦ βP ;

2. for every continuous mapping f : X → Y of a space X into a space
Y ∈ P there exists a unique continuous mapping βP f : βPX → Y such that
f = βP f ◦ βΓ.

Proof. Let Z be the closure of the set βP (f(X)) in the space (βPY, dΓ).
Then (Z, βP ◦ f) ∈ PGE(X) and the assertion 1 is proved. If Y ∈ P , then
βPY = Y . The proof is complete.

1.6. Examples

1.6.1. Example. Let C be the class of compact Haussdorff spaces. Then
C is a strongly compactness. If (Y, f) ∈ CGE(X), then we say that (Y ,
f) is a g-compactification of X. If (Y, f) ∈ CE(X), then (Y , f) is called a
compactification of X. For every space X the g-compactification βX = βPX
is the Stone-Čech g-compactification of X. If X is a completely regular space,
then βX is the Stone-Čech compactification of X.

1.6.2. Example. Let C0 be the class of zero-dimensional compact spaces.
Then C0 is a strongly compactness. If indX > 0, then C0E(X)=Ø. If indX=0,
then mfX = βC0X is the Morita-Freudenthal compactification of X. We put
mfX = βC0X and (mfX, mf) = (βG0X, βG0). The g-compactification mfX
is called the maximal zero-dimensional g-compactification of the space X.

1.6.3. Example. Let X be a completely regular space. A subset L of
X is called bounded in X if the set f(L) is bounded in the space of reals R
for every continuous function f : X → R. A space X is called µ-complete if
the closure clL of every bounded subset L is compact. Let Cµ be the class of
all µ-complete spaces. Then Cµ is a strongly compactness. The g-extension
(βGµX, βCµ) = (µ∗X, µ∗) is called the maximal µ-completion of the space X.
If X is a completely regular space, then (µ∗X, µ∗) ∈ E(X) and µ∗X is the
µ-completion of X.

1.6.4. Example. Let R be the space of reals. A space Z is called a
realcompact space if it is homeomorphic to a closed subspace of some space
RA. The class R of all realcompact spaces is a strongly compactness. The g-
extension (νX, ν) = (βRX, βR) is the maximal g-realcompactification of the
space X. If X is a completely regular space, then νX is the realcompacti-
fication of X and (νX, ν) ∈ E(X). Every realcompact space is µ-complete.
Therefore νX ≤ µ∗X and µ∗X ⊆ νX.

1.6.5. Example. Let U be the class of all complete uniform spaces. If X
is a completely regular space, then by UX we denote the universal uniformity
on X (see [44]). Every uniform space is considered and a topological space
too. Thus for every space X in UGE (X) the maximal element (µX, µ) is
determined, where µX is a complete uniform space, µ : X → µX is a contin-
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uous mapping and the set µ(X) is dense in µX. The space µX is called the
Diendonné completion of the space X. If X is completely regular, then µX
is the completion of the uniform space (X, UX). If X = µX, then the space
X is called a Deudonné complete space. Every Deudonné complete space is
µ-complete. For every space X we may consider that µ∗X ⊆ µX ⊆ νX ⊆ βX.

1.6.6. Example. Let P be a compactness such that every space (Y, Γ) ∈ P
be completely regular. For every space (X, Γ) ∈ P we put dΓ = Γ. Then P
is a double compactness. Therefore every compactness of completely regular
spaces may be considered as a double compactness.

1.6.7. Example. For every space (X, Γ) we put cΓ = {U ∈ Γ : U
is a compact subset} and dΓ is the topology generated by the open base
{U1 ∩ U2 ∩ ... ∩ Un : n ∈ N, U1, U2, ..., Un ∈ Γ} ∪ {X \ U : U ∈ cΓ}.

A space (X, Γ) is called a spectral space if cΓ is an open base of the space X,
U ∩ V ∈ cΓ is an open base of the space X, U ∩ V ∈ cΓ for all U, V ∈ cΓ and
(X, dΓ) is a compact Hausdorff space. Let S be the class of all spectral spaces.
Then S is a double compactness. For every T0-space X we have SE(X) 6=Ø,
i. e. βS : X → βSX is an embedding.

1.6.8. Proposition. If (X, Γ) is a spectral space, then:
1. (X, Γ) is a compact T0-space;
2. (X, dΓ) is a zero-dimensional compact space;
3. dΓ = Γ if (X, Γ) is a T1-space.
Proof. Is obvious (see [132]).
1.6.9. Remark. The class of spectral compactifications of a space X was

studied in [24,28,131,132,133].
1.6.10. Example. Let E=[0,1], F ={2−n:n ∈ N} and Im be the topology

generated by the base {{t ∈ E : a < t < b}: a, b are real numbers}∪{Vn =
{t ∈ E : t < 2−n} \ F : n ∈ N}(see [2] or [44], Example 1.5.7). Then E is
a T2-space and E is not regular. If X is the subspace of irrational numbers
of E or X = E \ F , then {clEH : H ⊆ X} is not a closed base of E. Thus
E /∈ P for every compactness P . There exists a minimal quasi-compactness
P of Hausdorff spaces such that E ∈ P . Therefore P is a compactness and P
is not a strongly compactness.

1.6.11. Example. Let P be the class of all compact T0-spaces. Then P
is a quasi-compactness and P is not a compactness. Obviously OPE(X) 6= ∅
for every T0-space X.

1.6.12. Example. Let P be the class of all compact T1-spaces. Then
P is a quasi-compactness and P is not a compactness. It is well–known that
ωX ∈ PE(X) for every T1-space X.

1.7. Problems

1.7.1. Problem. Let P be a compactness or a double compactness.
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1. Under which conditions the lattices PGE (X) and PGE (Y ) are isomor-
phic?

2. Under which conditions the upper semi-lattices PE (X) and PE (Y ) are
isomorphic?

3. Which topological properties of a space X are characterized in terms of
the objects PGE (X) and PE (X)?

4. Which properties of the lattice PGE (X) are characterized by the prop-
erties of the space X?

5. Let X be a space and PE (X) 6=Ø. Which properties of the upper semi-
lattice PE (X) are characterized be the properties of the space X?

The program of matching “interesting” topological properties of a com-
pletely regular space X with “interesting” properties of the complete upper
semi-lattice PE (X) is very important in the theory of extensions. N. Boboc
and G. Siretchi [22] has proved that CE (X) is a lattice iff the space X is
locally compact. In [76] K. D. Magil has proved that for two locally compact
spaces X and Y the semi-lattices CE (X) and CE (Y ) are isomorphic iff the
spaces βX \X and βY \ Y are homeomorphic.

Another program of investigation is to find the “interesting” compactness
and double compactness.

1.7.2. Problem. Let P be a compactness or a double compactness, let X
be a space and PE(X) 6=Ø.

1. Find the methods of constructions the extension βPX, some extensions
from PE (X) or all extensions PE (X).

2. Let Z be a space. Under which conditions there exists an extension
(Y, f) ∈ PE(X) such that Y \ f(X) and Z are homeomorphic?

3. Under which conditions there exists an extension (Y, f) ∈ PE(X) such
that dim(Y \ f(X)) ≥ m, where m ∈ N?

4. Let Z ∈ P . Under which conditions there exist an extension (Y, f) ∈
PE(X) and a closed subspace Z ′ ⊆ Y \ f(X) such that Z and Z ′ are homeo-
morphic?

2. Some methods of construction of extensions

A mapping f : X → Y of a space X into a space Y is called:
- a perfect mapping if f(X) = Y, f is continuous, closed and the fibers

f−1(y), y ∈ Y , are compact;
- a superperfect mapping if f(X) = Y, f is continuous, perfect and there

exists a compact set Φ ⊆ X such that f−1(f(x)) = {x} for each x ∈ X \ Φ;
- a singular mapping if f is continuous and the set f−1(V ) is non-compact

for any non-empty open subset V of Y ;
- an almost perfect mapping if f(X) = Y, f is continuous, closed and there

exists a closed compact set Φ ⊆ X such that f−1(f(x)) = {x} for each x ∈
X \ Φ.
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2.1. Method of perfect mappings

Let X be an open dense subspace of a space eX, Y=eX\X and h : Y → Z
be a perfect mapping onto a space Z. We put ehX = Z ∪X and consider the
mapping f : eX → ehX, where f(x) = x for every x ∈ X and h = f |Y . On
a space ehX we consider the quotient topology {W ⊆ ehX : f−1(W ) is open
in eX }.

2.1.1. Property. The mapping f is perfect.
Proof. By construction, the mapping f is continuous and the fibers

f−1(y), y ∈ ehX, are compact. Let F be a closed subset of the space eX.
Then F1 = h−1(h(F ∩Y )) is a closed subset of Y , Φ = F1 ∪F is closed subset
of eX and Φ = f−1(f(F )). Thus f(F ) is closed in ehX. The proof is complete.

2.1.2. Property. If i ∈ {1, 2, 3, 4} and eX is a Ti-space, then ehX is a
Ti-space. Moreover, if eX is a normal space, then ehX is a normal space.

Proof. The property to be a Ti-space, i ∈ {1, 2, 3, 4}, is preserved by the
perfect mappings.

2.1.3. Property. If eX and Z are T0-spaces, then ehX is a T0-space.
Proof. Obvious.
2.1.4. Property. X is an open dense subspace of the space ehX.
Proof. Obvious.
We put LC(X) = ∪{U : U is an open subset of X and clXU is compact} –

the set of locally compactness of a space X. Let RC (X)=X\LC (X). A space
X is almost locally compact if the set LC (X) is dense in X. If RC (X)=Ø,
then the space X is locally compact.

2.1.5. Theorem. Let eX be an extension of the almost locally compact
space X, the set LC (X) is open in eX, Y=eX\LC (X), h : Y → Z is a perfect
mapping onto a space Z and h−1(h(x)) = {x} for every x ∈ RC(X). Then
there exist an extension ehX of a space X and a perfect mapping f : eX →
ehX such that the set LC (X) is open in ehX.

Proof. Let X1 = LC(X). Then eX is an extension of the space X1 and
the set X1 is open in eX. Properties 2.1.1 – 2.1.4 complete the proof.

2.2. Method of superperfect mappings

2.2.1. Theorem. If f : X → Y is an almost perfect mapping onto a
T1-space Y , then f is superperfect.

Proof. There exists a closed compact subset Φ ⊆ X such that f−1(f(x)) =
{x} for every x ∈ X \Φ. Let F = f(Φ). If y ∈ Y \F, then f−1(y) is a singleton.
If y ∈ F , then f−1(y) is a compact set as a closed subset of the subspace Φ.
Thus the fibers f−1(y) are compact. The proof is complete.

We say that a subset H of a space X is compact in X if the set clXH is
compact.

A set N(f) = {x ∈ X : f−1(f(x)) 6= {x}} is called the kernel of a mapping
f : X → Y .
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A mapping f : X → Y is almost perfect iff f(X) = Y , f is closed, continuous
and the kernel N(f) is compact in X.

2.2.2. Theorem. Let X be a subspace of a space X1, Y = X1 \ X,
h : Y → Z be an almost perfect mapping onto a space Z and the set clYN(h)
is closed in X. Then there exist a unique space S and an unique almost perfect
mapping f : X1 → S such that N(f) = N(h) and h = f |Y .

Proof. We put S = X ∪ Z, Y1 = clYN(h), X2 = X1 \ clYN(h), f(x) =
h(x) for every x ∈ Y and f(x) = x for every x ∈ X. The space X2 is open in
X1 and g = h |Y1 : Y1 → Z1 = h(Y1) is a continuous closed mapping. On S we
consider the quotient topology. Obviously, N(f) = N(h). By construction, f
is a closed continuous mapping. The proof is complete.

2.2.3. Corollary. Let eX be an extension of a space X, Y=eX\X, h :
Y → Z be an almost perfect mapping onto a space Z and the set clYN(f) be
closed in eX. Then there exist an extension ehX of the space X and an almost
perfect mapping f : eX → ehX such that:

1. Z is a subspace of the space ehX and Z = ehX \X;
2. h = f |Y ;
3. N(f) = N(h).

2.3. Method of singular mappings

Let P be a quasi-compactness.
A space X is called locally P -compact if for every point x ∈ X there exists

an open subset U ⊆ X such that x ∈ U and clXU ∈ P .
We say that a mapping f : X → Y is a P -singular mapping if f is continuous

and clXf
−1(V ) /∈ P for every non-empty open subset V ⊆ X.

Consider that the compactness P fulfills the following conditions:
S1. If Y and Z are closed subspaces of a space X and Y , Z ∈ P , then

Y ∪ Z ∈ P .
S2. If Y is a closed subspace of the space X, Y ∈ P , Z ∈ P provided

Z ⊆ X \ Y is a closed subset of X and X\Y=∪{V : V is open in X and
clXV ⊆ X \ V }, then X ∈ P.

In the class of regular spaces Condition S1 follows from Condition S2.
2.3.1. Construction. Let f : X → Y be a P -singular mapping of a

locally P -space X into a compact space Y ∈ P . Obviously that the set f(X)
is dense in Y . We put eX = X ∪ Y , with the topology generated by the open
base {U ⊆ X : U is open in X} ∪ {V ∪ (f−1(V ) \ U) : V is open in Y , U is
open in X and clX ∈ UP}.

Property 1. eX ∈ P .
By construction, Y ∈ P and X = eX \ Y = ∪{U ⊆ X : U is open in eX

and clXU ∈ P}. If U is open in X and clXU , then cleXU = clXU . Let Z be
a closed subspace of eX and Z ∩ Y =Ø. For every point y ∈ Y there exist an
open subset Vy of Y and an open subset Uy of X such that clXUy ∈ P, y ∈ Vy
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and Z ∩ (f−1V \ clXUy) =Ø. Since Y is compact, there exists a finite set F
such that Y = ∪{Vy : y ∈ F}. Then Z ⊆ ∪{clXUy : y ∈ F}. By virtue of
Condition S1, ∪{clXUy : y ∈ F} ∈ P and Z ∈ P . Condition S2 completes the
proof.

Property 2. X is an open dense subspace of the space eX.
Obviously, X is open in eX. Let y ∈ Y , V be an open subset of Y , U be an

open subset ofX, y ∈ V and clXU ∈ P . Then the setW = V ∪(f−1(V )\clXU)
is open in eX and y ∈ W . Since clXf

−1(V ) /∈ P , then W ∩ X = f−1(V ) \
clXU 6=Ø. Thus the set X is dense in eX.

Property 3. Let i ∈ {0, 1, 2} and X, Y be Ti-spaces. Then eX is a
Ti-space.

Let x, y ∈ eX and x 6= y.
Case 1. x, y ∈ Y and i ≤ 1.
If V is open in Y , x ∈ V and y /∈ V , then W = V ∪ f−1(V ) is open in eX,

x ∈W and y /∈W .
Case 2. x, y ∈ Y and i = 2.
There exist two open subsets V1 and V2 of Y such that x ∈ V1, y ∈ V2 and

V1 ∩ V2 =Ø. The sets Wi = Vi ∪ f−1(Vi) are open in eX, x ∈ W1, y ∈ W2 and
W1 ∩W2 = ∅.

Case 3. x ∈ X and y ∈ Y .
There exists an open subset U of X such that x ∈ U and clXU ∈ P . We

put W=eX\clXU = Y ∪ (f−1(Y ) \ clXU). The set W is open in eX, y ∈ W
and U ∩W = ∅.

Case 4. x, y ∈ X.
Since X is an open subspace of the space eX and X is a Ti-space, the proof

is complete.
Property 4. If every closed subset Z of X is compact provided Z ∈ P ,

then eX is a compact space.
Proof. Obvious.
Property 5. Let ϕ : eX → Y be the mapping for which f = ϕ |X and

ϕ(y) = y for all y ∈ Y . Then ϕ is a continuous mapping.
Proof. If V is open in Y , then ϕ(V ∪ (f−1(V ) \ clU)) = V . The proof is

complete.
Property 6. Let X be a T2-space and for every open subset U of X with

clXU ∈ P there exists an open subsetW ofX such that clXU ⊆W, clXW ∈ P
and clXW is a normal subspace of X. Then eX is a normal space.

Proof. Let F and Φ be two closed subsets of eX and F ∩ Φ = ∅.
Case 1. F ⊆ Y and Φ ⊆ Y .
There exists a continuous function h : Y → [0, 1] such that F ⊆ h−1(0) and

Φ ⊆ h−1(1). We put g(x) = h(ϕ(x)) for every x ∈ eX.
The function g : eX → [0, 1] is continuous F ⊆ g−1(0) and Φ ⊆ g−1(1).
Case 2. Φ ∩ Y = ∅.
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There exist the open subsets U and W of X such that Φ ⊆ clXU ⊆ W
and clXW ∈ P . Then clXW is a normal subspace of X and the set clXW
is closed in eX. There exists a continuous function h : X → [0, 1] such that
Φ ⊆ h−1(1) and (F ∩X)∪ (X \W ) ⊆ h−1(0). We put g(y)=0 for every y ∈ Y
and g(x) = h(x) for every x ∈ X. The function g : eX → [0, 1] is continuous,
F ⊆ Y ⊆ g−1(0) and Φ ⊆ g−1(1).

Case 3. F ⊆ Y .
Let Φ1 = Y ∩ Φ 6= ∅. There exists a continuous function g1 : eX → [−1, 1]

such that F ⊆ g−1
1 (1) and Φ1 ⊆ g−1

1 (−1). The set U = {x ∈ eX : g1(x) < 0}
is open in eX. We put g2(x) = sup{g1(x), 0}. The function g2 : eX → [0, 1]
is continuous, F ⊆ g−1

2 (1) and Φ1 ⊆ U ⊆ g−1
2 (0). The set Φ2 = Φ\U is closed

in eX and Φ2 ∩ Y = ∅. There exists a continuous function g3 : eX → [0, 1]
such that F ⊆ g−1

3 (1) and Φ2 ⊆ g−1
3 (0). Now we put g(x) = g3(x) · g2(x) for

every x ∈ eX. The function g : eX → [0, 1] is continuous, F ⊆ g−1(1) and
Φ ⊆ g−1(0).

Case 4. F1 = F ∩ Y 6=Ø and Φ1 = Φ ∩ Y 6= ∅.
There exists a continuous function g1 : eX → [0, 2] such that Φ ⊆ g−1

1 (0)
and F1 ⊆ g−1

1 (2). The set U = {x ∈ eX : g1(x) > 1} is open in eX. Let
F2 = F \ U . The set F2 is closed in eX and F2 ∩ Y = ∅. There exists a
continuous function g2 : eX → [0, 1] such that Φ ⊆ g−1

2 (0) and F2 ⊆ g−1(1).
Now we put g(x) = min{1, g1(x) + g2(x)} for every x ∈ eX. The function
g : eX → [0, 1] is continuous, Φ ⊆ g−1(0) and F ⊆ g−1(1). The proof is
complete.

2.3.2. Remark. In [31,32] the method of singular mappings was applied
for the construction of Hausdorff compactifications of locally compact spaces.

2.4. Wallman-Shanin method

A family L of subsets of a space X is called an l-base on a space X if L is
a closed base and F ∪H, F ∩H ∈ L for all F, H ∈ L.

Let L be an l-base on the spaceX. An L-filter in the spaceX is a non-empty
family ξ of subsets of X which satisfies the following conditions:

F1. ξ ⊆ L and ∅ /∈ ξ.
F2. If F, H ∈ L, F ⊆ H and F ∈ ξ, then H ∈ ξ.
F3. If F, H ∈ ξ, then F ∩H ∈ ξ.
A maximal L-filter is called an L-ultrafilter. A filter ξ is called a free L-filter

if ∩ξ = ∅.
A family L of subsets of the space X is called a net in the space X at a

point x ∈ X if for every neighbourhood U of x there exists H ∈ L such that
x ∈ H ⊆ U . A family L of subsets of X is a net in the space X if L is a net
of X at each point x ∈ X (see [9,10,11]).

For every point x ∈ X we put ξL(x) = {F ∈ L : x ∈ F}.
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2.4.1. Lemma. Let L be an l-base and x ∈ X. The following assertions
are equivalent:

1. L is a net of the space X at the point x;
2. ξL(x) is an L-ultrafilter.
Proof. Suppose that ξL(x) is an L-ultrafilter. If H ∈ L and x /∈ H, then

H /∈ ξL(x). Then H ∩ F = ∅ for some F ∈ ξL(x). Thus L is a net at the
point x ∈ X. Consider that L is a net at the point x ∈ X, H ∈ L and
H /∈ ξL(x). Then there exists F ∈ L such that x ∈ F ⊆ X \H. Thus ξL(x) is
an L-ultrafilter. The proof is complete.

Denote ωLX = {ξL(x) : x ∈ X} ∪ {ξ : ξ is a free L-ultrafilter}. We identify
the point x ∈ X with the filter ξL(x) and obtain X ⊆ ωLX. For every F ∈ L
we put 〈F 〉 = {ξ ∈ ωLX : F ∈ ξ}. Let < L >= {< F >: F ∈ L}.

2.4.2. Lemma. For every H,F ∈ L we have < H ∪F >=< H > ∪ < F >
and < H ∩ F >=< H > ∩ < F >

Proof. If H ∪ F ∈ ξ ∈ ωLX, then ξ ∩ {H, F} 6= ∅. Thus < H ∪ F >=<
H > ∪ < F >. If H ∩ F = ∅, then < H > ∩ < F >=< ∅ >= ∅. Let
Φ = H ∩ F 6= ∅. If Φ ∈ ξ ∈ ωLX, then H, F ∈ ξ and ξ ∈< H > ∩ < F >. If
ξ ∈< H > ∩ < F >, then H, F ∈ ξ and H ∩ F ∈ ξ. The proof is complete.

On ωLX we consider the topology generated by a closed base < L >.
We say that the extension Y of a space X is an end – T1-extension if the

set {y} is closed in Y for every point y ∈ Y \X.
2.4.3. Theorem. If L is an L-base of a space X, then:
1. ωLX is a compactification of the space X.
2. ωLX ∈ E(X).
3. ωLX is an end – T1-extension of X.
Proof. For every F ∈ L we have < F > ∩X = F and < F > is the closure

of F in ωLX. By construction, ωLX is a compact space. If ξ ∈ ωLX is an
L-ultrafilter, then {ξ} is a closed subset of ωLX. The proof is complete.

2.4.4. Corollary. ωLX is a T1-space iff X is a T1-space and L is a net of
the space X.

2.4.5. Definition. If L is the family of all closed subsets of a space X,
then ωX = ωLX is called the Wallman compactification of the space X.

The compactification ωX is a T1-space iff X is a T1-space. The compact-
ification ωX for a T1-space X was constructed by H. Wallman (see [122]).
The T1-compactifications of the type ωLX were constructed by N. A. Shanin
[96,98].The general case was examined in [29,133].

A compactification bX of a space X is called the compactification of the
Wallman-Shanin type if there exists an l-base of X such that bX = ωLX.

In [18,100,115] it was proved that there exists a Hausdorff compactification
bX of some discrete space X which is not of the Wallman-Shanin type.The pa-
pers [15,18,24,29,49,50,70,79,85,100,109,113,132,133] contained sufficient con-
ditions provided the compactification to be of the Wallman-Shanin type.
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2.5. ωα–compactification

Fix a space X and an l-base L of X.
2.5.1. Definition. A compactification bX of a space X is called an ωαL-

compactification if there exists a continuous closed mapping f : ωLX → bX
such that f(x) = x for each x ∈ X.

If L is the family of all closed subsets X, then an ωαL-compactification
is called an ωα-compactification. The ωα-compactifications of T1-space were
introduced and examined by P. C. Osmatescu [87].

If bX is an ωαL-compactification of a spaceX, then the mapping f : ωLX →
bX is a natural projection if f is continuous closed and f(x) = x for every
x ∈ X.

2.5.2. Proposition. Let bX be an ωαL-compactification of a space X and
f : ωLX → bX be the natural projection. Then:

1. f(ωLX) = bX;
2. f(ωLX\X) = bX\ X;
3. bX is an end-T1-extension of the space X;
4. f−1(x) = {x} for each x ∈ X;
5. bX ∈ E(X);
6. the natural projection f : ωLX → bX is unique.
Proof. Let (Y1, f1) ∈ GE(X), (Y2, f2) ∈ WGE(X), ϕ : Y1 → Y2 be a

closed mapping and f2 = ϕ ◦ f1. Then (Y2, f2) ∈ GE(X). Thus the assertion
5 is proved.

Since f is a closed mapping and the set f(ωLX) is dense in bX, then bX =
f(ωLX). The assertion 1 is proved.

Obviously, bX\X⊆ f(ωLX\X ).
If x ∈ ωLX \ X, then the set {x} is closed in ωLX and the set {f(x)} is

closed in bX. Therefore the assertion 3 is proved.
Let x ∈ X, y ∈ ωLX\X and f(y) = x. There exists an L-ultrafilter ξ such

that y = ξ and y ∈ clωLXF for every F = ξ. Since f is continuous, then
x ∈ clbXF for every F ∈ ξ. There exists H ∈ ξ such that x /∈ H. Then
f(< H >) = clbXH and clbXH ∩ bX = H, a contradiction. The assertion 4 is
proved.

Let f, g : ωLX → bX be two continuous mappings and f(x) = g(x) for
all x ∈ X. Then f(< H >) = clbXH = g(< H >) for each H ∈ L, f(y) =
∩{clbXH : H ∈ L, y ∈< H >} and g(y) = ∩{clbXH : H ∈ L, y ∈< H >}
for every y ∈ ωLX \ X. Thus f(y)=g(y) for every y ∈ ωLX. The proof is
complete.

2.5.3. Theorem. The set ΩL(X) of all ωαL-compactifications of the
space X is a complete upper semi-lattice and ωLX is the maximal element in
ΩL(X).

Proof. Let {Yα : α ∈ A} be a non-empty subset of the set ΩL(X) and
fα : ωLX → Yα be the natural projection of ωLX onto Yα. Consider the
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mapping f : ωLX → Π{Yα : α ∈ A}, where f(y) = (fα(y) : α ∈ A) for
every y ∈ ωLX. We put Y = f(ωLX). Then f is a continuous mapping,
f |X is an embedding of X into Y , Y is a compactification of X, f(x)= x for
each x ∈ X. For every α ∈ A there exists a projection gα : Y → Yα, where
fα = gα ◦ f . Since gα(A) = fα(f−1(A)) for each A ⊆ Y , the mapping gα is
closed. If F ⊆ ωLX, then f(F ) = Y ∩ Π{fα(F ) : α ∈ A} and the mapping
f is closed. Therefore Y = ∨{Yα : α ∈ A} and ΩL(X) is a complete upper
semi-lattice. The proof is complete.

We put aLX = X ∪ {a}, where a /∈ X and {U ⊆ X : U is open in X} ∪
{aLX \ F : F ⊆ X, F is closed in ωLX} is the open base of the space aLX.
The mapping p : ωLX → aLX, where p−1(a) = ωLX\X and f(x) = x for each
x ∈ X, is continuous. Thus aLX ∈WE(X) and aLX is a compactification of
X.

2.5.4. Theorem. The following assertions are equivalent:
1. ΩL(X) is a complete lattice;
2. aLX is a minimal element of the lattice ΩL(X);
3. the set X is open in ωLX;
4. aLX is an end-T1-extension of X.
Proof. Let Y ∈ ΩL(X), y1, y2 ∈ Y \ X and y1 6= y2. We put Z =

Y \ {y2}, ϕ(y) = y for every y ∈ Z,ϕ(y2) = ϕ(y1) = y1 and on Z consider the
quotient topology. Then ϕ : Y → Z is a closed mapping, Z is a compactifica-
tion of X, Z ∈ ΩL(X) and Z ≤ Y . Thus the compactification Y ∈ ΩL(X) is
not a minimal element in ΩL(X) provided |Y \ X | ≥ 2.

Let Y be the minimal element in ΩL(X) and f : ωLX → Y be the projec-
tion. Then Y \X is a singleton, X is open in Y , X = f−1(X) is open in ωLX
and Y = aLX.

If X is open in ωLX, then the mapping p : ωLX → aLX is closed. The
proof is complete.

2.5.5. Theorem. Let X be a locally compact space and the l-base L be
a net in the space X. Then:

1. X is an open subset of ωLX.
2. aLX is an ωαL-compactification of X.
3. aLX is the minimal element of the complete lattice ΩL(X).
Proof. For every point x ∈ X there exists an open subset Ux such that

x ∈ Ux and the set Φx = clXUx is compact. Every filter ξ ∈ ωLX is an L-
ultrafilter. If F is a closed subset of X, then clωLXF = ∩{< H >: H ∈ L, F ⊆
H}. Fix x ∈ X. There exists Hx ∈ L such that x /∈ Hx and X \Ux ⊆ Hx.
Since L is a net of X, there exists Fx ∈ L such that x ∈ Fx ⊆ Ux ∩ (X \Hx).
Thus ξ(x) /∈< Hx >. Therefore x ∈ ωLX\ < Hx >. If ξ ∈ ωLX \ X, then
there exists H ∈ ξ such that H ∩ Φx = ∅. Then H ⊆ X \ Ux ⊆ Hx and
ξ ∈< Hx >. Therefore Vx = ωLX\ < Hx > is open in ωLX and x ∈ Vx ⊆ X.
The assertion 1 is proved. The Theorem 2.5.4. completes the proof.
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2.5.6. Example. Let X be a non compact T1-space. Denote by L1 the
family of all closed subsets of X. Fix ξ ∈ ωX \X. We put L = {F ∪H : F ∈
ξ, H ∈ L1}. Then L is an l-base of X and | ωLX \ X | = 1. Thus ΩL(X) is a
complete lattice and a singleton set. In this case ωLX = aLX.

2.5.7. Corollary. The set Ω(X) of all ωα-compactifications of the space
X is a complete upper semi-lattice with the maximal element ωX.

2.5.8. Corollary. If the space X is locally compact, then Ω(X) is a
complete lattice with the maximal element ωX and minimal element aX, where
aX = aLX for the l-base L of all closed subsets of X.

2.5.9. Corollary. For a T3-space X the following assertions are equivalent:
1. X is locally compact;
2. Ω(X) is a complete lattice.
If X is a complete regular space X, then we denote by SC (X) the family of

all Hausdorff compactifications. In this case the Stone-Čech compactification
βX is the maximal element in SC (X) and SC (X) is a complete subsemi-lattice
of the upper semi-lattice Ω(X).

2.5.10. Corollary (N. Boboc and G. Siretchi [22]). For a complete regular
space X the following assertions are equivalent:

1. X is locally compact;
2. SC (X) is a complete lattice and sublattice of Ω(X).
If is well–know that the Stone-Čech compactification βX of a completely

regular space X is a ωα-compactification [3] of the Wallman-Shanin type (see
[3, 50, 86, 96, 109]).

From Theorem 2.1.5 it follows.
2.5.11. Corollary. Let X be an almost locally compact space, L be an

l-base of X and f : ωLX\LC(X)→ Y be a continuous perfect mapping onto a
T1-space X such that f−1(x) = x for every x ∈ X\ LC (X). Then there exists
a unique ωαL-compactification bX of the space X such that bX \ LC (X) is
homeomorphic to Y .

2.5.12. Corollary. Let X be a locally compact space, L be an l-base of
X and Y be a T1-space.

1. If there exists a closed mapping f : ωLX \ X → Y onto Y , then there
exists a unique ωαL-compactification bX of X such that the remainder bX \X
is homeomorphic to Y .

2. If there exists a closed mapping f : ωX \ X → Y onto Y , then there
exists an ωα-compactification bX of X such that the remainder bX \ X is
homeomorphic to Y .

From Theorem 2.2.2 it follows.
2.5.13. Corollary. Let L be an l-base of a space X and Y be a T1-space.
1. If f : ωLX\X → Y is an almost perfect mapping onto Y and clωLXN(f) ⊆

ωLX \X, then there exists a unique ωαL-compactification bX of X such that
the remainder bX \X is homeomorphic to Y .
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2. If f : ωX \X → Y is an almost perfect mapping onto Y and clωLXN(f) ⊆
ωLX \ X, then there exists an ωα-compactification bX of X such that the
remainder bX \X is homeomorphic to Y .

2.6. Spectral compactifications

Let SE (X) be the set of all spectral compactifications of a space X.
A mapping g : X → Y of a space X into a space Y is a spectral mapping if

g is continuous and a set g−1(U) is compact provided the set U is open and
compact in Y .

If Y, Z ∈ SE(X), then we consider that Z ≤ Y if there exists a spectral
mapping g : Y → Z such that g(x) = x for every x ∈ X. In this conditions
SE (X) is a complete upper semi-lattice with the maximal element βSX (see
Example 1.6.7).

Let L be an l-base of a space X. The filter ξ ⊆ L is a simple L-filter if
ξ ∩ {F,H} 6=Ø provided F ∪H ∈ ξ and F, H ∈ L. Every maximal L-filter is
simple. The filter ξ(x) is simple for every x ∈ X.

Denote by sLX the set of all simple L-filters. For every H ∈ L we put
<< H >>= {ξ ∈ sLX : H ∈ ξ}. Then << L >>= {<< H >>: H ∈ L} is
a closed base of the space sLX. We identify x ∈ X with ξ(x). Then X is a
subspace of sLX, X is dense in sLX and the set sLX\ << H >> is open and
compact in sLX for every H ∈ L. Thus sLX is a spectral compactification of
X. We mention that ωLX ⊆ sLX.

If bX is a spectral compactification of X, then L = {X \ U : U is an open
and compact subset of bX } is an l-base of X and bX = ωLX (see [24,25]).

In the papers [24,131,132] the class of all spectral compactifications was
constructed and studied using the functional rings.

We mention that the spectrum of the simple ideals of a ring in the Zariski
topology is a spectral space (see [132]).

3. Uniform extensions of topology spaces

In the present chapter every space is assumed to be a completely regular
T1-space.

A uniform space (X, U) is a set X and a family U of entourages of the
diagonal ∆(X) = {(x, x) : x ∈ X} of X in X×X which satisfies the following
conditions:

U1. If V ∈ U and V ⊆W , then W−1 = {(x, y) : (y, x) ∈W} ∈ U .
U2. If V, W ∈ U , then V ∩W ∈ U .
U3. For every V ∈ U there exists W ∈ U such that 2W ⊆ V , where

2W = {(x, y) : there exists z ∈ X such that (x, z), (z, y) ∈W}.
U4. ∩U = ∆(X).
Denote by u−w(X, U) the weight of a uniform space (X,U). On a uniform

space (X, U) we consider the topology T (U), generated by the uniformity U .
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Let X be a space with the topology T . We put u−w(X) = min{u−w(X, U) :
T (U) = T}+ ℵ0.

If X is discrete or metrizable, then u− w(X) = ℵ0.
A pseudometric on a space X is a function ρ : X ×X → R into the reals

such that ρ(x, x) = 0, ρ(x, y) = ρ(y, x) and ρ(x, z) ≤ ρ(x, y)+ ρ(y, z) for all
x, y, z ∈ X. The pseudometric ρ is continuous if the sets B(ρ, x, r) = {y ∈
X : ρ(x, y) < r}, x ∈ X and r > 0, are open in X.

Every uniformity is generated by a family of pseudometrics [44].

3.1. Lattice UE(X)

A uniform extension of a space X is a complete uniform space (eX, U) that
contains X as a dense subspace.

Denote by UE(X) the family of all uniform extensions of a space X.
If (eX, U), (bX, V ) ∈ UE(X), then we consider that (e(X), U) ≥ (bX, V )

if there exists a uniformly continuous mapping g : eX → bX such that g(x) = x
for each x ∈ X.

3.1.1. Proposition. The set UE(X) is a complete upper semi-lattice for
every non-empty space X.

Proof. See Example 1.6.5
In the present chapter we consider the following two problems.
Problem 1. Let P be a property, X be a space and (Y, V ) be a complete

uniform space with the property P . Under which conditions there exists a
uniform extension (Z, U) of X such that:

1. (Z, U) is a uniform space with the property P ;
2. the uniform space (Y, V ) is uniformly isomorphic to the subspace Z \X

of (Z, U)?
Problem 2. Let X be a space and (Y, V ) be a complete uniform space.

Under which conditions there exists a uniform extension (Z, U) of X such
that (Y, V ) is uniformly isomorphic to some subspace H ⊆ Z \X of the space
(Z, U)?

Concrete results related to the solution of the problems of this type play an
important role in the study of classes of spaces and complete uniform spaces.

3.2. Discrete subspaces and uniform extensions

A subset L of a space X is strongly discrete if there exists a discrete family
{Hx : x ∈ L} of open subsets of X such that L ∩Hx = {x} for every x ∈ L.
For every space X we put DS(X) = {|L| : L is a strongly discrete infinite
subset of X} and d(X) = min{|H| : H is a dense subset of the space X}.

If Y is a subspace of a space X, then we denote DS(X,Y ) = {|H| : H ⊆
X \ Y and H is a strongly discrete infinite subset of X}.

3.2.1. Proposition. Let Y be a subset of a spaceX, ρ and d be continuous
pseudometrics on the space X, r > 0, X1 = {x ∈ X : d(x, y) < 2r for some
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y ∈ Y } and X2 = {x ∈ X : d(x, y) < r for some y ∈ Y }. Then there
exists a continuous pseudometric ρ1 on X such that ρ1(x, y) = ρ(x, y) and
ρ1(z, u) = 0 for all x, y ∈ X \ X1 and z, u ∈ X2. We say that ρ1 is the (d,
r)-modification of the pseudometric ρ.

Proof. Let ρ2 = d+ρ. There exist a set Z, a metric ρ3 on Z and a mapping
p : X → Z such that ρ3(p(x), p(y)) = ρ2(x, y) for every x, y ∈ X. We have
p−1(p(x)) = {y ∈ X : ρ2(x, y) = 0}. There exists a continuous pseudometric
ρ4 on Z such that ρ4(p(x), p(y)) = ρ(x, y) for all x, y ∈ X.

Moreover, on Z there exists a continuous pseudometric d1 such that
d1(p(x), p(y)) = d(x, y) for all x, y ∈ X.

Now we put Z2 = {z ∈ Z : d1(z, y) < r for some y ∈ p(Y )} and Z1 = {z ∈
Z : d1(z, y) < 2r for some y ∈ p(Y )}. By construction, clZZ2 ⊆ Z1, Z1 and
Z2 are open subsets of Z and Z \Z1 is closed subset of Z.

Since Z is a metric space, there exists a continuous pseudometrics ρ5 on
Z such that ρ5(x, y) = ρ4(x, y) for all x, y ∈ Z \ Z1 and ρ5(x, y) = 0 for
all x, y ∈ Z2 (see [36, 101]). Obviously, Xi = p−1(Zi), i ∈ {1, 2}. Thus,
ρ1(x, y) = ρ5(p(x), p(y)) is the desired pseudometric.

3.2.2. Proposition. Let d be a continuous pseudometric on a space X,
Z ⊆ X, ρ be a continuous pseudometric on a space Y , r > 0, Y1 be a subset of
Y, f : Y1 → Z be an one-to-one mapping of Y1 onto Z, d(x, y) ≥ 3r provided
x, y ∈ Z and x 6= y. We put Hz = {x ∈ X : d(x, z) ≤ r} for every z ∈ Z. Let
X1 = X ∪ Y . Then:

1. {Hz : z ∈ Z} is a discrete family of closed subsets of the space X;
2. there exists a pseudometric ρ1 on X1 such that:
– ρ1(x, y) = ρ(x, y) for all x, y ∈ Y ;
– ρ1(y, f(y)) = 0 for each y ∈ Y ;
– ρ1(y, x) = ρ(y, f−1(z)) + d(z, x) if y ∈ Y, z ∈ Z and x ∈ Hz;
– B(ρ1, y, r) ∩X ⊆ ∪{Hz : z ∈ Z} for each y ∈ Y ;
– for every x ∈ X1 and ε > 0 the set B(ρ1, x, ε) ∩ Y is open in Y and the

set B(ρ1, x, ε) ∩X is open in X.
We say that ρ1 is the (d, r)-extension of the pseudometric ρ.
Proof. There exist a metric space (Y2, ρ2) and a mapping p : Y → Y2 such

that ρ2(p(y), p(z)) = ρ(y, z) for all y, z ∈ Y . We put Y3 = p(Y1).
There exist a metric space (X2, d1) and a mapping q : X → X2 such that

d1(q(x), q(y)) = d(x, y) for all x, y ∈ X. We put Z1 = q(Z). The mapping
q1 = q |Z : Z → Z1 is one-to-one. Let g(z) = p(f−1(q−1

1 (z))) for every z ∈ Z1

. By construction, d1(y, z) ≥ 3r if y, z ∈ Z1 and y 6= z.
The discrete sum X3 = Y2 ⊕ X2 is a metric space. Let Pz = {x ∈ X2 :

d1(z, x) ≤ r} for every z ∈ Z1. Then Hz = q−1(Pq(z)) and {Pz : z ∈ Z1} is a
discrete family of closed subsets of the space X2.

We put Vz = {x ∈ X2 : d1(z, x) < r}, V = ∪{Vz : z ∈ Z1} and P = ∪{Pz :
z ∈ Z1}. On Q = P ∪ Y2 we consider the pseudometric ρ3, where:
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– ρ3(x, y) = ρ2(x, y) if x, y ∈ Y2;
– ρ3(z, g(z)) = ρ3(g(z), z) = 0 if z ∈ Z1;
– ρ3(y, x) = ρ3(x, y) = ρ2(y, g(z)) + d1(z, x) if y ∈ Y2, z ∈ Z1 and x ∈ Pz;
– ρ3(x, y) = d1(x, y) if x, y ∈ Pz; for some z ∈ Z1;
– ρ3(x, y) = d(x, z1)+ρ2(g(z1), g(z2))+d1(z2, y) if z1, z2 ∈ Z1, z1 6= z2, x ∈

Pz1 , y ∈ Pz2 .
By construction, the pseudometric ρ3 is continuous on the closed subset

Q of the metric space X3. Thus, there exists a continuous pseudometric ρ4

on X3 such that ρ4(x, y) = ρ3(x, y) for all x, y ∈ Q. Consider the mapping
ϕ : X⊕Y → X3, where ϕ |X = q and ϕ |Y = p . Let ρ1(x, y) = ρ4(ϕ(x), ϕ(y))
for all x, y ∈ X ⊕ Y . The proof is complete.

A space X is called a space of pointwise countable type if for every point
x ∈ X there exists a compact subset Φ(x) ∋ x of countable character in X
(see [10]).

A space X is called a space of countable type if for every compact subset
F ⊆ X there exists a compact subset Φ(F ) ⊇ F of countable character in X
(see [10,61]). M. Henriksen and J. R. Isbell [61] has proved that X is a space
of countable type iff the remainder βX \X is a Lindelöf space.

3.2.3. Proposition. Let X = Y ∪ Z, where Y is a closed subspace of the
space X and every compact subset F ⊆ Y of a countable character in Y has a
countable character in X. Then:

1. X is a first countable space iff Y and Z are the first countable spaces;
2. X is a space of pointwise countable type iff Y and Z are spaces of

pointwise countable type;
3. X is a space of countable type iff Y and Z are spaces of countable type.
Proof. The assertions 1 and 2 are obvious.
Let X be a space of countable type. Then Y is a space of countable type

as a closed subspace of X and Z is a space of countable type as an open
subspace of space of countable type. Suppose that Y and Z are spaces of
countable type. We put Y1 = clβXY \ Y and Z1 = clβXZ \ Z. By virtue of
Theorem of M. Henriksen and J. R. Isbell [61], Y1 and Z1 are Lindelöf spaces.
We affirm that X1 = βX \X is a Lindelöf spaces. Let {Uα : α ∈ A} be a cover
of the set X1 and Uα is open in βX for every α ∈ A. Since Y1 is a Lindelöf
space and Y1 ⊆ ∪{Uα : α ∈ A}, there exists a countable subset A1 ⊆ A such
that Y1 ⊆ ∪{Uα : α ∈ A}. Then F = Y \ ∪{Uα : α ∈ A1} is a compact
subset of Y and there exists a compact subset Φ ⊆ Y such that F ⊆ Φ and Φ
has countable character in X. Thus Φ is a Gδ-subset of βX and Z2 = Z \ Φ
is an Fδ-subset of Z1. Thus Z2 is a Lindelöf subspace of βX. Moreover,
Z3 = Z2 \ ∪{Uα : α ∈ A1} is a Lindelöf subspace of βX. By construction
Z3 ⊆ X1 ⊆ ∪{Uα : α ∈ A}. Therefore there exists a countable subset A2 ⊆ A
such that A1 ⊆ A2 and Z3 ⊆ ∪{Uα : α ∈ A2}. So {Uα : α ∈ A2} is a countable
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cover of X1. The M. Heriksen’s and J. R. Isbell’s theorem [61] completes the
proof.

3.2.4. Proposition. Let X = Y ∪Z, Y be a closed subspace of the space
X, Y1 be a subset of Y and {Vn(y) : n ∈ N, y ∈ Y1} be a family of open
subsets of the space X such that:
- if y, z ∈ Y1 and y 6= z, then clXV1(y) ∩ clY V1(z) =Ø;
- if y ∈ Y1 and n ∈ N , then clXVn+1(y) ⊆ {y} ∪ Vn(y);
- the family {V1(y) : y ∈ Y1} is discrete in Z and ∪{V1(y) : y ∈ Y1} ⊆ Z;
- if U is an open subset of Y , the set U ∪ ∪{Vn(y) : y ∈ U ∩ Y1} is open in X
for every n ∈ N ;
- if U is open in X and y ∈ U ∩ Y , then Vn(y) ⊆ U for some n ∈ N ;

- Y ∩ Z =Ø.
A. The following assertions are true:
1. If Vn = ∪{Y ∪ Vn(y) : y ∈ Y1}, then Vn is open in X and clXVn+1 ⊆ Vn

for every n ∈ N .
2. Y = ∩{Vn : n ∈ N} = ∩{clXVn : n ∈ N}.
3. If the spaces Y and Z are paracompact spaces, then X is paracompact.
B. If for every open subset U of X and every point x ∈ U there exist n ∈ N

and an open subset V of X such that x ∈ V ⊆ V ∪∪{Vn(y) : y ∈ V ∩ Y1} ⊆ U,
then the following assertions are true:

4. If the subspaces Y and Z are normal, then X is a normal space.
5. If Y and Z are perfectly normal spaces, then X is a perfectly normal

space.
6. If a compact subset F ⊆ Y has a countable character in Y , then F has

a countable character in X.
7. If Y and Z are the first countable spaces, then X is first countable.
8. If Y and Z are spaces of countable (pointwise countable) types, then X

is a space of countable (pointwise countable) type.
9. If Y and Z are metrizable spaces, then X is a metrizable space.
10. If Y and Z are complete metrizable spaces, then X is a complete

metrizable space.
11. If Y and Z are paracompact p-spaces, then X is a paracompact p-space.
12. If Y and Z are Čech complete paracompact spaces, then X is a Čech

complete paracompact space.
Proof. The assertions 1 and 2 are obvious.
Let Y and Z be paracompact spaces and ω be an open cover of the space

X. There exists a sequence {ξ′n = {V ′
α : α ∈ An} : n ∈ N} of open discrete

families of the space Y such that for every n ∈ N and every α ∈ An there is
Wα ∈ ω such that V ′

α ⊆ Wα and Y = ∪{V ′
α : α ∈ ∪{An : n ∈ N}}. We put

Vα = V ′
α∪∪{Wα∩V2(y) : y ∈ Y1∩V ′

α}. Then ξn = {Vα : α ∈ An} is a discrete
family of open subsets of X.
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There exists a sequence {λn = {Uβ : β ∈ Bn} : n ∈ N} of open discrete
families of the space Z for which Z = ∪{Uβ : β ∈ ∪{Bn : n ∈ N}} and for
every β ∈ ∪{Bn : n ∈ N} there exists Wβ ∈ ω such that Uβ ⊆ Wβ . For every
n,m∈N we put λnm = {Uβ \ clXVm : β ∈ Bn}. Then {ξn, λnm : n,m ∈ N} is
a σ-discrete refinement of the cover ω. Thus X is a paracompact space (see
[44], Theorem 5.1.11).

Suppose that for every open subset U of X and point x ∈ U there exist a
natural number n = n(x, U) and an open subset V = V (x, U) of X such that
x ∈ V ⊆ ∪{V ∪ Vn(y) : y ∈ V ∩ Y1} ⊆ U.

Let Y and Z be normal spaces, F and Φ be closed subsets of X and Φ∩F =
∅.

Let F ⊆ Y and Φ ∩ Y = ∅. For every y ∈ F there exists n = n(y) =
n(y,X \ Φ) and an open subset Vy of V such that Wy ∩ Φ = ∅, where Wy =
∪{Vy ∪ Vn(y) : y ∈ Vy ∩ Y1}. Let Fm = {y ∈ F : n(y) ≤ m}. Then F =
∪{Fm : m ∈ N} and Fn ⊆ Fn+1 for every n ∈ N . We put Wn = ∪{Vy : y ∈
Fn}, W I

n = ∪{Wn ∪ Vn(y) : y ∈ Wn ∩ Y1}, W ′′
n = ∪{Wn ∪ Vn+1(y) : y ∈

Wn ∩ Y1}, H1 = ∪{W ′
n : n ∈ N} and H2 = ∪{W ′′

n : n ∈ N}. By construction,
H2 ⊆ H1, clXH2 ⊆ H1∪Y and H1∩Φ = ∅. Thus F ⊆ H2 and Φ ⊆ X \clXH2.

Let F ⊆ Y and Φ ∩ Y 6= ∅. There exist two open subsets H1 and H2 of Y
such that F ⊆ H1, Y ∩Φ ⊆ H2 and H1∩H2 = ∅. Let H ′

1 = ∪{H1∪V2(y) : y ∈
H1∩Y1}, H ′

2 = ∪{H2∪V2(y) : y ∈ H2∩Y1} and Φ1 = Φ\H ′
2. Then Φ1 is closed

in X and Φ1 ∩ Y = ∅. Thus there exist two open subsets H ′′
1 ⊆ H ′

1 and H ′′
2 of

X such that F ⊆ H ′′
1 ,Φ1 ⊆ H ′′

2 and H ′′
1 ∩H ′′

2 = ∅. Let H ′′′
2 = H ′

2 ∪H ′′
2 .Then

Φ ⊆ H ′′′
2 and H ′′

1 ∩H ′′′
2 = ∅.

Suppose now that F ∩Y = ∅. Then there exist the open subsets H ′
1, H

′′
1 , H

′
2

and H ′′
2 of X such that H ′

1∩H ′
2 = H ′′

1 ∩H ′′
2 = ∅, F ∩Y ⊆ H ′

1,Φ ⊆ H ′
2, F \H ′

1 ⊆
H ′′

1 and Φ ⊆ H ′′
2 . LetH1 = H ′

1∪H ′′
2 andH2 = H ′

2∩H ′′
2 . Then F ⊆ H1,Φ ⊆ H2

and H1 ∩H2 = ∅. The assertion 4 is proved. The assertion 5 follows from the
assertions 1,2 and 4.

Let F be a compact subset of Y , {Hn : n ∈ N} be a sequence of open
subsets of Y and for every open subset U ⊇ F there exists n∈N such that
F ⊆ Hn ⊆ U . We put Hnm = ∪{Hn ∪ Vm(y) : y ∈ Hn ∩ Y1}. The sets Hnm

are open in X. Let U be an open subset of X and F ⊆ U . There exists a
finite set F ′ of F such that F ⊆ ∪{V (x, U) : x ∈ F ′}. There exists n such
that F ⊆ Hn ⊆ ∪{V (x, U) : x ∈ F ′} and max{n(x, U) : x ∈ F ′} ≤ n. Then
F ⊆ Hnm ⊆ U . Thus F has a countable character in X. The assertion 6 is
proved. The assertions 7 and 8 follow from the assertion 6 and Proposition
3.2.3.

Let Y and Z be metric spaces. Fix a metric ρ1 on a space Y . For every
y ∈ Y1 on a space Zy = clV1(y) fix a metric dy such that Vn(y) ⊆ {z ∈ Zy :
dy(y, z) < 2−n}. Now on ∪{Y ∪ Zy : y ∈ Y1} we construct the metric ρ2 such
that:
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– ρ2(x, z) = ρ1(x, z) if x, z ∈ Y ;
– ρ2(x, z) = dy(x, z) if y ∈ Y1 and x, z ∈ Zy;
– ρ2(x, z) = dy1(x, y1) + ρ1(y1, y2) + dy2(y2, z) if y1, y2 ∈ Y, y1 6= y2, x ∈ Zy1

and z ∈ Zy2 .
Obviously, ρ2 is a metric on a subspace X1 = ∪{Y ∪ Zy : y ∈ Y1}. Thus

the paracompact space X is a union of two open metrizable subspaces X2 =
∪{Y ∪V1(y) : y ∈ Y1} and X3 = Z \Y .Thus X is a metrizable spaces. Suppose
that Y and Z be complete metric spaces, In this case we consider that the
metrics ρ1 and dy are complete. Then there exists a metric ρ on X such that:

– ρ is complete on Z \ ∪{V2(y) : y ∈ Y1};
– ρ(x, y) = ρ2(x, y) if x,y∈X 1.
We affirm that the metric ρ is complete. Let {xn:n ∈ N} be a sequence of

points and ρ(xn, xm) < 2−n provided n ≤ m. Obviously, the sequence {xn} is
convergent in X in the following cases:

– the set {n ∈ N : xn ∈ Y } is infinite;
– there exists y ∈ Y1 such that the set {n ∈ N : xn ∈ Zy} is infinite;
– there exists m ∈ N such that the set {n ∈ N : xn ∈ Z \ {Vm(y) : y ∈ Y1}}

is infinite.
Suppose that for every n ∈ N there exists yn ∈ Y1 such that:
– xn ∈ Zyn;
– yn 6= ym for n 6= m.
– In this case ρ(yn, ym) < ρ(xn, yn) + ρ(yn, ym) + ρ(ym, xm) = ρ(xn, xm)

and there exists y ∈ Y such that y=limyn. By construction, y = limxn. The
assertions 9 and 10 are proved.

Let Y and Z be two paracompact p-spaces. Fix a perfect mapping ϕ :
Y → Y ′ onto a metric space Y ′. Since Z is a paracompact space, we may
consider that Vn(y) is a co-zero set of Z for all y ∈ Y1 and n ∈ N . Because the
family {V1(y) : y ∈ Y1} is discrete in Z, then there exists a perfect mapping
Ψ : Z → Z ′ onto a metric space Z ′ such that Ψ−1(Ψ(Vn(y))) = Vn(y) for all
y ∈ Y1 and n ∈ N .

Let X ′ = Y ′ ∪ Z ′. Consider the mapping g : X → X ′, where ϕ = g |Y and
Ψ = g |Z. On X ′ we consider the quotient topology {U ⊆ X ′ : g−1(U) is open
in X}. By construction, the mapping g is perfect. We put Y ′

1 = g(Y1) = ϕ(Y1)
and V ′

n(z) = ∪{Ψ(Vn(y)) : y ∈ Ψ−1(z)} for all z ∈ Y ′
1 and n ∈ N . By virtue of

the assertion 9 the space X ′ is metrizable. If the spaces Y and Z are complete
metrizable, then the space X ′is complete metrizable. The assertions 11 and
12 are proved. The proof is complete.

3.2.5. Theorem. Let (e1X,U1) be a uniform extension of a space X,Y
be an infinite discrete space and |Y | ∈ DS(e1X).Then there exists a uniform
extension (eX,U ) of X such that:

1. (eX,U ) is a uniform extension of the space e1X;
2. eX=e1X ∪ Y and Y is a strongly discrete subset of the space eX;
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3.u− w(eX,U )=u− w(e1X,U1);
4. if e1X is a paracompact space, then eX is a paracompact space;
5. if e1X is a normal space, then eX is a normal space;
6. if e1X is a collectionwise normal space, then eX is a collectionwise normal

space;
7. if e1Xis a metacompact space, then eX is a metacompact space;
8. if e1X is a perfectly normal space, then eX is a perfectly normal space;
9. if e1X is Čech complete, then eX is a Čech complete space;
10. if e1X is a p-space, then eX is a p-space;
11. the space eX has a countable base at every point y ∈ Y ;
12. if e1X is a first countable space, then eX is a first countable space;
13. if e1X is a space of pointwise countable type, then eX is a space of

pointwise countable type.
Proof. In the space e1X we fix a discrete family {Hα : α ∈ A} of non-

empty open subsets, where |A| = |Y |. For every α ∈ A fix a point bα ∈ X∩Hα

and a continuous function hα : e1X → [0, 1], where hα(bα) = 1 and e1X\Hα ⊆
h−1

α (0). Let h : A→ Y be a mapping such that the set h−1(y) is countable for
each y ∈ Y. We consider that h−1(y) = {α(n, y) : n ∈ N} and bα(n,y) = x(n, y)
for every y ∈ Y and n ∈ N .

There exists a family P of continuous pseudometrics on e1X such that P
generates the uniformity U1 on e1X and ρ1 + ρ2 ∈ P for all ρ1, ρ2 ∈ P . We
consider that ρ(bα, bµ) ≥ 1 for all ρ ∈ P, α, µ ∈ A and α 6= µ.

Let U(n, y) = ∪{Hα(m,y) ∪ {y} : m > n}, g(n,y)(y) = 1, g(n,y)(z) = 0 and
g(n,y)(x) = Σ{hα(m,y) : m > n} for every y, z ∈ Y, y 6= z, x ∈ e1X and n∈N.

We put dn(x, z) =
∑ {| (g(n,y)(x)− g(n,y)(z) | : y ∈ Y } and d(x, z) =∑{2−ndn(x, z) : n ∈ N} for all x, z ∈eX and n ∈ N .

By construction:
– d(y, z)=2 if y, z ∈ Y and y 6= z ;
– d(y, x(n, y))=2−n for every y ∈ Y and n ∈ N ;
– B(d, y, 2−n−1) ⊆ U(n, y) for every y ∈ Y and n ∈ N ;
– B(d, x, r) ∩ e1X is open in e1X for every x ∈eX and r¿0.
On eX we consider the topology generated by the open base {B(d, y, 2−n):y ∈

Y, n ∈ N}∪{U ⊆ e1X:U is open in e1X}. At every point y ∈ Y the space
eX has a countable base and the set Y is strongly discrete in eX. From these
properties of a space eX it follows the assertions 4-10 and 2. Obviously,
cleX{bα : α ∈ A} ⊇ Y. Therefore the sets X and e1X are dense in eX.

Fix a pseudometric ρ ∈ P and n ∈ N . Let Xn = ∪{B(d, y, 2−n) : y ∈ Y }
and Yn = Y ∪ ({βα : α ∈ A} ∩ Xn). By virtue of Proposition 3.2.1, on eX ,
there exists a continuous pseudometric en(ρ) such that en(ρ)(x,y)= ρ(x,y), if
x, y ∈eX \Xn, and en(ρ)(x,y)=0, if x, y ∈ Xn+2. Then P1 = {α + en(ρ) : ρ ∈
P, n ∈ N} is a family of continous pseudometrics on eX which generates the
topology of the space eX and some uniformity U on eX.
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We affirm that the uniform space (eX,U ) is complete, i.e.(eX,U ) is a uni-
form extension of the spaces e1X and X.

Let ξ be a Cauchy filter of closed subsets of the space eX.
Case 1. Y ∈ ξ.
Fix ρ1 = d + e1(ρ) ∈ P1. There exists Φ ∈ ξ such that ρ(x, y) < 1 for all

x, y ∈ Φ and Φ ⊆ Y . Let z ∈ Φ. If y∈Y and y 6= z, then ρ1(z, y) ≥ d(z, y) = 2.
Thus Φ is a singleton set and ∩ξ = Φ 6= ∅.

Case 2. Y /∈ ξ.
There exists Φ ∈ ξ such that Φ∩Y = ∅. We may consider that d(x, y) < 2−4

for all x, y ∈ Φ. Let Y0 = {y ∈ Y : d(y,Φ) < 2−4}. If Y0 = ∅, then X4∩Φ = ∅,
F = X \ X4 is a closed subset of eX, Φ ⊆ F and F ∈ ξ. In this case ξ is a
Cauchy filter of the uniform space (e1X,U1) and ∩ξ 6= ∅.

Suppose that Y0 6= ∅. Then the set Y0 is a singleton set. If y1, y2 ∈ Y0, then
there exists x1, x2 ∈ Φ such that d(y1, x1) < 2−4 and d(y2, x2) ∈ Φ. Then
d(y1, y2) ≤ d(y1, x1) + d(x1, x2) + d(x2, y2) < 3 · 2−4 < 2−2 < 2 and y1 = y2.
Suppose that Y0={y0}. Since the set Φ is closed in eX and y0 6= Φ, then
there exists n > 4 such that B(d, y0, 2

−n) ∩ Φ = ∅. In this case Xn ∩ Φ = ∅,
eX \Xn ∈ ξ and ξ is a Cauchy filter of the uniform space (e1X,U1). Therefore
∩ξ 6= ∅. The proof is complete.

3.2.6. Theorem. Let (e1X,U1) be a uniform extension of a space X, (Y, ν)
be a complete uniform space and d(Y, ν) ∈DS (e1X,U1). Then there exists a
uniform extension (eX,U ) of X such that:

1.(eX,U ) is a uniform extension of the space (e1X,T (U1)); 2. (Y, ν) is
uniformly isomorphic to the subspace eX\e1X of (eX, U ); 3. u−w(eX,U) ≤
u−w(e1X,U1)+u−w(Y, ν); 4. if e1X and Y are paracompact Čech complete
spaces, then eX is a paracompact Čech complete space; 5. if e1X and Y are
paracompact p-spaces, then eX is a paracompact p-space; 6. if e1X and Y
are paracompact spaces, then eX is a paracompact space; 7. if e1X and Y are
normal spaces, then X is a normal space; 8.if e1X and Y are perfectly normal
spaces, then X is a perfectly normal space; 9. if e1X and Y are first countable
spaces, then X is a first countable space; 10. if e1X and Y are spaces of
pointwise countable type, then X is a space of pointwise countable type; 11. if
e1X and Y are spaces of countable type, then X is a space of countable type;
12. if e1X and Y are metrizable spaces, then X is a metrizable space.

Proof. Let Y1 be a dense subset of the space Y and |Y1| = d(Y ). In the proof
of Proposition 3.2.1 there were constructed a uniform extension (e2X,U2) of a
space e1X, a continuous pseudometric d on e2X and a family P1 of continuous
pseudometrics on e2X such that:

–Z = e2X \ e1X is a strongly discrete subspace of the space e2X ;
– |Z| = |Y1|, i.e. there exists a one-to-one correspondence h : Y1 → Z;
– if x, y ∈ Z and x 6= y, then d(x, y) = 3 and ρ(x, y) = 0 for every ρ ∈ P1;
– the space e2X has a countable base at every point y ∈ Z;
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– {B(d, y, 2−n) : n ∈ N} is a base of the space e2X at a point y ∈ Z;
– if ρ ∈ P1, then there exists n∈N such that ρ(x, z) = 0 for all x, z ∈

∪{B(d, y, 2−n) : y ∈ Z};
– the family of pseudometrics P2 = {d+ρ : ρ ∈ P1} generates the uniformity

U2 on a space e2X;
– for every n ∈ N the family P1 generates on e1X \∪{B(d, y, 2−n) : y ∈ Y1}

the uniformity U1.
Suppose that the uniformity V of the space Y is generated by the family

P3 of continuous pseudometrics.
We put eX = e1X ∪ Y .
For every ρ ∈ P3 let e(ρ) be the (d, 1)-extension of the pseudometrics ρ on

eX. We identify the point y ∈ Y1 with the point h(y) ∈ Z.
Fix ρ ∈ P1 and n ∈ N . Let ρ′ be the (d, 2−n)-modification of the pseu-

dometric ρ on e2X. We fix z0 ∈ Z and put en(ρ)(x, y) = ρ′(x, y) if x, y ∈
e1X, en(ρ) = 0 if x, y ∈ Y and en(ρ)(x, y) = en(ρ)(y, x) = ρ′(z0, x) if y ∈ Y
and x ∈ e1X. Now we put P = {e(ρ1)+ en(ρ2) : ρ1 ∈ P3, ρ2 ∈ P1 and n ∈ N}.
The pseudometrics P generates the uniformity U on eX.

Obviously, (Y, V ) is a uniform subspace of the space (eX,U ), e1X is a dense
subspace of the space eX.

Let ξ be a Cauchy filter of a space (X,U). The filter ξ is convergent in X
in the following cases:

– Φ ⊆ Y for some Φ ∈ ξ;
– Φ ⊆ e1X \ ∪{B(d, y, 2−n) : y ∈ Y1} for some n∈N and Φ ∈ ξ;
– there exist n ∈ N , y ∈ Y and Φ ∈ ξ such that Φ ⊆ B(d, y, 2−n).
Suppose that for every n ∈ N and Φ ∈ ξ the set n(Φ) = clX{y ∈ Y1 :

Φ ∩ B(d, y, 2−n) 6= ∅} is non-empty. Then η = {n(Φ) : Φ ∈ ξ, n ∈ N} is a
Cauchy filter of the space (Y, V ). If y ∈ ∩η, then y ∈ ∩ξ. Therefore (X,U) is
a complete space and a complete extension of Y and e1X. Proposition 3.2.4
completes the proof.

3.2.7. Problems. Let P be a topological property and Y and e1X be
two spaces with the property P . Is it true that eX has the property P in the
following cases:
a) P is the property to be a metacompact space;
b) P is the property to be a p-space;
c) P is the property to be a Čech complete space;
d) P is the property to be a space with a Gδ-diagonal;
e) P is the property to be a symmetrizable space.

3.3. The gluing operation and σ-discretness

For every point x of a space X we put DS(x, X) = ∩{DS(clXH) : H is
open in X and x ∈ H}, τ − ds(x, X) = {sup A : A ⊆ DS(x, X) and |A| ≤ τ}
and ds(x, X) = ℵ0 − ds(x, X).
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If X is a metric space or a space with a σ-discrete net, then supDS(x, X) ∈
ds(x, X).

For every subset A of a space X, by Ad we denote the derived set of A, i.
e. the set of accumulation points of A.

3.3.1. Definition ((see [20]) for metric spaces). Let (X1, U1) be a uniform
space, let A be a non-empty subset of the set Xd

1 and {(Yx, Vx) : x ∈ A} be a
family of complete uniform spaces. A uniform extension (Y , V ) of the space
X = X1 \ A is obtained by gluing the space (Yx, Vx) at the point x for every
x ∈ A if the following conditions are satisfied:

G1. Y = X ∪ ∪{Yx : x ∈ A};
G2. (Yx, Vx) is a uniform subspace of the space (Y, V ) for each x ∈ A;
G3. the subspace X is dense in Y ;
G4. the natural mapping f : Y → X1, where f(x) = x for every x ∈ X and

f−1(x) = Yx for each x ∈ A, is continuous;
G5. if x, y ∈ A and x 6= y, then Yx ∩ Yy =Ø.
3.3.2. Definition. Let (X1, U1) be a uniform space, A be a non-empty

subset of Xd
1 and a uniform extension (Y ,V ) the space X = X1 \A is obtained

by gluing of the space (Yx, Vx) at the point x for every x ∈ A. The gluing is
strongly at the point x0 ∈ A if for every open subset H of Y , that contains
Yx0 , there exists an open subset U of X1 such that x0 ∈ U and Yx ⊆ H for
each x ∈ A ∩ U .

A mapping f : X → Y is called:
- a closed mapping at a point y ∈ Y if f−1(y) 6= ∅ and for every open subset

U ⊆ X, that contains f−1(y), there exists an open subset V of Y such that
y ∈ V and f−1(V ) ⊆ U ;

- a perfect mapping of a point y ∈ Y if f−1(y) is a compact subset and f is
closed at y.

Gluing is strongly at a point x ∈ A iff the natural mapping p : Y → X1 is
closed at a point x.

From the E. Michal’s theorem [78] it follows.
3.3.3. Corollary. Let (X1, U1) be a space of pointwise countable type,

A ⊆ Xd
1 , X = X1 \ A and the uniform extension (Y , V ) of X is obtained by

gluing the spaces {(Yx, Vx) : x ∈ A} at the points of A.
The following assertions are equivalent:
1. the natural mapping p : Y → X1 is perfect; 2. gluing is strongly at each

point x ∈ A.
Let ρ be a continuous pseudometric on a space X. There exist a metric

space (X/ρ, ρ̂) and a natural projection πρ : X → X/ρ, where π−1
ρ (πρ(x)) =

{y ∈ X : ρ(x, y) = 0} and ρ(x, y) =
⌢
ρ(πρ(x), πρ(y)) for all x, y ∈ X. The

natural projection is continuous. Denote by X/ρ the completion of a metric
space (X/ρ, ρ̂).



54 Laurenţiu I. Calmuţchi, Mitrofan M. Choban

3.3.4. Definition. Let ρ be a continuous pseudometric on a space X.
The pseudometric ρ is a metric on a subset A ⊆ X if for every point x ∈ A
and every open subset U ⊆ X that contains x there exists ε > 0 such that
B(x, ρ, ε) ⊆ U .

3.3.5. Proposition. Let (X1, U1) be a complete uniform space, A ⊆ Xd
1 ,

X = X1 \ A, a continuous pseudometric d on X1 is a metric on the set A,
{(Yx, Vx) : x ∈ A} is a family of complete uniform spaces and the uniform

extension (Z, W ) of the space Z1 = X1/d \ πd(A) is obtained by gluing the
space (Yx, Vx) at a point πρ(x) for every x ∈ A. Then:

1.there exists a uniform extension (Y , V ) of a space X which is a gluing of
the spaces (Yx, Vx) at the points x ∈ A; 2. if x ∈ A and the gluing of (Yx, Vx)
is strongly in Z, then the gluing of (Yx, Vx) is strongly in X1, too; 3. (Y , V )
is uniformly isomorphic to some closed subspace of the Cartesian product of
the spaces (X1, U1) and (Z, W ).

Proof. Consider the projection πd : X1 → X1/d and the set A1 = πd(A).

Let (Z, W ) be the uniform extension of the space Z ′ = X1/d \ A1 obtained
by gluing each space (Yx, Vx) at a point πd(x), x ∈ A. By definition, Z =
Z ′ ∪ ∪{Yx : x ∈ A}.

We put Y = X ∪ ∪{Yx : x ∈ A}. Consider the mappings p : Y → X1 and
q : Y → Z, where:

- p(x) = x and q(x) = πd(x) for each x ∈ X;
- p−1(x) = Yx for each x ∈ A;
- q(y) = y for every y ∈ Yx and x ∈ A.
Now we consider the mapping ϕ : Y → X1 × Z, where ϕ(y) = (p(y), q(y))

for every y ∈ Y . By construction, ϕ(y) 6= ϕ(z) provided y, z ∈ Y and y 6= z.
We identify y ∈ Y with ϕ(y) and consider Y = ϕ(Y ) as a uniform subspace
of the uniform space X1×Z. Since ϕ(Yx) = Yx, for every x ∈ A, (Yx, Vx) is a
uniform subspace of the space Y .

Since p |X : X → X1 is an embedding and the mapping q |X → Z is con-
tinuous, the space X = ϕ(X) is a subspace of the space Y .

Let (x, z) ∈ X1 × Z and (x, z) /∈ Y = ϕ(Y ).
Case 1. x ∈ X.
In this case x ∈ Y and πd(x) = ϕ(x) 6= z. There exist two open subsets H1

andH2 of Z such that πd(x) ∈ H1, z ∈ H2 andH1∩H2 =Ø. LetH3 = π−1
d (H1)

and H = H3 ×H2. Then (x, z) ∈ H and H ∩ ϕ(Y ) =Ø.
Case 2. x ∈ A.
In this case z /∈ Yx and z 6= πd(x). If r : Z → X1/d is the natural projection,

then r(z) 6= πd(x) and there exist two open subsets H1 and H2 of Z such that
πd(x) ∈ H1, r(z) ∈ H2 and H1 ∩H2 = ∅. Let H3 = π−1

d (H1), H4 = r−1(H2)
and H = H3 ×H4. Then (x, z) ∈ H and H ∩ ϕ(Y ) = ∅. Therefore ϕ(Y ) is a
closed subset of the space X1 × Z.

Obviously, that the set X is dense in Y . The proof is complete.
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3.3.6. Proposition. Let (X1, d) be a complete metric space, X be a
dense subset of X, X1 \X = L, let {(Yx, Vx) : x ∈ L} be a family of complete
uniform spaces, L = ∪{Ln : n ∈ N}, where Ln is a closed discrete subset of
X1 for each n ∈ N , Ln ∩Lm =Ø for n 6= m, {Hx : x ∈ L} be a family of open
subsets of X1, {Lnx : x ∈ L, n ∈ N} be a family of closed discrete subsets of
X1 such that:

A1. for every n ∈ N the set Mn = Ln ∪ ∪{Lnx : x ∈ Ln} is closed in X1;
A2. for every n ∈ N the family {Hx : x ∈ L} is discrete in X1;
A3. if m, n ∈ N, m 6= n and x ∈ L, then x ∈ Hx \ Lmx, Lmx ∩ Lnx =Ø

and Lmx ⊆ Hx;
A4. if x ∈ L and xn ∈ Lnx for n ∈ N , then d(x, xn) < 2−n;
A5. if m, n ∈ N, n < m and Hm = ∪{Hx : x ∈ Lm}, then Mn ∩ clHm =Ø;
A6. If x ∈ L, then |Lnx| ≤ |Ln+1x| for each n ∈ N , τ(x) = sup{Lmx : m ∈

N} is an infinite cardinal and d(Yx) = τ(x).
Then there exists a uniform extension (Y , V ) of the space X such that:
1. Y = X ∪ ∪{Yx : x ∈ L} and (Y , V ) is a gluing of the spaces (Yx, Vx) at

the points x ∈ L; 2. u − w(Y, V ) = sup{u − w(Yx, Vx) : x ∈ L}; 3. if x ∈ L
and xn ∈ Lnx, then the sequence {xn : n ∈ N} is convergent to some point of
Yx; 4. Yx ⊆ clY (∪{Lnx : n ∈ N}) for every x ∈ L; 5. if x ∈ L and y ∈ Yx,
then χ(y, Y ) = χ(y, Yx); 6. if {Yx : x ∈ L} are paracompact p-spaces, then Y
is a paracompact p-space; 7. if {Yx : x ∈ L} are Čech complete paracompact
spaces, then Y is a Čech complete paracompact space.

Proof. Fix x ∈ L. There exists a set Ax of cardinality τ(x). Assume that
Ax = ∪{Anx : n ∈ N}, where:

- if n ≤ m, then Anx ⊆ Amx;
- |Anx| = |Lnx| for each n ∈ N .
We may suppose that Lnx = {xnα : α ∈ Anx} and Ax ∩ Ay =Ø for x 6= y.

Let {yα : α ∈ Ax} be a dense subset of the space Yx.
Let Y = X∪∪{Yx : x ∈ L}, L′

n = ∪{Li : i ≤ n} and Yn = (X1\L′
n)∪∪{Yx :

x ∈ L′
n} for every n ∈ N . If n, m ∈ N and n < m, then consider the natural

projection p(m, n) : Ym → Yn, where:
– p(m, n)(x) = x if x ∈ X;
– if x ∈ L′

n and y ∈ Yx, then p(n,m)(y) = y;

– p−1
(m, n)(x) = Yx if x ∈ L′

m \ L′
n.

For every n ∈ N there exist the projections p(ω, n) : Y → Yn, p : Y → X1

and pn : Yn → X1 such that:
– p(ω, n)(x) = p(x) = pn(x) = x if x ∈ X;
– if x ∈ L′

n and y ∈ Yx, then pn(y) = p(y) = x and p(ω, n)(y) = y;

– if x ∈ L \ L′
n, then pn(x) = x and p−1

(ω, n)(x) = Yx.

We assume that L1 = ∅ and Y1 = X1.



56 Laurenţiu I. Calmuţchi, Mitrofan M. Choban

Fix n ∈ N , where n ≥ 2. Let X ′
n = X1 \ L′

n\. On a set Xn = X ′
n ∪ ∪{Ax :

x ∈ L′
n} there exists a complete metric dn such that:

– the metrizable space (X ′
n, d) is a subspace of the space (Xn, dn);

– if x ∈ L′
n and α ∈ Ax, then lim dn(d, xmα) = 0 and dn(d, xmα) < 1 for

every m ∈ N ;
– if α, β ∈ ∪{Ax : x ∈ L′

n} and α 6= β, then dn(α, β) ≥ 3.
By virtue of Theorem 3.2.5 there exists a uniform structure Vn on Yn such

that:
1. (Yn, Vn) is a uniform extension of the space X ′

n and Yn \X ′
n is uniformly

isomorphic to the discrete sum of the uniform spaces {(Yx, Vx) : x ∈ L′
n}; 2.

u− w(Yn, Vn) = sup{u− w(Yx, Vx) : x ∈ L′
n}; 3. if x ∈ L′

n and α ∈ Ax, then
yα = limxmα; 4. if {(Yx, Vx) : x ∈ L} are paracompact spaces, then Yn is a
paracompact space; 5. if {Yx : x ∈ L} are p-spaces, then Yn is a p-space; 6. if
{Yx : x ∈ L} are Čech complete spaces, then Yn is a Čech complete space.

Consider the mapping ϕ : Y → Π{Yn : n ∈ N}, where ϕ(y) = (p(ω, n)(y) :
n ∈ N) for every y ∈ Y . The set ϕ(Y ) is closed in Π{Yn : n ∈ N}. We identify
Y with ϕ(Y ) and consider (Y , V ) as a closed subspace of Π{(Yn, Vn) : n ∈ N}.
The proof is complete.

3.3.7. Theorem. Let (e1X, U1) be a first-countable uniform extension
of a space X, let Ln ⊂ eX \ X be a strongly discrete subset of the space
e1X, let L = ∪{Ln : n ∈ N}, {(Yx, Vx) : x ∈ L} be a family of complete
uniform spaces and let d{(Yx, Vx) ∈ ds(x, X) for every x ∈ L. If (e1X, U1) is
a Baire space, then there exists a uniform extension (eX, U) and a uniformly
continuous mapping g : eX → e1X such that:

1. g(x) = x for every x ∈ e1X \ L; 2. for every x ∈ L the space (Yx, Vx) is
uniformly isomorphic to the subspace g−1(x) of (eX, U); 3. u − w(eX, U) ≤
u − w(e1X, U1) + sup{u − w(Yx, Vx) : x ∈ L}; 4. if {e1Xx : x ∈ L} are
Čech complete spaces, then eX is a paracompact Čech complete space; 5.
if (e1Xx, Yx) : x ∈ L are paracompact p-spaces, then eX is a paracompact
p-space; 6. χ(y, eX) = χ(y, Yx) for every y ∈ Yx and x ∈ L.

Proof. For every x ∈ L we fix a sequence {τn(x) ∈ DS(x, X) : n ∈ N}
such that:

– τn(x) ≤ τn+1(x) for every n ∈ N ;
– d(Yx, Vx) = sup{τn(x) : n ∈ N}.
Let τ(x) = sup{τn(x) : n ∈ N}, Ax be a set of cardinality τ(x), Anx be a

subset of Ax of cardinality τn(x) and Anx ⊆ An+1x for every n ∈ N .
Since {Ln : n ∈ N} are strongly discrete sets of the first countable Baire

space e1X, then there exist a family {Hx : x ∈ L} of open subsets of e1X and
a family {Lnx : x ∈ L, n ∈ N} of strongly discrete sets of the space e1X such
that:

– {Hx : x ∈ Ln} is a discrete family of e1X for every n ∈ N ;
– {x} ∪ ∪{Lnx : n ∈ N} ⊆ Hx for every x ∈ L;
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– the set Mn = ∪{{x} ∪ Lmx : x ∈ ∪{Li : i ≤ n}, m ∈ N} is closed in e1X
for every n ∈ N ;

– if n, m ∈ N, n < m and Hm = ∪{Hx : x ∈ Lm}, then Mn ∩ clHm = ∅;
– if n, m ∈ N, n < m and x ∈ L, then Lnx ∩ Lmx = ∅;
– if x ∈ L and xn ∈ Lnx for every n ∈ N , then x = limxn;
– |Lnx| = τn(x) for every x ∈ L and n ∈ N .
For every n, m ∈ N we put Lnm = ∪{Lmx : x ∈ Ln}. Then Lnm is a

strongly discrete subset of the space e1X.
Since e1X is a first countable space and {Ln, Lnm : n, m ∈ N} are strongly

discrete subsets of e1X, then there exists a continuous pseudometric d on e1X
such that d is a metric on the set A = ∪{Ln ∪ Lnm : n, m ∈ N}. Consider
the projection πd : e1X → e1X. Let (X1, d1) be the completion of the metric

space (e1X/d, d̂). We put Ln = πd(Ln), x = πd(x) and Lnx = πd(Lnx) for all
n ∈ N and x ∈ L. The Propositions 3.3.6 and 3.3.5 complete the proof.

3.4. Ultrauniform spaces

An entourage U of the diagonal ∆(X) of a space X is called discrete if
U = U−1 = 2U .

3.4.1. Definition. A uniform space (X, U) is said to be ultrauniform if
there exists a base B of uniformity U such that:

– every entourage U ∈ B is discrete;
– the base B is linearly ordered, i. e. if U, V ∈ B, then U ⊆ V or V ⊆ U .
The completion of an ultrauniform space is ultrauniform.
3.4.2. Proposition (S. Nedev and M. Choban [137]). Every ultrauniform

space is hereditarily paracompact.
Proof. Let B be a linearly ordered base of the uniformity U on a space

X and every entourage from B be discrete. For every x ∈ X and V ∈ B
we put a(x, V ) = {y ∈ X : (x, y) ∈ V }. Since V is a discrete entourage,
the family ξ(V ) = {a(x, V ) : x ∈ X} is a discrete cover of the space X.
If U, V ∈ B and U ⊆ V , then a(x, U) ⊆ a(X, V ) for every x ∈ X. Thus
{a(x, V ) : V ∈ B, x ∈ X} is a base of rank one of the space X. Every space
with a base of rank one is hereditarily paracompact [8]. A family L of subsets
of X has rank one if for every two sets A, B ∈ L we have A ⊆ B, or B ⊆ A,
or A ∩B =Ø. The proof is complete.

3.4.3. Lemma. Let (X, U) be an ultrauniform space and τ = u−w(X, U).
Then:

1. dimX = 0; 2. if {Hα : α ∈ A} is a family of open subsets of X and
|A| < τ , then ∩{Hα : α ∈ A} is open in X, i. e. X is a Pτ -space; 3. τ is a
regular cardinal.

Proof is obvious.
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3.4.4. Theorem. Let (e1X, U1) be an ultrauniform extension of a space
X, (Y , V ) be a complete ultrauniform space and τ be an infinite regular
cardinal which satisfies the following conditions:

– d(Y, V ) ∈ DS(e1X, U) and τ ∈ DS(e1X, U);
– Y and e1X are Pτ -spaces;
– the uniform space (Y , V ) is discrete or u− w(Y, V ) = τ .
Then there exists a uniform extension (eX, U) of the spaces X and e1X

such that:
1. (eX, U) is an ultrauniform space; 2. the space (Y , V ) is uniformly

isomorphic to the subspace eX \ e1X of (eX, U); 3. u− w(eX, U) = τ .
Proof. Since τ + d(Y, V ) ∈ DS(e1X, U), then there exists a family {Mα :

α ∈ A} of subsets of the space X such that:
– |A| = d(Y, V ) and |Mα| = τ for each a ∈ A;
– if α, β ∈ A and α 6= β, then Mα ∩Mβ = ∅;
– the set M = ∪{Mα : α ∈ A} is strongly discrete in e1X.
We may assume that Mα = {xαβ : β < τ}.
Since e1X is a Pτ -space, then either e1X is a discrete space, or u−w(e1X, U1) =

τ . Therefore there exists a family {γβ = {Hβλ : λ ∈ Γβ} : β < τ} of open
discrete covers of the space e1X such that:

– {Hβ = ∪{Hβλ × Hβλ : λ ∈ Γβ} : β < τ} is a base of some complete
uniformity U2 on eX and U1 ⊆ U2;

– if β < ξ < τ , then γξ is a refinement of γβ , i. e. Hξ ⊆ Hβ;
– (e1X, U2) is a complete ultrauniform space;
– if β < τ and λ ∈ Γβ , then |Hβλ ∩M | ≤ 1.
Since |A| = d(Y, V ), we may fix a dense subset Y1 = {yα : α ∈ A} of

the space Y . The uniform space (Y , V ) is either discrete or u−w(Y, V ) = τ .
Therefore there exists a family {ωβ = {Vβµ : µ ∈ Qβ} : β < τ} of open discrete
covers of the space Y such that:

– B = {Vβ = ∪{Vβµ × Vβµ : µ ∈ Qβ} : β < τ} is a base of the uniformity V
on Y ;

– if β < ξ < τ , then ωξ is a refinement of ωβ , i. e. Vξ ⊆ Hβ .
For every α ∈ A and β < τ we put Mαβ = {xαξ : β ≤ ξ < τ}.
For every β < τ and µ ∈ Qβ we put Wβµ = Vβµ ∪ ∪{Hβλ ∈ γβ : yα ∈ Vβµ

and Mαβ ∩Hβλ 6=Ø for some α ∈ A}, γ̄β = {Hβλ : λ ∈ Γβ} ∪ {Wβµ : µ ∈ Qβ}
and Wβ = ∪{H ×H : H ∈ γ̄β}. Let U be the uniformity on eX = e1X ∪ Y
generated by the base {Wβ : β < τ}. The uniform extension (eX, U) is desired.
The proof is complete.

3.5. Extensions of locally compact spaces

In this section every space is assumed to be a completely regular T2-space.
3.5.1. Proposition. Let bY be a Hausdorff compactification of a non-

empty space Y . Then there exists a pseudocompact space X such that:
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1. Y = βX \ X and bY = clbXY ; 2. the space X1 = βX\ bY=X \ bY
is a countable compact locally compact dense subspace of the space X and
βX1 = βX; 3. dimX = dim bY ; 4. if g : bY → Z is a continuous mapping
onto a compact space Z and g−1(g(y)) = y for every y ∈ bY \ Y , then there
exists a compactification bX of X such that g(Y )=bX \X and Z = clbXg(Y ).

Proof. Let ω1 be the first uncountable ordinal number and W be the space
of all ordinal numbers ≤ ω1 in the topology generated by the linear order on
W . We put X = (W × bY ) \ ({ω1} × Y ) and X1 = (W \ {ω1}) × bY . Then
βX1 = βX = W × bY.

Let g : bY → Z be a continuous mapping onto a compact space and
g−1(g(y)) = y for every y ∈ bY \ Y . We put bX = X1 ∪ Z. Consider the
mapping ϕ : βX → bX, where g = ϕ | bY and ϕ(x) = x for every x ∈ X1.
Then ϕ(x) = x for every x ∈ X. On bX consider the quotient topology. The
proof is complete.

A space is called a continuum if it is a connected compact Hausdorff space.
A space X is an arcwise connected or pathwise connected space if for every
pair of points a, b ∈ X there exists a continuous mapping f : I → X of the
interval I =[0, 1] into X such that f(0)= a and f(1)= b. A spaceX is locally
arcwise connected if the family {U ⊆ X : U is an open arcwise connected
subspace of X} is an open base of X (see [44]).

A space is called a Peano continuum if it is a locally arcwise connected
continuum.

3.5.2. Definition. A space X is said to be a marginal arcwise connected
space if there exist a cardinal τ , an embedding of X into Im and a sequence
of arcwise connected subspaces {Xn : n ∈ N} of Iτ such that:

– X = ∩{Xn : n ∈ N};
– for every open subset U of Iτ , which contains the closure clX of X in Iτ ,

there exists n ∈ N such that ∪{Xi : i ≥ n} ⊆ U .
3.5.3. Examples.
1. The Tychonoff cube Im is a Peano continuum. 2. If a continuum X is a

Gδ-subset of a Peano continuum Y , then X is a marginal arcwise connected
space. 3. Every metrizable continuum is a marginal arcwise connected space.

The set S(f) = Y \ ∪{U : U is open in Y and the set clXf
−1U is compact}

is called the singularity set of the mapping f : X → Y of a space X into a
space Y . If X is a locally compact space, then S(ϕ) = ∩{clY f(X \ F ) : F is
a compact subset of X} (see [35]).

3.5.4. Proposition. Let f : X → Y be a continuous mapping of a locally
compact non-compact space X into a compact space Y . Then:

1. S(f) 6= \; 2. there exists a compactification bX of the space X such that
the spaces bX \X and S(f) are homeomorphic.

Proof. As in Section 2.3 we consider the compact space Z = X∪Y with the
topology generated by the open base {U ⊆ X : U is open in X}∪{f−1(V )\F :
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V is open in Y and F is a compact subset of X}. Then S(f) = clZX \X and
bX = clZX. The proof is complete.

3.5.5.Theorem. Let X be a locally compact non-pseudocompact space
and Y be a separable marginal arcwise connected space X. Then:

1. there exists a Hausdorff compactification bY of Y such that bY is a
remainder of some Hausdorff compactification bX of X.

2. there exist a compact space Z, an embedding of Y in Z and a continuous
mapping ϕ : X → Z such that S(ϕ) = clZY .

Proof. There exist a cardinal τ , an embedding of Y into Iτ and a sequence
of arcwise connected subspaces {Yn : n ∈ N} of Iτ such that:

– Y = ∩{Yn : n ∈ N};
– for every open subset U of Iτ , which contains the closure clY of Y in Iτ ,

there exists n ∈ N such that ∪{Yi : i ≥ n} ⊆ U.
We put Z = Iτ and bY=clZY . Fix a countable dense subset B ={bn : n ∈

N} of the space Y . Fix a point b0 ∈ Y . For every n ∈ N we fix a continuous
mapping gn : I → Yn such that gn(0) = b0 and gn(1)=bn.

Since X is non-pseudocompact, there exists a subset A ={an ∈ X:n ∈ N}
and a continuous function f : X → R such that f(an+1) ≥ 3+ f(an) for every
n ∈ N. For every n ∈ N we fix an open subset Un of X and a continuous
function fn : X → I such that an ∈ Un, f(an) = 1, X \ Un ⊆ f−1

n and the set
clXUn is compact.

Now we construct the mapping ϕ : X → Z, where:
– ϕ(x) = b0 if x ∈ X \ ∪{Un : n ∈ N};
– if n ∈ N and x ∈ Un, then ϕ(x) = gn(fn(x)).
Since the family {Un : n ∈ N} is discrete and ϕ(x) = gn(fn(x)) for every

n ∈ N and x ∈clXUn, the mapping ϕ is continuous.
Let Hn = Z \ clZYn. For every n ∈ N there exists k = k(n) ∈ N such that

Yi ∩Hn = ∅ for every i ≥ k.
Then ϕ−1(Hn) ⊆ ∪{Ui : i ≤ k} and the set clXϕ

−1(Hn) is compact.
Since bY = Z \ ∪{Hn : n ∈ N}, we have S(ϕ) ⊆ bY. If U is open in Z and

U ∩ bY 6= ∅, then the set N(U) = {n ∈ N : bn ∈ U} is infinite. If n ∈ N(U),
then an ∈ ϕ−1(U). Therefore the set ϕ−1(U) is not compact and bY = S(ϕ).

The assertion 2 is proved. The Construction 2.3.1 completes the proof.
3.5.6. Proposition. Let X be a locally compact non-pseudocompact

space and bY be a compactification of a separable arcwise connected space Y .
Then there exists a continuous mapping ϕ : X → bY such that S(ϕ) = bY,
i.e. the mapping ϕ is singular.

Proof. As in the proof of Theorem 3.5.5. we consider that Y ⊆ bY ⊆ Iτ

for some cardinal τ and put Yn = Y for each n ∈ N. The proof is complete.
3.5.7. Corollary. Let X be a locally compact non-pseudocompact space

and K be a marginal arcwise connected compact space. Then K is a remainder
of some Hausdorff compactification bX of X.
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3.5.8. Corollary. (see [74], Theorem 3, when X is connected). Let X be a
locally compact non-pseudocompact space and Y be a space which contains a
dense separable and arcwise connected subspace. Then every compactification
bY of Y is a remainder of X.

3.5.9. Corollary. (see [73] for Y metrizable). Let X be a locally compact
non-pseudocompact space and Y be a separable Peano continuum. Then Y is
a remainder of X.

3.5.10. Corollary. ([94], J.V.Rogers and [1], J.M.Aarts and P.van Emde
Boas, for metrizable separable X ). Let Y be metrizable continuum and let
X be a locally compact non-pseudocompact space. Then Y is a remainder of
X.

3.5.11. Theorem. Let X be a paracompact locally compact space. If the
space X is not compact, then:

1. if τ ∈ DS(X), the cardinal τ is uncountable, Y is a compact space and
d(Y ) ≤ τ , then Y is a remainder of some compactification bX of the space X;
2. if dimX=0 and Y is a remainder of some compactification of the discrete
space Dm of the cardinality m ≤ τ ,then Y is a remainder of some compactifion
bX of the space X.

Proof. The space X can be represented as the union of a family {Xα : α ∈
A} of disjoint closed-and-open subspaces of X each of which has the Lindelöf
property ([44], Theorem 5.1.27).

There exist a locally compact metric space Z and a perfect mapping ϕ :
X → Z of X onto Z such that Xα = ϕ−1(ϕ(Xα)) for each α ∈ A. Then
Zα = ϕ(Xα) is an open-and-closed subset of Z for every α ∈ A. If the set
A is infinite and τ ∈ DS(X), then τ ≤ |A|. If the set A is countable, then
the space X is Lindelöf and every closed discrete subspace of X is finite or
countable .

Case 1. α0 ∈ A and the subspace Xα0 is not compact.
In this case Zα0 is a locally compact non compact space with a countable

base.
Let Y be a metrizable connected compact space. By virtue of Aarts and

Emde Boas theorem [1] (see Theorem 3.5.5) there exists a compactification
bZα0 of the space Zα0 such that Y = bZα0 \Zα0 . Then there exists a compact-
ification bXα0of the space Xα0 such that Y = bXα0 \Xα0 . Fix y0 ∈ Y and put
bX = X ∪ Y . On bX consider the following topology:

– the space X is an open subspace of the space bX ;
– bXα0 \ {y0} is an open subspace of the space bX ;
– if U is an open subset of bX and y0 ∈ U , then F = X \ (U ∪ Xα0) is a

compact subset of X ;
– if V is an open subset of bXα0 , y0 ∈ V and F is a compact subset of X,

then V ∪ ∪{Xα \ F : α ∈ A \ {α0}} is open in bX.
In this conditions bX is a Hausdorff compactification of X and Y=bX \X.
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Case 2. τ = |A| is an infinite cardinal. For every a ∈ A fix a point aα ∈ Xα.
Let Y be a compact space and d(Y ) ≤ τ . Let Y1 be a dense subset of Y

and |Y1| ≤ τ . There exists a continuous mapping ϕ : X → Y into Y such
that for every y ∈ Y1 the set {α ∈ A : ϕ(aα) = y} is infinite. The continuous
mapping ϕ is singular, i.e. the set clXϕ

−1(V ) is not compact provided the
set V is open and non-empty. By virtue of Construction 2.3.1 there exists a
compactification bX of X such that Y=bX \X.

Case 3. dimX=0.
We may assume that the set A is infinite and Xα is a compact subset of X

for each α ∈ A . Let Y be a compact space, Dm be a infinite discrete space,
m ≤ τ , bDm be a compactification of Dm and Y=bDm \Dm. We may assume
that m = τ . Consider that Dm = Dτ = {dα : α ∈ A}. Then there exists a
mapping Ψ : X → Dτ such that Ψ−1(dα) = Xα for every α ∈ A. The mapping
Ψ is open and perfect. There exists a continuous extension g : βX → bDτ of
the mapping Ψ. By construction, g(βX \X) = Y . By virtue of Theorem 2.1.5
there exists a compactification bX of X such that Y = bX \X. The proof is
complete.
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[82] Myškis A. D., On the concept of boundary. The definition of a boundary by means
of continuous mappings. On the equivalence of certain methods of definition of a
boundary, Trans. AMS, Series 1, 8 (1962), 11-61.

[83] Nachbin L., On the continuity of positive linear transformations, Proc. Internat.
Congress of Math., Cambridge, Mass, 1950, vol. 1, Providence (1952), 464-465.
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68 Laurenţiu I. Calmuţchi, Mitrofan M. Choban
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