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Introduction

Compactness is one of the most important notions. A quasi-compactness
is a class of spaces which is multiplicative, hereditary with respect to closed
subspaces and contains an infinite T(-space.

The concept of a compact space was introduced by L. Vietoris [117], P.S.
Alexandroff and P.S. Urysohn [2] and is due to the works of E. Borel, H.
Lebesgue, K. Kuratowski, W. Serpinski, S. Saks (see [34, 44, 90]).

The general notion of compactness is due to the works of P. S. Alexandroff
and P. S. Urysohn [2], E. Hewitt [64], R. Arens and J. Dugundji [7], L. Nachbin
[83], S. Mrowka and R. Engelking [43,81], H. Herrlich [62], H. Herrlich and J.
Vander Slot [63], M. Husek and J. de Vries [67], Z. Frolik [51], R. N. Bhanmik
and D. N. Misra [19], G. Viglino [118], A. P. Shostak [140] (see [44]).

For every space E there exists the minimal quasi-compactness P such that
E € P (see [43,44,81]).

Theory of compactifications is a wide and vast branch of topology and its
applications.

One-point compactification of the plane was studied by G. Riemann and
compactifications of open subsets of the plane were studied by C. Caratheodory
in connection with some problems of analytic functions. The notion of the ex-
tension was used by R. Dedekind and G. Cantor in the theory of real numbers
and by F. Hausdorff in the theory of metric spaces (see [30, 34, 44,90, 121]).

Let P be a quasi-compactness. A generalized P-extension of a space X is
a pair (eX, f), where eX € P, f: X — eX is a continuous mappings and the
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set f(X) is dense in eX. If f is an embedding, then eX is called a P-extension
or a P-compactification of the space X.

The general problems of the theory of P-extensions are the following.

First General Problem: To find the methods to construct and study the
P-extensions and special P-extensions of a given space X.

Second General Problem: To study the class GE(X) of all generalized P-
extensions of a given space X.

Third General Problem. Under which conditions the class GE(X) is a com-
plete lattice?

Fourth General Problem. Let GE(X) be a lattice and let SpX be the maxi-
mal element in GE(X). To study the properties of spaces fpX and SpX \ X.

Fifth General Problem. Let X and Y be spaces. Under which conditions
there exists a P-extension eX of X such that Y and eX\ X are homeomorphic?

Various important problems of the theory of extensions were formulated
in [3,12,17,34,49,59,90, 103,119,121, 129].

The purpose of the present paper is to investigate the class of P-extensions
of topological spaces and the methods of constructing of new P-extensions of
topological spaces.

In Section 1 we discuss the general notions and problems. We introduce
the notion of double compactness. In the final part of the section we give
examples and concrete problems of the theory of extensions.

Section 2 is devoted to investigation of the methods of construction of ex-
tensions.

The method of perfect mappings was used by M. C. Raybom [89] in the
constructions of Hausdorff compactifications for locally compact spaces. We
introduce the method of superperfect mappings for arbitrary spaces. These
methods are used for investigation of the lattice of compactifications (see
[1,5,27,32,55,58,68, 71,
72,74,76,82,95, 106,114,116, 119,124]).

The method of singular mappings was introduced in [32] for construction of
the Hausdorff compactifications of locally compact spaces.

The Wallman-Shanin method was introduced by W. H. Wallman [122] and
N. A. Shanin [96,97,98,99]. The notion of the base-ring was introduced by
O. Frink [50], E. F. Steiner [106,109], V. I. Zaitsev [128]. In [50] O. Frink
formulated the problem: Is every Hausdorff compactification of a completely
regular space of the Wallman-Shanin type? The problem of O. Frink was
studied by many authors (see [49, 55,79, 85,90, 105,106, 109, 113]) and it was
negatively solved by V. M. Uljanov [115].

The spectrum of rings (see [15, 29, 52, 53, 58, 65, 66, 84,90, 110, 111,119, 124])
was used by L. I. Calmutskii [24, 28,131, 132, 133] to introduce the notion of
spectral compactifications.
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In Section 3 we study the uniform extensions of completely regular spaces.
The construction of maximal uniform extension uX of a space X is due to J.
Diendonné and to F. Hausdorff [44]. The concept of a uniform space and the
notion of a complete uniform space were introduced by A. Weil (see [44]). The
completions of separable metric spaces were studied by J. M. Aarts and P. V.
van Emde Boas [1]. The completions of arbitrary metric spaces were studied
by V. K. Bel'nov [20,127]. An important part of the methods of construction
of extensions of a space is to present the “new points” of the extension as a
space with concrete properties. We simplify and extend the “Bel’nov’s gluing
method” to theory of uniform completions of arbitrary completely regular
spaces.

In this article we shall use the following notation:

We denote by clx A or clA the closure of a set A in a space X.

We denote by |A| the cardinality of a set A.

We denote by w(X) the weight of a space X.

The interval [0, 1] is denoted by I.

On the set N ={1, 2, ...} we consider only the discrete topology.

We use the terminology from [44,34,90].

General notions and problems

Let L be a partially ordered set. Fix a non-empty subset A of L. We
consider that a = VA if a > x for every x € A and if b > z for each x € A,
then b > a. We consider that ¢ = AA if ¢ < z for every x € A and if b < x for
each x € A, then b < c.

The set L is called:

- an upper semi-lattice if there exists the element VL and for every two
elements x, y € L there exists the element x Vy = V{z, y};

- a lower semi-lattice if there exists the element AL and for every two ele-
ments x, y € L there exists the element x Ay = A{z, y};

- a complete upper semi-lattice if for every non-empty subset A C L there
exists the element VA;

- a lattice if L is an upper semi-lattice and a lower semi-lattice;

- a complete lattice if L is a lower semi-lattice and a complete upper semi-
lattice.

We mention that in the complete lattice L for every non-empty subset A C L
there exists the element AA.

Let L be a complete upper semi-lattice and M be a non-empty subset of L.
If for every two elements z, y € M we have x Vy € M, then M is called an
upper subsemi-lattice of L. In the similar way there are defined the notions
of a lower subsemi-lattice and of a sublattice.

1.1. Extensions of spaces



26 Laurentiu I. Calmugchi, Mitrofan M. Choban

1.1.1. Definition. A g-extension of a space X is called a pair (Y, f),
where Y is a non-empty To-space, f : X — Y is a continuous mapping and
{cly f(A) : A C X} is a closed base of the space Y.

1.1.2. Definition. A g-extension (Y, f) of a space X is called an extension
of X if f is an embedding of X in Y.

1.1.3. Remark. If (Y, f) is a g-extension of a space X, then the set f(X)
is dense in Y.

Denote by E(X) the family of all extensions of a space X and by GE(X)
the family of all g-extensions of the space X. The family GE(X) is partially
ordered in the standard way: (Y7, f1) < (Y2, f2) if there exists a continuous
mapping ¢ : Yo — Y] such that fi(z) = p(f2(x)) for every z € X, i. e.
fi=¢of.

If (Y1, f1), (Y2, f2) € GE(X), ¢ :Ys — Y] and ¥ : Y1 — Y5 are continuous
mappings, fi = @ o fo and fo = 1 o f1, then ¢ = ¢~ ! and ¢ and 1) are
homeomorphisms. Thus (Y7, f1) = (Yo, f2) provided (Y1, f1) < (Y2, f2) and
(Ya, f2) < (Y1, fr).

If i € {0, 1, 2, 3,33}, then GE(X) = {(Y, f) € GE(X) : Y is a T}-space}
and E;(X) =E(X)NGE;(X)={(Y, f) € E(X) : Y is a T;-space}.

1.1.4. Proposition. Let f : X — Y be a continuous mapping of a
space X into a Tj-space Y, the set f(X) is dense in Y and ¢ > 3. Then
(Y, f) € GEi(X).

Proof. Let F be a closed non-empty subset of Y and y € Y\ F'. There exist
two open subsets U and V of Y such that F C U,y €V and UNV =0. We
put ® = cly (f(X)NU). Then F C ® and y ¢ ®. Hence {clyA: AC f(X)}
is a closed base of the space Y. The proof is complete.

1.1.6. Definition. A pair (Y, f) is called a weak g-extension (wg-
extension) of a space X if f : X — Y is a continuous mapping, Y is a Ty-space
and the set f(X) is dense in Y.

We denote by WGE(X) the family of all wg-extensions of a space X,
WE(X)=A{(, f) e WGE(X) : f is an embedding},
WGE;(X) ={(Y, f) e WGE(X) :Y is a T;-space} and
WGE;(X) =WE(X)NWGE;(X).

1.1.7. Proposition. Let X be a non-empty Ty-space. Then:

1. WE(X) is not a set.

2. WGE(E) is not a set.

3. If i > 2, then WGE;(X) is a set.

4. GE(X)is a set.

Proof. Let Z be a non-empty Tp-space and Z N X =0. We put Y =
XUZ, f(r) =z for every z € X,- Img ={H C X : H is open in X} U
{XUV:V CZandVisopenin Z}. Then Img is a Typ-topology on Y and
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(Y, f) € WE(X). Thus WE(X) is not a set. Hence WGE(X) is not a set,
too.

Let m = |X| and 7 = 22", If (Y, f) € GE(X) UWGEy(X), then Y| < 7.
Therefore WGE3(X)UGE(X) is a set. The proof is complete.

1.1.8. Proposition. Let X be an infinite Tj-space. Then W E;(X) is not
a set. In particular, WE;(X) is not a set.

Proof. Let Z be a non-empty Ti-space and ZNX = @. We put ¥ =
XUZ, f(zr)=xforeveryx € X and 'y ={H C X : Hisopenin X}U{V C
Y : VN Zisopen in Z and the set X\ V is finite}. Then I'; is a Tj-topology
onY, o CT'yand ((Y, I'1), f) € WE(X). The proof is complete.

1.1.9. Remark. If in the proof of Proposition 1.1.7 or of Proposition 1.1.8
the space Z is compact, then the space (Y, I'g) or (Y, I'1) is compact, too.

If (Y1, f1), (Ya, f2) € WGE(X), then (Y1, fi) < (Ya, f2) if there exists a
continuous mapping ¢ : Yo — Y7 such that f; = ¢ o fo.

1.1.10. Proposition. The relation < is an ordering on WGE>(X).

Proof. Is obvious.

1.1.11. Example. Let X be a non-empty space. Then < is not an ordering
on WE(X).

Let Z be a non-empty Ty-space, ZNX = () and b € Z. Consider the space
Y1 = Z U X with the topology I'o = {U C X : U is open in X}U{VUX :V
is open in Z} and subspace Yo = {b} UX of Y7. Let f(z) = z for each z € X.
Then (Y3, f), (Y2, f) € WE(X). We put ¢(y) = y for every y € Ya, f =
Y| X and ¥(y) = b for every y € Z. Then the mappings ¢ : Y2 — Y7 and
Y Y1 — Ys are continuous and ¢(z) = ¢(x) = z for each z € X . Thus
(Yh f) < (Y27 f)? (Y27 f) < (Y’ f) and (K f) # (Y27 f) provided ’Z’ 2> 2.

1.1.12. Example. Let X be an infinite T7-space. Then < is not an
ordering on WE;(X).

Let Z be a Ti-space, |Z] > 2, b€ Z, Y1 = Z U X be a space with the
topology I't ={U C X : U isopenin X} U{V CY;:V NZisopenin Z and
the set X\ V infinite}, Y2 = {b} UX be a subspace of Y; and f(x) = x for each
z € X. Then (Yla f)v (Yéa f) S WEl(X)v (YL f) < (Y2>f)>(Y2vf) < (Y17f>
and (Y1, f) # (Ya, f).

Let X be a space. On the class WGE (X)) we consider the relation ~:(Y7, f1) ~
(}/2, fg) iff (Yl, fl) < (}/2, fg) and (YQ, fg) < (Yl, fl) ObViOUSly, ~ is a re-
lation of equivalence. Denote by WGEY(X) the classes of equivalence on
WGE(X) and by WE?(X) the classes of equivalence on WE(X).

Obviously < is an ordering on the a class WGE?(X).

1.1.13. Proposition. Let H = {(Y,, fo) € WGE(X) : a € A} be a set,
f(z) = (fa(z) : @ € A) for every z € X and Y be the closure of the set f(X)
in the space II{Y, : @ € A}. Then:

1. (Y, f) e WGE(X) and we put (Y, f) = VH.

2. (Yo, fo) < (Y, f) for each a € A.
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3. If (Z,9) € WGE(X) and (Ya, fa) < (Z, g) for each o € A, then
. )< (Z g).

4. It i € {0, 1, 2, 3, 3%} and Y, is a T;-space, then Y is a Tj-space.

5. If HNWE(X) #0, then (Y, f) € WE(X).

Proof. For every 3 € A we consider the projection ¢g : Y — Y3, where
©3(Ya + o € A) = yg for any (yo : a € A) € Y. Then f, = ¢q 0 f for
each a € A. The assertions 1, 2, 4 and 5 are proved. Let (Z, g) € WGE(X)
and (Yo, fo) < (Z, g) for each a € A. For any a € A we fix a continuous
mapping ¥, : Z — Y, such that f, = 1, o g. Consider the mapping ¢ : Z —
I{Y, : a € A}, where ¢(z) = (¢a(2) : @« € A). The mapping 1) is continuous,
P(g(X)) = f(X) and ¥(Z) C Y. The assertion 3 and Proposition are proved.

1.1.14. Question. Is it true that WE®(X) is a set for each topological
space X7

Obviously, WEY(X) is a set for every space X iff WGE?(X) is a set for
every space X.

1.1.15. Remark. Let X be a non-empty space, Dy be a singleton space,
fm + X — Dg be the unique mapping of X into Dy, fas(z) = x for each
x € X. Then (X, fur) is the maximal element in WGE(X) and (Do, far) is
the minimal element in WGE(X). Obviously, (X, fir), (Do, fu) € GE(X).

1.1.16. Question. Let X be a space and H be a non-empty subset of the
set GE(X). Is it true that VH € GE(X)?

1.1.17. Corollary. Let i > 2. Then WGE;(X) is a complete lattice.

1.1.18. Corollary. Let ¢ > 2. Then WE;(X) is a complete upper semi-
lattice.

1.1.19. Corollary. Let i > 3. Then GFE;(X) is a complete lattice.

1.1.20. Corollary. Let ¢ > 3. Then E;(X) is a complete upper semi-
lattice.

1.2. The canonical functor m: WGE(X) — GE(X)

Consider a topological space X. Fix a wg-extension (Y, f) of the space X.
Let I'y be the topology of the space Y. On Y consider a new topology I'y
generated by the closed base {clyH : H C f(X)}. There exist a set Y; and
a mapping Py : Y — Y} such that P, '(Py(H)) = H for every H € T'y; and
I‘g),f ={Py(H): H € 'y} is a Tp-topology on a set Y7.

If y € Y, thenP, ' (Py(y)) = (N{Y € Ty; :y € UNN(N{Y\U : U ¢
I'y¢,y ¢ U}). Consider the mapping Pf : X — Yy, where Pf = Py o f. By
construction, (Yy, Pf) € GE(X). We put (Yy, Pf) = m(Y, f), Y = m(Y)
and Pf=m(f).

The canonical functor m : WGE(X) — GE(X) is constructed.

From the construction it follows.

1.2.1. Proposition. If (Y, f) € GE(X), then m(Y, f)=(Y, f).

1.2.2. Question. Is it true that the functor m is covariant?
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1.3. The canonical functors m; : WGE(X) — WGE;(X)

Fix ¢ € {0, 1, 2, 3, 3%} For every space Y there exist a unique Tj-space
Y /i and a unique projection iy : Y — Y/i with the properties:

1. iy is a continuous mapping onto Y/i;

2. for every continuous mapping ¢ : Y — Z in a T;-space Z there exists a
unique continuous mapping ¢ : Y/i — Z such that ¢ = ¢ oiy.

3. if ¥ : Y — Z is a continuous mapping, then there exists a unique
continuous mapping ¢ : Y/i — Z/i such that 1) o iy =iz 0.

The space Y/i with the projection iy is called the i-replic of the space Y.

Fix a space X. If (Y, f) € WGE(X) , then we put f; = iy o f and
m;(Y, f) = (Y/i, fi). From the construction it follows.

1.3.1. Proposition. m; : WGE(X) — WGE;(X) is a covariant functor.
If (K f) < (Z7 g)? then mz(Ya f) < mz(Z7 g) If (Ya f) € WGE(X)7 then

1.4. Compactness

The notion of compactness is due to E. Mrowka [81,43], E. Hewit [64], R.
Arens and S. Dugundji [7].

A class P of topological Ty-spaces is called a strongly compactness if the
following conditions are fulfilled:

Ci. the class P is non-empty;

Csy. there exists a space X € P such that | X| > 2;

Cs. the class P is multiplicative, i. e. if {X, € P : a € A} is a non-empty
set of spaces from P, then II{X,, : o € A} € P;

Cy. the class P is closed hereditary, i. e. if Y is a closed subspace of a
space X € P,thenY € P;

Cs. if Y is a dense subspace of a space X € P, then {cIlxyA: ACY}isa
closed base of the space X.

A class of spaces P with properties C; — CYy is called a quasi-compactness.
A quasi-compactness P of Hausdorff spaces is called a compactness.

Fix a quasi-compactness P. For every space X we put WPGE(X) =
{(Y, /) e WGE(X):Y € P}, WPE(X)=WPGE(X)N"WE(X), PGE(X) =
WPGE(X)NGE(X) and PE(X) = PGE(X) N E(X).

If P is a compactness, then WPGE(X) = PGE(X) and WPE(X) =
PE(X). From Proposition 1.1.7. it follows that PGE(X) and PE(X) are
the sets for each space X.

1.4.1. Theorem. Let P be a compactness and X be a space. Then
VH € WPGE(X) for every non-empty set H C WPGE(X).

Proof. Follows immediately from the conditions Cs, C4 and properties of
Hausdorff spaces.

1.4.2. Corollary. Let P be a compactness. Then WPGE(X) is a complete
lattice for every space X.
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Denote by (8pX, Bp) the maximal element of the lattice WPGE (X)), where
P is a compactness.

1.4.3. Corollary. Let P be a compactness, X be a space and WPE(X) #
(). Then:

1. WPE(X) is a complete upper semi-lattice;

2. (BpX, Bp) € WPE(X).

1.4.4. Theorem. Let P be a compactness. For every continuous mapping
f: X — Y of a space X into a space Y there exists a continuous mapping
Opf : BpX — BpY such that Bpo f = Bpf o Bp. If every space Z € P is a
Ts-space, then the mapping Bpf is unique.

Proof. We may consider that f(X) is dense in Y. Then g =fpo f: X —
BpY is a continuous mapping, the set g(X) is dense in BpY and (BpY, g) €
WPGE(X). Thus there exists a continuous mapping Spf : fpX — BpY such
that g = Bp o f o Bp. The proof is complete.

1.4.5a. Corollary. Let P be a compactness and f : X — Y be a contin-
uous mapping of a space X into a space Y € P. Then Y = BpY and there
exists a unique continuous mapping Bpf : BpX — Y such that f = Opf o Bp.

1.4.5b. Remark. Let P be a quasi-compactness. Then there exists
BpX € WPGE(X) such that pX € VPGE(X).

1.4.6. Proposition. Let P be a strongly compactness. Then every space
x € P is a Hausdorff space, i. e. P is a compactness.

Proof. Let d(X) = min{|H| : H C X,clxH = H} be the density of a
space X . Consider the space F={0,1} with the topology Im = {0,{1},{1,0}}.
Suppose that X € P and X is not a T7-space. Then the space F' is embeddable
in X. Suppose that FF C X. Denote by b, ¢ the cardinality larger than 2¢
(see Proposition 1.1.7). For some cardinal m the space Y is embeddable in
F™ C X™([44],Theorem 2.3.26). Let Z be the closure of Y in X™. Then the
space Z is separable and |Z| > Y| > 2¢. If S € P, then |S| < exp(exp(d(S5))).
Thus |S| < 2¢ for every separable space S € P. Therefore every space S € P
is a Tj-space.

Suppose that X € P and X is not a Th-space. There exist two distinct
points a,b € X such that VN W ## () provided V and W are open subsets of
X, a€Vandbe W. Fix a cardinal number 7 > exp(exp(|X])). We put
® = {a,b}. In X™ we consider the diagonal A(X) (see [44], p.110). Let Y be
the closure of the set A(X) in X™. Then ®” C Y, |A(X)| = |X]|, d(Y) < |X],
Y| < exp(exp(]X)) < 7] and |®7| = 27 = exp(7), a contradiction. The proof
is complete.

1.5. Double compactness

A class P of topological Ty-spaces is called a double compactness if the
following conditions are fulfiled:
D;. the class P is non-empty;
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Ds. there exists a space X € D such that | X| > 2;

Dj. if I' is a topology of the space X € P then there is determined the
completely regular topology dI' on X such that (X, dI') € P, T' C dI' and
ddl’ = dTI';

Dy. if f: X — Y is a continuous mapping of a space (X, I') into a space
(Y, TV) and X,Y € P, then f is a continuous mapping of the space (X, dI')
into a the space (Y, dI");

Ds. if {(Xa, ['a) : @ € A} is a non-empty set of spaces, (Xq, ['n) € P for
each a € A, X =II{X, : « € A}, T is the product of topologies I',, on X and
I is the product of topologies dI', on X, then IV C dI’;

Dg. if (X, T) € P, Y C X and Y is a closed subset of the space (X, dI'),
then (Y, T'|Y) e Pand d(I'|Y) DdI'|Y, where I'|Y ={UNY : U €T} for
the topology I on X.

1.5.1. Proposition. Let P be a class of spaces, X be aspace, {Y, : a € A}
be a non-empty family of subspaces of the space X, Y =n{Y, : o« € A} and
Y, € P for each o € A. Then:

1. if P is a double compactness, then Y € P;

2. if P is a compactness, then Y € P.

Proof. We may consider that X =Y, for some a € A. If X is a Th-space,
then Y is a closed subspace of the space II{Y, : a € A}. The assertion 2
is proved. If P is a double compactness, then Y is a closed subspace of the
space II{Y,, : @ € A} in the topology dI'. The assertion 1 and Proposition are
proved.

Fix a double compactness P. For every space X we put PGE(X) =
{(Y, /) e WGE(X):Y € P and f(X) is a dense subset of the space (Y, dI')
and PE(X)=WE(X)NPGE(X).

From the condition Dg it follows that PGE(X) and PE(X) are sets.

1.5.2. Theorem. Let P be a double compactness. Then PGE(X) is a
complete lattice for every space X.

Proof. Let {(Ya, fa): @ € A} be a non-empty subset of the set PGE(X).
Denote by I'y the topology of the space Y, and by I' the topology of the
space II{Y, : @« € A}. Consider the mapping f : X — II{Y, : a € A}, where
f(x) = (fa(z) : @« € A) for each z € X. Let Y be the closure of the set f(X) in
the space (II{Y, : a € A}, dI'). Then (Y, f) > (Y2, f2) for each o € A. From
the condition Dy it follows that if (Z, g) € PGE(X) and (Z, g) > (Ya, fa) for
each a € A, then (Z, g) > (Y, f). Thus (Y, f) = V{(Ya, fa) : @« € A}. The
proof is complete.

1.5.3. Corollary. Let P be a double compactness, let X be a space and
PE(X) # 0. Then PE(X) is a complete upper semi-lattice.

1.5.4. Theorem. Let P be a double compactness. Then:
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1. for every continuous mapping f : X — Y of a space X into a space
Y there exists a unique continuous mapping Gpf : BpX — BpY, Bpo f =
Bpf o Bp;

2. for every continuous mapping f : X — Y of a space X into a space
Y € P there exists a unique continuous mapping Bpf : BpX — Y such that
f=08pfopBr.

Proof. Let Z be the closure of the set Sp(f(X)) in the space (GpY, dI').
Then (Z, Bp o f) € PGE(X) and the assertion 1 is proved. If Y € P, then
BpY =Y. The proof is complete.

1.6. Examples

1.6.1. Example. Let C be the class of compact Haussdorff spaces. Then
C is a strongly compactness. If (Y, f) € CGE(X), then we say that (Y,
f) is a g-compactification of X. If (Y, f) € CE(X), then (Y, f) is called a
compactification of X. For every space X the g-compactification X = 8pX
is the Stone-Cech g-compactification of X. If X is a completely regular space,
then 3X is the Stone-Cech compactification of X.

1.6.2. Example. Let Cy be the class of zero-dimensional compact spaces.
Then Cj is a strongly compactness. If indX > 0, then Co E(X)=0. If indX=0,
then mfX = B¢, X is the Morita-Freudenthal compactification of X. We put
mfX = Bc,X and (mfX, mf) = (Bc, X, Bc,)- The g-compactification mfX
is called the maximal zero-dimensional g-compactification of the space X.

1.6.3. Example. Let X be a completely regular space. A subset L of
X is called bounded in X if the set f(L) is bounded in the space of reals R
for every continuous function f : X — R. A space X is called pu-complete if
the closure clL of every bounded subset L is compact. Let C,, be the class of
all p-complete spaces. Then C), is a strongly compactness. The g-extension
(Bc, X, Bc,) = (u*X, p*) is called the maximal p-completion of the space X.
If X is a completely regular space, then (p*X, pu*) € E(X) and p*X is the
p-completion of X.

1.6.4. Example. Let R be the space of reals. A space Z is called a
realcompact space if it is homeomorphic to a closed subspace of some space
RA. The class R of all realcompact spaces is a strongly compactness. The g-
extension (vX, v) = (BrX, Br) is the maximal g-realcompactification of the
space X. If X is a completely regular space, then v X is the realcompacti-
fication of X and (vX, v) € E(X). Every realcompact space is u-complete.
Therefore v X < p*X and p*X CvX.

1.6.5. Example. Let U be the class of all complete uniform spaces. If X
is a completely regular space, then by Ux we denote the universal uniformity
on X (see [44]). Every uniform space is considered and a topological space
too. Thus for every space X in UGE(X) the maximal element (uX, p) is
determined, where uX is a complete uniform space, p : X — pX is a contin-
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uous mapping and the set p(X) is dense in uX. The space pX is called the
Diendonné completion of the space X. If X is completely regular, then pX
is the completion of the uniform space (X, Ux). If X = pX, then the space
X is called a Deudonné complete space. Every Deudonné complete space is
p-complete. For every space X we may consider that p*X C uX CvX C gX.

1.6.6. Example. Let P be a compactness such that every space (Y, ') € P
be completely regular. For every space (X, I') € P we put d[' = T". Then P
is a double compactness. Therefore every compactness of completely regular
spaces may be considered as a double compactness.

1.6.7. Example. For every space (X, T') we put ¢[' = {U € T : U
is a compact subset} and dI' is the topology generated by the open base
{UlﬂUgﬂ ..NUy:n €N, U, Us, ...,UnEF}U{X\U:UECF}.

A space (X, I) is called a spectral space if cI" is an open base of the space X,
UNV € cl' is an open base of the space X, UNV € cI' for all U, V € cI' and
(X, dI') is a compact Hausdorff space. Let S be the class of all spectral spaces.
Then S is a double compactness. For every Ty-space X we have SE(X) #Q,
i. e. Bg: X — [BgX is an embedding.

1.6.8. Proposition. If (X, I') is a spectral space, then:

1. (X, I') is a compact Tp-space;

2. (X,dl') is a zero-dimensional compact space;

3. dI' =T if (X, I') is a T}-space.

Proof. Is obvious (see [132]).

1.6.9. Remark. The class of spectral compactifications of a space X was
studied in [24,28,131,132,133].

1.6.10. Example. Let E=[0,1], F ={27™n € N} and Im be the topology
generated by the base {{t € E : a < t < b}: a,b are real numbers}U{V,, =
{te E:t <2} \F:n € N}(see [2] or [44], Example 1.5.7). Then E is
a Thr-space and F is not regular. If X is the subspace of irrational numbers
of Eor X = E\ F, then {clgH : H C X} is not a closed base of E. Thus
E ¢ P for every compactness P. There exists a minimal quasi-compactness
P of Hausdorff spaces such that £ € P. Therefore P is a compactness and P
is not a strongly compactness.

1.6.11. Example. Let P be the class of all compact Ty-spaces. Then P
is a quasi-compactness and P is not a compactness. Obviously OPE(X) # ()
for every Tp-space X.

1.6.12. Example. Let P be the class of all compact Tj-spaces. Then
P is a quasi-compactness and P is not a compactness. It is well-known that
wX € PE(X) for every Tj-space X.

1.7. Problems

1.7.1. Problem. Let P be a compactness or a double compactness.
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1. Under which conditions the lattices PGE(X) and PGE(Y') are isomor-
phic?

2. Under which conditions the upper semi-lattices PE(X) and PE(Y') are
isomorphic?

3. Which topological properties of a space X are characterized in terms of
the objects PGE(X) and PE(X)?

4. Which properties of the lattice PGE(X) are characterized by the prop-
erties of the space X7

5. Let X be a space and PE(X) #0. Which properties of the upper semi-
lattice PE(X) are characterized be the properties of the space X7

The program of matching “interesting” topological properties of a com-
pletely regular space X with “interesting” properties of the complete upper
semi-lattice PE(X) is very important in the theory of extensions. N. Boboc
and G. Siretchi [22] has proved that CE(X) is a lattice iff the space X is
locally compact. In [76] K. D. Magil has proved that for two locally compact
spaces X and Y the semi-lattices CE(X) and CE(Y) are isomorphic iff the
spaces X \ X and BY \ Y are homeomorphic.

Another program of investigation is to find the
and double compactness.

1.7.2. Problem. Let P be a compactness or a double compactness, let X
be a space and PE(X) #Q.

1. Find the methods of constructions the extension GpX, some extensions
from PE(X) or all extensions PE(X).

2. Let Z be a space. Under which conditions there exists an extension
(Y, f) € PE(X) such that Y\ f(X) and Z are homeomorphic?

3. Under which conditions there exists an extension (Y, f) € PE(X) such
that dim(Y \ f(X)) > m, where m € N?

4. Let Z € P. Under which conditions there exist an extension (Y, f) €
PE(X) and a closed subspace Z' C Y \ f(X) such that Z and Z’ are homeo-
morphic?

“interesting” compactness

2. Some methods of construction of extensions

A mapping f: X — Y of a space X into a space Y is called:

- a perfect mapping if f(X) = Y, f is continuous, closed and the fibers
f~Yy), y € Y, are compact;

- a superperfect mapping if f(X) =Y, f is continuous, perfect and there
exists a compact set ® C X such that f~!(f(x)) = {x} for each z € X \ ®;

- a singular mapping if f is continuous and the set f~1(V) is non-compact
for any non-empty open subset V of Y;

- an almost perfect mapping if f(X) =Y, f is continuous, closed and there
exists a closed compact set ® C X such that f~!(f(z)) = {a} for each = €
X\ ®.
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2.1. Method of perfect mappings

Let X be an open dense subspace of a space eX, Y=eX\X and h: Y — Z
be a perfect mapping onto a space Z. We put e, X = Z U X and consider the
mapping f : eX — e, X, where f(z) =z for every z € X and h = f|Y. On
a space e, X we consider the quotient topology {W C e, X : f~1(W) is open
in eX}.

2.1.1. Property. The mapping f is perfect.

Proof. By construction, the mapping f is continuous and the fibers
f~Yy), y € e X, are compact. Let F be a closed subset of the space eX.
Then Fy = h=}(h(FNY)) is a closed subset of Y, ® = F} U F is closed subset
of eX and ® = f~1(f(F)). Thus f(F) is closed in e, X. The proof is complete.

2.1.2. Property. If i € {1, 2, 3, 4} and eX is a T;-space, then e, X is a
T;-space. Moreover, if eX is a normal space, then e, X is a normal space.

Proof. The property to be a T;-space, i € {1, 2, 3, 4}, is preserved by the
perfect mappings.

2.1.3. Property. If eX and Z are Ty-spaces, then e, X is a Tp-space.

Proof. Obvious.

2.1.4. Property. X is an open dense subspace of the space e, X.

Proof. Obvious.

We put LC(X) = U{U : U is an open subset of X and ¢lxU is compact} —
the set of locally compactness of a space X. Let RC(X)=X\LC(X). A space
X is almost locally compact if the set LC(X) is dense in X. If RC(X)=0,
then the space X is locally compact.

2.1.5. Theorem. Let eX be an extension of the almost locally compact
space X, the set LC(X) is open in eX, Y=eX\LC(X), h:Y — Z is a perfect
mapping onto a space Z and h~!(h(z)) = {x} for every x € RC(X). Then
there exist an extension e, X of a space X and a perfect mapping f : eX —
epX such that the set LC(X) is open in e, X.

Proof. Let X; = LC(X). Then eX is an extension of the space X; and
the set X is open in eX. Properties 2.1.1 — 2.1.4 complete the proof.

2.2. Method of superperfect mappings

2.2.1. Theorem. If f : X — Y is an almost perfect mapping onto a
Ti-space Y, then f is superperfect.

Proof. There exists a closed compact subset ® C X such that f~1(f(z)) =
{x} for every x € X\ ®. Let F = f(®). Ify € Y\F, then f~!(y) is a singleton.
If y € F, then f~!(y) is a compact set as a closed subset of the subspace ®.
Thus the fibers f~!(y) are compact. The proof is complete.

We say that a subset H of a space X is compact in X if the set clx H is
compact.

Aset N(f) ={z € X : f~1(f(x)) # {z}} is called the kernel of a mapping
f: X->Y.
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A mapping f : X — Y is almost perfect iff f(X) =Y, f is closed, continuous
and the kernel N(f) is compact in X.

2.2.2. Theorem. Let X be a subspace of a space X1, ¥ = X; \ X,
h:Y — Z be an almost perfect mapping onto a space Z and the set cly N (h)
is closed in X. Then there exist a unique space S and an unique almost perfect
mapping f : X1 — S such that N(f) = N(h) and h = f|Y.

Proof. Weput S = XUZ, Y7 =cyN(h), Xo = X1\ clyN(h), f(z) =
h(z) for every x € Y and f(z) = z for every x € X. The space X is open in
Xiand g =h|Y,: YT — Z; = h(Y7) is a continuous closed mapping. On S we
consider the quotient topology. Obviously, N(f) = N(h). By construction, f
is a closed continuous mapping. The proof is complete.

2.2.3. Corollary. Let eX be an extension of a space X, Y=eX\ X, h :
Y — Z be an almost perfect mapping onto a space Z and the set cly N(f) be
closed in eX. Then there exist an extension ey X of the space X and an almost
perfect mapping f : eX — e X such that:

1. Z is a subspace of the space e, X and Z = e, X \ X;

2. h=f|Y;

3. N(f) = N(h).

2.3. Method of singular mappings

Let P be a quasi-compactness.

A space X is called locally P-compact if for every point x € X there exists
an open subset U C X such that x € U and clxU € P.

We say that a mapping f : X — Y is a P-singular mapping if f is continuous
and clx f~1(V) ¢ P for every non-empty open subset V C X.

Consider that the compactness P fulfills the following conditions:

Si. If Y and Z are closed subspaces of a space X and Y, Z € P, then
YUuZeP.

So. If Y is a closed subspace of the space X, Y € P, Z € P provided
Z C X \Y is a closed subset of X and X\Y=U{V : V is open in X and
cdxV C X\ V}, then X € P.

In the class of regular spaces Condition S1 follows from Condition S2.

2.3.1. Construction. Let f : X — Y be a P-singular mapping of a
locally P-space X into a compact space Y € P. Obviously that the set f(X)
is dense in Y. We put eX = X UY, with the topology generated by the open
base {U C X : U is open in X} U{V U (f~Y(V)\U) : V is open in Y, U is
open in X and clx € UP}.

Property 1. eX € P.

By construction, Y € Pand X =eX \Y = U{U C X : U is open in eX
and clxU € P}. If U is open in X and clxU, then cl.xU = clxU. Let Z be
a closed subspace of eX and ZNY =@. For every point y € Y there exist an
open subset V, of Y and an open subset U, of X such that cIlxU, € P, y €V},
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and Z N (f~'V \ clxU,) =0. Since Y is compact, there exists a finite set F
such that Y = U{V, : y € F}. Then Z C U{clxU, : y € F}. By virtue of
Condition S1, U{cixUy : y € F'} € P and Z € P. Condition Sy completes the
proof.

Property 2. X is an open dense subspace of the space eX.

Obviously, X is open in eX. Let y € Y, V be an open subset of Y, U be an
open subset of X,y € V and clxU € P. Then the set W = VU(f~}(V)\clxU)
is open in eX and y € W. Since clxf~1(V) ¢ P, then WNX = f~1(V)\
clxU #0. Thus the set X is dense in eX.

Property 3. Let i € {0, 1,2} and X, Y be Tj-spaces. Then eX is a
T;-space.

Let z, y € eX and = # y.

Case 1. z,y €Y and ¢ < 1.

If Visopenin Y,z €V and y ¢ V, then W =V U f~}(V) is open in eX,
reWandy ¢ W.

Case 2. z,y € Yand i = 2.

There exist two open subsets Vi and V5 of Y such that x € V4, y € V5 and
Vi NV =@. The sets W; = V; U f~1(V;) are open in eX,x € Wi,y € Ws and
Wi N Wy =10.

Case3. re X andyeY.

There exists an open subset U of X such that x € U and clxU € P. We
put W=eX\clxU =Y U (f~1(Y) \ clxU). The set W is open in eX, y € W
and UNW = 0.

Case 4. =,y € X.

Since X is an open subspace of the space eX and X is a T;-space, the proof
is complete.

Property 4. If every closed subset Z of X is compact provided Z € P,
then eX is a compact space.

Proof. Obvious.

Property 5. Let ¢ : eX — Y be the mapping for which f = ¢| X and
o(y) =y for all y € Y. Then ¢ is a continuous mapping.

Proof. If V is open in Y, then o(V U (f~1(V)\ clU)) = V. The proof is
complete.

Property 6. Let X be a Ts-space and for every open subset U of X with
clxU € P there exists an open subset W of X such that cixU C W, cIxW € P
and clxW is a normal subspace of X. Then eX is a normal space.

Proof. Let F and ® be two closed subsets of eX and FFN® = ().

Casel. FCY and ®CY.

There exists a continuous function h : Y — [0, 1] such that F C h~1(0) and
® C h1(1). We put g(x) = h(p(x)) for every x € eX.

The function g : eX — [0, 1] is continuous F C g~1(0) and ® C g~1(1).

Case 2. dNY = 0.
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There exist the open subsets U and W of X such that ® C clxU C W
and clxW € P. Then clxW is a normal subspace of X and the set clxW
is closed in eX. There exists a continuous function i : X — [0, 1] such that
® Ch (1) and (FNX)U(X\W) C h=1(0). We put g(y)=0 for every y € Y’
and g(x) = h(z) for every x € X. The function ¢ : eX — [0, 1] is continuous,
FCY Cg10)and ® C g~ 1(1).

Case 3. FFCY.

Let ®; =Y N® # (. There exists a continuous function g; : eX — [—1, 1]
such that F C g; (1) and ®; C g;*(—1). The set U = {z € eX : g1(x) < 0}
is open in eX. We put ga(z) = sup{gi(x), 0}. The function g2 : eX — [0, 1]
is continuous, F C g, *(1) and ®; C U C g, *(0). The set &3 = ®\ U is closed
in eX and ®3NY = (). There exists a continuous function g3 : eX — [0, 1]
such that F' C g3(1) and @3 C g5 (0). Now we put g(z) = g3(z) - ga(2) for
every ¥ € eX. The function g : eX — [0, 1] is continuous, ' C ¢g~!(1) and
® C g (0).

Cased. 1 =FNY #0 and &1 =dNY # ().

There exists a continuous function g : eX — [0, 2] such that ® C g;*(0)
and Fi C g;'(2). The set U = {x € eX : gi(x) > 1} is open in eX. Let
F, = F\ U. The set Fy is closed in eX and F, NY = (). There exists a
continuous function gs : eX — [0, 1] such that ® C g, *(0) and Fy C g~'(1).
Now we put g(z) = min{l, gi(z) + g2(z)} for every x € eX. The function
g :eX — [0,1] is continuous, ® C ¢~'(0) and F C g~'(1). The proof is
complete.

2.3.2. Remark. In [31,32] the method of singular mappings was applied
for the construction of Hausdorff compactifications of locally compact spaces.

2.4. Wallman-Shanin method

A family L of subsets of a space X is called an [-base on a space X if L is
a closed base and FUH, FNH e Lforall F,; H € L.

Let L be an [-base on the space X. An L-filter in the space X is a non-empty
family £ of subsets of X which satisfies the following conditions:

Fi.§C Land 0 ¢¢.

Fo. fF, He L, FC H and F € ¢, then H € £.

Fs. If F, He & then FNH €€.

A maximal L-filter is called an L-ultrafilter. A filter ¢ is called a free L-filter
if N¢ = 0.

A family L of subsets of the space X is called a net in the space X at a
point « € X if for every neighbourhood U of = there exists H € L such that
x € HCU. A family L of subsets of X is a net in the space X if L is a net
of X at each point z € X (see [9,10,11]).

For every point x € X we put {,(x) ={F € L:x € F}.
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2.4.1. Lemma. Let L be an [-base and z € X. The following assertions
are equivalent:

1. L is a net of the space X at the point z;

2. &r(x) is an L-ultrafilter.

Proof. Suppose that {7 (x) is an L-ultrafilter. If H € L and = ¢ H, then
H ¢ ¢(z). Then HNF = 0 for some F € {r(x). Thus L is a net at the
point x € X. Consider that L is a net at the point x € X, H € L and
H ¢ &1 (z). Then there exists F' € L such that v € F C X \ H. Thus £(z) is
an L-ultrafilter. The proof is complete.

Denote wr X = {¢1(z) : 2 € X} U{ : £ is a free L-ultrafilter}. We identify
the point x € X with the filter 1 (z) and obtain X C wy X. For every F' € L
weput (F) ={{ew, X :Fe¢} Let <L>={<F>: Fe€L}.

2.4.2. Lemma. Forevery H,F € L wehave < HUF >=< H>U<F >
and <HNF>=<H>N<F >

Proof. I HUF € £ € wp X, then EN{H, F} # 0. Thus < HUF >=<
H>U<F> IfHNF =0, then < H>N< F >=< 0 >= 0. Let
P=HNF#). Ifdecfcwr X, then HH Fefand { e< H>N<F >. If
Ee<H>N<F > then H, Fe&and HN F € & The proof is complete.

On wp X we consider the topology generated by a closed base < L >.

We say that the extension Y of a space X is an end — Tj-extension if the
set {y} is closed in Y for every point y € Y\ X.

2.4.3. Theorem. If L is an L-base of a space X, then:

1. wp X is a compactification of the space X.

2. wp X € E(X).

3. wr, X is an end — Tj-extension of X.

Proof. For every F' € L we have < F' > NX = F and < F' > is the closure
of F in wr X. By construction, w; X is a compact space. If £ € wp X is an
L-ultrafilter, then {£} is a closed subset of wy X. The proof is complete.

2.4.4. Corollary. wy X is a T7-space iff X is a Ti-space and L is a net of
the space X.

2.4.5. Definition. If L is the family of all closed subsets of a space X,
then wX = wp X is called the Wallman compactification of the space X.

The compactification wX is a Ti-space iff X is a Tj-space. The compact-
ification wX for a Tj-space X was constructed by H. Wallman (see [122]).
The Ti-compactifications of the type wr X were constructed by N. A. Shanin
[96,98].The general case was examined in [29,133].

A compactification bX of a space X is called the compactification of the
Wallman-Shanin type if there exists an I-base of X such that bX = wr X.

In [18,100,115] it was proved that there exists a Hausdorff compactification
bX of some discrete space X which is not of the Wallman-Shanin type.The pa-
pers [15,18,24,29,49,50,70,79,85,100,109,113,132,133] contained sufficient con-
ditions provided the compactification to be of the Wallman-Shanin type.
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2.5. wa—compactification

Fix a space X and an [-base L of X.

2.5.1. Definition. A compactification bX of a space X is called an way-
compactification if there exists a continuous closed mapping f : wp X — bX
such that f(z) = x for each z € X.

If L is the family of all closed subsets X, then an way-compactification
is called an wa-compactification. The wa-compactifications of Tj-space were
introduced and examined by P. C. Osmatescu [87].

If bX is an wa-compactification of a space X, then the mapping f : wp X —
bX is a natural projection if f is continuous closed and f(z) = x for every
reX.

2.5.2. Proposition. Let bX be an waj-compactification of a space X and
f:wrp X — bX be the natural projection. Then:
flwrX) = bX;

FwrX\X) = bX\ X;

. bX is an end-Ti-extension of the space X;
f~Yx) = {x} for each x € X;

. bX € BE(X);

6. the natural projection f :wp X — bX is unique.

Proof. Let (Y1, fi) € GE(X), (Y2, f2) € WGE(X), ¢ : Y1 — Y3 be a
closed mapping and fo = ¢ o fi;. Then (Y2, f2) € GE(X). Thus the assertion
5 is proved.

Since f is a closed mapping and the set f(wrX) is dense in bX, then bX =
f(wrX). The assertion 1 is proved.

Obviously, bX\XC f(wr X\ X).

If z € w X \ X, then the set {z} is closed in wy X and the set {f(z)} is
closed in bX. Therefore the assertion 3 is proved.

Let x € X, y € w X\ X and f(y) = x. There exists an L-ultrafilter £ such
that y = £ and y € cl,, xF' for every F' = £. Since f is continuous, then
x € clpx F for every F € £. There exists H € £ such that x ¢ H. Then
f(< H>)=clyxH and clpx HNbX = H, a contradiction. The assertion 4 is
proved.

Let f, g : wgX — bX be two continuous mappings and f(z) = g(z) for
all z € X. Then f(< H >) = clpxH = g(< H >) for each H € L, f(y) =
MNcpxH : H e L,y e< H >} and g(y) = N{clpyxH : H € L,y €< H >}
for every y € wr X \ X. Thus f(y)=¢(y) for every y € wyX. The proof is
complete.

2.5.3. Theorem. The set QL(X) of all way-compactifications of the
space X is a complete upper semi-lattice and wy X is the maximal element in
QL(X).

Proof. Let {Y, : @ € A} be a non-empty subset of the set QL(X) and
fa 1w X — Y, be the natural projection of wy X onto Y,. Consider the

CU o=
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mapping f : wr X — I{Y, : a € A}, where f(y) = (fa(y) : « € A) for
every y € wrX. We put Y = f(wpX). Then f is a continuous mapping,
f1X is an embedding of X into Y, Y is a compactification of X, f(x)= x for
each x € X. For every a € A there exists a projection g, : Y — Y,, where
fa = gao f. Since go(A) = fo(f~1(A)) for each A C Y, the mapping g, is
closed. If FF C wr X, then f(F) =Y NII{fo(F) : « € A} and the mapping
f is closed. Therefore Y = V{Y, : @ € A} and QL(X) is a complete upper
semi-lattice. The proof is complete.

We put ap X = X U{a}, where a ¢ X and {U C X : U is open in X} U
{az X\ F : F C X, F is closed in w;, X} is the open base of the space ayX.
The mapping p : wr, X — ar X, where p~'(a) = wr X\ X and f(z) = x for each
x € X, is continuous. Thus ar X € WE(X) and a1 X is a compactification of
X.

2.5.4. Theorem. The following assertions are equivalent:

1. QL(X) is a complete lattice;

2. ar X is a minimal element of the lattice QL(X);

3. the set X is open in wp X;

4. a;, X is an end-T7-extension of X.

Proof. Let Y € QL(X), y1,y2 € Y\ X and y; # y2. We put Z =
Y \{y2}, p(y) =y for every y € Z, o(y2) = ¢(y1) = y1 and on Z consider the
quotient topology. Then ¢ : Y — Z is a closed mapping, Z is a compactifica-
tion of X, Z € QL(X) and Z <Y. Thus the compactification ¥ € QL(X) is
not a minimal element in QL(X) provided | Y \ X | > 2.

Let Y be the minimal element in QL(X) and f: wr, X — Y be the projec-
tion. Then Y \ X is a singleton, X is open in Y, X = f~!(X) is open in wy X
and Y =a; X.

If X is open in wp X, then the mapping p : wr X — apX is closed. The
proof is complete.

2.5.5. Theorem. Let X be a locally compact space and the [-base L be
a net in the space X. Then:

1. X is an open subset of wy X.

2. ar X is an waj-compactification of X.

3. ar, X is the minimal element of the complete lattice QL(X).

Proof. For every point x € X there exists an open subset U, such that
x € U, and the set &, = clxU, is compact. Every filter £ € w; X is an L-
ultrafilter. If F'is a closed subset of X, then cl,, xF =N{< H > H e L, F C
H}. Fix ¢ € X. There exists H, € L such that = ¢ H, and X \U, C H,.
Since L is a net of X, there exists F, € L such that x € F, CU, N (X \ Hy).
Thus &(x) ¢< H, >. Therefore v € wp X\ < Hy >. If £ € wr X \ X, then
there exists H € & such that HN®, = (). Then H C X \ U, C H, and
¢ €< H, >. Therefore V,, = wp, X\ < H; > is open in wy X and z € V, C X.
The assertion 1 is proved. The Theorem 2.5.4. completes the proof.
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2.5.6. Example. Let X be a non compact Tj-space. Denote by L; the
family of all closed subsets of X. Fix { e wX \ X. Wepuwt L={FUH: F ¢
& H e Li}. Then L is an I-base of X and | wr, X \ X |=1. Thus QL(X) is a
complete lattice and a singleton set. In this case w; X = arX.

2.5.7. Corollary. The set Q(X) of all wa-compactifications of the space
X is a complete upper semi-lattice with the maximal element wX.

2.5.8. Corollary. If the space X is locally compact, then Q(X) is a
complete lattice with the maximal element wX and minimal element aX, where
aX = a;, X for the [-base L of all closed subsets of X.

2.5.9. Corollary. For a T3-space X the following assertions are equivalent:

1. X is locally compact;

2. Q(X) is a complete lattice.

If X is a complete regular space X, then we denote by SC(X) the family of
all Hausdorff compactifications. In this case the Stone-Cech compactification
BX is the maximal element in SC(X) and SC(X) is a complete subsemi-lattice
of the upper semi-lattice Q(X).

2.5.10. Corollary (N. Boboc and G. Siretchi [22]). For a complete regular
space X the following assertions are equivalent:

1. X is locally compact;

2. SC(X) is a complete lattice and sublattice of Q(X).

If is well-know that the Stone-Cech compactification 83X of a completely
regular space X is a wa-compactification [3] of the Wallman-Shanin type (see
(3,50, 86,96, 109]).

From Theorem 2.1.5 it follows.

2.5.11. Corollary. Let X be an almost locally compact space, L be an
l[-base of X and f : wy X\ LC(X) — Y be a continuous perfect mapping onto a
Ty-space X such that f~!(x) = x for every x € X\ LC(X). Then there exists
a unique way-compactification bX of the space X such that bX \ LC(X) is
homeomorphic to Y.

2.5.12. Corollary. Let X be a locally compact space, L be an [-base of
X and Y be a Tj-space.

1. If there exists a closed mapping f : wr X \ X — Y onto Y, then there
exists a unique way-compactification bX of X such that the remainder bX \ X
is homeomorphic to Y.

2. If there exists a closed mapping f : wX \ X — Y onto Y, then there
exists an wa-compactification X of X such that the remainder bX \ X is
homeomorphic to Y.

From Theorem 2.2.2 it follows.

2.5.13. Corollary. Let L be an [-base of a space X and Y be a Tj-space.

1. If f: wr, X\ X — Y is an almost perfect mapping onto Yand ¢l,,, x N(f) C
wr,X \ X, then there exists a unique way-compactification bX of X such that
the remainder bX \ X is homeomorphic to Y.
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2. If f: wX\X — Y is an almost perfect mapping onto Yand ¢l,,, x N(f) C
wr,X \ X, then there exists an wa-compactification bX of X such that the
remainder bX \ X is homeomorphic to Y.

2.6. Spectral compactifications

Let SE(X) be the set of all spectral compactifications of a space X.

A mapping g : X — Y of a space X into a space Y is a spectral mapping if
g is continuous and a set ¢g~1(U) is compact provided the set U is open and
compact in Y.

IfY, Z € SE(X), then we consider that Z < Y if there exists a spectral
mapping g : Y — Z such that g(x) = x for every x € X. In this conditions
SE(X) is a complete upper semi-lattice with the maximal element GgX (see
Example 1.6.7).

Let L be an [-base of a space X. The filter £ C L is a simple L-filter if
EN{F,H} #0 provided FUH € ¢ and F, H € L. Every maximal L-filter is
simple. The filter {(z) is simple for every z € X.

Denote by sp X the set of all simple L-filters. For every H € L we put
<< H>>={{es,X:He} Then << L >>={<< H>>H¢€cL}is
a closed base of the space s; X. We identify z € X with {(z). Then X is a
subspace of s;. X, X is dense in s; X and the set s; X\ << H >> is open and
compact in sp X for every H € L. Thus s; X is a spectral compactification of
X. We mention that wr X C sp X.

If bX is a spectral compactification of X, then L = {X \ U : U is an open
and compact subset of bX } is an [-base of X and bX = wp X (see [24,25]).

In the papers [24,131,132] the class of all spectral compactifications was
constructed and studied using the functional rings.

We mention that the spectrum of the simple ideals of a ring in the Zariski
topology is a spectral space (see [132]).

3. Uniform extensions of topology spaces

In the present chapter every space is assumed to be a completely regular
T -space.

A uniform space (X, U) is a set X and a family U of entourages of the
diagonal A(X) ={(z, ) : x € X} of X in X x X which satisfies the following
conditions:

Up. fVeUand VCW, then Wt ={(z,y): (y, z) e W} eU.

Up. fV, W e U, then VAW €U.

Us. For every V € U there exists W € U such that 2W C V., where
2W = {(x, y) : there exists z € X such that (z, 2), (2, y) € W}.

Uy NU = A(X)

Denote by u—w(X, U) the weight of a uniform space (X,U). On a uniform
space (X, U) we consider the topology T'(U), generated by the uniformity U.
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Let X be a space with the topology 7. We put v —w(X) = min{u—w(X, U) :
TU)=T}+N.

If X is discrete or metrizable, then v — w(X) = Ro.

A pseudometric on a space X is a function p : X x X — R into the reals
such that p(z, ) =0, p(z, y) = p(y, =) and p(z, 2) < p(z, y) + p(y, z) for all
z,y, z € X. The pseudometric p is continuous if the sets B(p, z, r) = {y €
X :p(z,y) <r}, x€ X and r > 0, are open in X.

Every uniformity is generated by a family of pseudometrics [44].

3.1. Lattice UE(X)

A uniform extension of a space X is a complete uniform space (eX, U) that
contains X as a dense subspace.

Denote by UE(X) the family of all uniform extensions of a space X.

If (eX, U), (bX, V) € UE(X), then we consider that (e(X), U) > (bX, V)
if there exists a uniformly continuous mapping g : eX — bX such that g(z) = =
for each z € X.

3.1.1. Proposition. The set UFE(X) is a complete upper semi-lattice for
every non-empty space X.

Proof. See Example 1.6.5

In the present chapter we consider the following two problems.

Problem 1. Let P be a property, X be a space and (Y, V') be a complete
uniform space with the property P. Under which conditions there exists a
uniform extension (Z, U) of X such that:

1. (Z, U) is a uniform space with the property P;

2. the uniform space (Y, V') is uniformly isomorphic to the subspace Z \ X
of (Z,U)?

Problem 2. Let X be a space and (Y, V) be a complete uniform space.
Under which conditions there exists a uniform extension (Z, U) of X such
that (Y, V) is uniformly isomorphic to some subspace H C Z\ X of the space
(Z,U)?

Concrete results related to the solution of the problems of this type play an
important role in the study of classes of spaces and complete uniform spaces.

3.2. Discrete subspaces and uniform extensions

A subset L of a space X is strongly discrete if there exists a discrete family
{H; : x € L} of open subsets of X such that L N H, = {z} for every x € L.
For every space X we put DS(X) = {|L| : L is a strongly discrete infinite
subset of X} and d(X) = min{|H|: H is a dense subset of the space X}.

If Y is a subspace of a space X, then we denote DS(X,Y) = {|H|: H C
X \Y and H is a strongly discrete infinite subset of X }.

3.2.1. Proposition. Let Y be a subset of a space X, p and d be continuous
pseudometrics on the space X, r > 0, X1 = {z € X : d(z, y) < 2r for some
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ye€Y}and Xo = {z € X : d(z,y) < r for some y € Y}. Then there
exists a continuous pseudometric p; on X such that pi(z, y) = p(z, y) and
p1(z, u) =0 for all z,y € X \ X; and z, u € Xo. We say that p; is the (d,
r)-modification of the pseudometric p.

Proof. Let pos = d+p. There exist a set Z, a metric p3 on Z and a mapping
p: X — Z such that ps(p(z), p(y)) = p2(x, y) for every z, y € X. We have
p Y (p(z)) = {y € X : pa(w, y) = 0}. There exists a continuous pseudometric
p4 on Z such that ps(p(x), p(y)) = p(x, y) for all z, y € X.

Moreover, on Z there exists a continuous pseudometric dy such that
di(p(z), p(y)) = d(z, y) for all z, y € X.

Now we put Zo = {2z € Z : di(z, y) < r for some y € p(Y)} and Z; = {z €
Z 1 di(z,y) < 2r for some y € p(Y)}. By construction, clyZy C Z1, Z; and
Zy are open subsets of Z and Z \Z; is closed subset of Z.

Since Z is a metric space, there exists a continuous pseudometrics ps on
Z such that ps(z, y) = pa(z, y) for all z, y € Z\ Z; and ps(z, y) = 0 for
all 7,y € Zy (see [36, 101]). Obviously, X; = p~%(Z;), i € {1, 2}. Thus,
p1(z, y) = ps(p(x), p(y)) is the desired pseudometric.

3.2.2. Proposition. Let d be a continuous pseudometric on a space X,
Z C X, p be a continuous pseudometric on a space Y, r > 0, Y7 be a subset of
Y, f:Y1 — Z be an one-to-one mapping of Y; onto Z, d(x, y) > 3r provided
z,ye€ Zand x #y. Weput H, = {z € X : d(z, z) <r} for every z € Z. Let
X7 =X UY. Then:

1. {H, : z € Z} is a discrete family of closed subsets of the space X;

2. there exists a pseudometric p; on X; such that:

~ (e, ) = pl, y) for all 2, y € V'

- p1(y, f(y)) =0 for each y € Y;

—p1(y, ) = ply, f12))+d(z,x)ify €Y, 2€ Z and x € Hy;

- B(p1,y, r)NX CU{H,:z€ Z} for each y € Y;

— for every x € X; and £ > 0 the set B(p1, z, €) NY is open in Y and the
set B(p1, x, €) N X is open in X.

We say that p; is the (d, r)-extension of the pseudometric p.

Proof. There exist a metric space (Y2, p2) and a mapping p : Y — Y5 such
that p2(p(y), p(2)) = p(y, 2) for all y, z € Y. We put Y3 = p(¥1).

There exist a metric space (X3, di) and a mapping ¢ : X — Xo such that
di(q(z), q(y)) = d(x, y) for all z, y € X. We put Z; = ¢(Z). The mapping
@1 =q|Z:Z — Zy is one-to-one. Let g(z) = p(f (g7 (2))) for every z € Z;
. By construction, dy(y, z) > 3rify, z € Z; and y # z.

The discrete sum X3 = Y5 @ X5 is a metric space. Let P, = {z € X5 :
di(z, ) < r} for every z € Z1. Then H, = ¢~ '(Py,)) and {P. : z € Z1} is a
discrete family of closed subsets of the space Xs.

Weput V, ={z e Xy :di(z,z) <r},V=WV,:2€ Z1} and P = U{P;, :
z € Z1}. On Q = PUY; we consider the pseudometric p3, where:
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= p3(z, y) = pa(z, y) if 7, y € Yo;

—p3(z, 9(2)) = p3(g(2), 2) =0 if z € Zy;

~p3(y, ©) = p3 (90, y) = p2(y, 9(2)) +di(z, z) if y € Yo, 2 € Zy and x € Py;

- p3(z, y) = di(x, y) if z, y € P,; for some z € Zy;

—p3(z, y) =d(z, 21)+p ( (21), 9(22))+di1(22, y) if 21, 22 € Z1, 21 # 22, T €
P, ,y€P,.

By construction, the pseudometric p3 is continuous on the closed subset
Q@ of the metric space X3. Thus, there exists a continuous pseudometric py
on X3 such that pys(z, y) = ps(z, y) for all z, y € Q. Consider the mapping
p: XBY — X3, where p| X = qand ¢ |Y = p. Let pi1(z, y) = pa(o(z), ¢(y))
for all x, y € X ®Y. The proof is complete.

A space X is called a space of pointwise countable type if for every point
x € X there exists a compact subset ®(z) > x of countable character in X
(see [10]).

A space X is called a space of countable type if for every compact subset
F C X there exists a compact subset ®(F') O F of countable character in X
(see [10,61]). M. Henriksen and J. R. Isbell [61] has proved that X is a space
of countable type iff the remainder X \ X is a Lindel6f space.

3.2.3. Proposition. Let X =Y U Z, where Y is a closed subspace of the
space X and every compact subset F' C Yof a countable character in Y has a
countable character in X. Then:

1. X is a first countable space iff Y and Z are the first countable spaces;

2. X is a space of pointwise countable type iff Y and Z are spaces of
pointwise countable type;

3. X is a space of countable type iff Y and Z are spaces of countable type.

Proof. The assertions 1 and 2 are obvious.

Let X be a space of countable type. Then Y is a space of countable type
as a closed subspace of X and Z is a space of countable type as an open
subspace of space of countable type. Suppose that Y and Z are spaces of
countable type. We put Y; = clgxY \'Y and Z; = clgxZ \ Z. By virtue of
Theorem of M. Henriksen and J. R. Isbell [61], Y7 and Z; are Lindel6f spaces.
We affirm that X; = X\ X is a Lindel6f spaces. Let {U, : o € A} be a cover
of the set X; and U, is open in X for every a € A. Since Y; is a Lindelof
space and Y7 C U{U, : a € A}, there exists a countable subset A; C A such
that Y1 C U{U, : @ € A}. Then F = Y \ U{U, : a € A;} is a compact
subset of Y and there exists a compact subset ® C Y such that FF C ® and ¢
has countable character in X. Thus ® is a Gs-subset of X and Zy = Z \ ®
is an Fs-subset of Z;. Thus Zs is a Lindel6f subspace of 3X. Moreover,
Zs = Zo \ U{U, : @ € A1} is a Lindel6f subspace of fX. By construction
Z3 C X1 CU{U, : a € A}. Therefore there exists a countable subset Ay C A
such that A1 C Ay and Z3 C U{U, : a € Ay}. So {U, : @ € Ay} is a countable
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cover of X;. The M. Heriksen’s and J. R. Isbell’s theorem [61] completes the
proof.

3.2.4. Proposition. Let X =Y U Z, Y be a closed subspace of the space
X, Y1 be a subset of Y and {V,,(y) : n € N,y € Y1} be a family of open
subsets of the space X such that:

-ify, z € Y7 and y # z, then clx Vi (y) Nely Vi(z) =0;

-ify €Yy and n € N, then clxV,41(y) C{y} U Vi(y);

- the family {Vi(y) : y € Y1} is discrete in Z and U{Vi(y) :y € Y1} C Z;

- if U is an open subset of Y, the set U UU{V,,(y) : y € UNY7} is open in X
for every n € N;

-if Uis open in X and y € UNY, then V,(y) C U for some n € N;

-YNZ=0.

A. The following assertions are true:

1. IV, =U{Y UV,(y) : y € Y1}, then V,, is open in X and clxV,,+1 CV,
for every n € N.

22Y={V,:ne N} =n{cxV, :ne N}

3. If the spaces Y and Z are paracompact spaces, then X is paracompact.

B. If for every open subset U of X and every point « € U there exist n € N
and an open subset Vof X such that t €¢ V CVUU{V,(y) :y e VNY1} CU,
then the following assertions are true:

4. If the subspaces Y and Z are normal, then X is a normal space.

5. If Y and Z are perfectly normal spaces, then X is a perfectly normal
space.

6. If a compact subset /' C Y has a countable character in Y, then F' has
a countable character in X.

7. If Y and Z are the first countable spaces, then X is first countable.

8. If Y and Z are spaces of countable (pointwise countable) types, then X
is a space of countable (pointwise countable) type.

9. If Y and Z are metrizable spaces, then X is a metrizable space.

10. If Y and Z are complete metrizable spaces, then X is a complete
metrizable space.

11. If Y and Z are paracompact p-spaces, then X is a paracompact p-space.

12. If Y and Z are Cech complete paracompact spaces, then X is a Cech
complete paracompact space.

Proof. The assertions 1 and 2 are obvious.

Let Y and Z be paracompact spaces and w be an open cover of the space
X. There exists a sequence {&], = {V. : a« € A,} : n € N} of open discrete
families of the space Y such that for every n € N and every a € A, there is
W, € w such that V. C W, and Y = U{V : « € U{A,, : n € N}}. We put
Vo =VoUU{W,NVa(y) sy € YiNV.}. Then &, = {V,: a € A,} is a discrete
family of open subsets of X.
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There exists a sequence {\, = {Ug : 8 € Bn} : n € N} of open discrete
families of the space Z for which Z = U{Us : 8 € U{B,, : n € N}} and for
every € U{B,, : n € N} there exists Wz € w such that Ug C W3. For every
n,meN we put A\py, = {Ug \ clx Vi, : B € By} Then {&,, A : n,m € N} is
a o-discrete refinement of the cover w. Thus X is a paracompact space (see
[44], Theorem 5.1.11).

Suppose that for every open subset U of X and point z € U there exist a
natural number n = n(z,U) and an open subset V' =V (z,U) of X such that
xeVCUWVUV(y):yeV N} CU.

Let Y and Z be normal spaces, ' and ® be closed subsets of X and ®NF =
0.

Let F CY and dNY = (. For every y € F there exists n = n(y) =
n(y, X \ ®) and an open subset V;, of V such that W, N ® = (), where W, =
UV, UVo(y) :y € VynY1}. Let Fy, = {y € F : n(y) < m}. Then F =
U{Fym : m € N} and F,, C Fy,y; for every n € N. Weput W,, = U{V, : y €
F.Y, WI=uW,uV,(y):y e WonYi}, W= U{W,UV,1(y) : y €
W,nY1}, H = U{W/) :ne€ N} and Hy = U{W/ : n € N}. By construction,
Hs C Hy,clxHy, C HHUY and HiN® = (. Thus F C Hy and ® C X\Cleg.

Let F CY and ®NY # (). There exist two open subsets H; and Hy of Y
such that FF C H1,YN® C Hy and HiNHy = 0. Let Hf = U{H 1 UVa(y) 1y €
Hi Y1}, H) = U{H2UVa(y) : y € HoNY1} and @1 = &\ H). Then @, is closed
in X and ®; NY = (. Thus there exist two open subsets H{ C H{ and Hy of
X such that F C H{,®; C HY and H/ N HY = (. Let HY’ = H, U H/.Then
¢ C HY and H{ N HY = 0.

Suppose now that FNY = (). Then there exist the open subsets H{, H{, H),
and HY of X such that H{NH, = H/NHY =0, FNY C H{,® C H), F\H| C
HY{ and ® C HY. Let H; = H{UHY and Hy = H,NHY. Then F C Hy,® C Ho
and Hy; N Hy = (). The assertion 4 is proved. The assertion 5 follows from the
assertions 1,2 and 4.

Let F be a compact subset of Y, {H, : n € N} be a sequence of open
subsets of Y and for every open subset U O F there exists ne N such that
F C H, CU. We put Hy, = U{H, UV,,(y) : y € H, NY1}. The sets Hyp,
are open in X. Let U be an open subset of X and F' C U. There exists a
finite set F’ of F' such that F C U{V(z,U) : © € F'}. There exists n such
that F C H,, C U{V(2,U) : x € F'} and max{n(z,U) : € F'} < n. Then
F C H,,, CU. Thus F has a countable character in X. The assertion 6 is
proved. The assertions 7 and 8 follow from the assertion 6 and Proposition
3.2.3.

Let Y and Z be metric spaces. Fix a metric p; on a space Y. For every
y € Y7 on a space Z, = clVi(y) fix a metric dy such that V,(y) C {z € Z, :
dy(y,z) <27} Now on U{Y U Z, : y € Y1} we construct the metric pp such
that:
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—pax,z) = p1(z,2) if 2,z €Y,

—pa(z,2) =dy(z,2) if y €Y7 and z, 2 € Zy;

= pa(x,2) = dy, (z,91) + p1(Y1,¥2) + dy, (Y2, 2) if y1,y2 € Yoyn # Y2, 0 € Zy,
and z € Z,.

Obviously, ps is a metric on a subspace X1 = U{Y U Z, : y € Y1}. Thus
the paracompact space X is a union of two open metrizable subspaces Xo =
WY UVi(y) 1y € Y1} and X3 = Z\Y.Thus X is a metrizable spaces. Suppose
that Y and Z be complete metric spaces, In this case we consider that the
metrics p; and d, are complete. Then there exists a metric p on X such that:

— p is complete on Z \ U{Va(y) : y € Y1};

B p(mvy) = ,OQ(I',y) if z7y€X1-

We affirm that the metric p is complete. Let {x,:n € N} be a sequence of
points and p(zy, Tm) < 27" provided n < m. Obviously, the sequence {x,} is
convergent in X in the following cases:

— the set {n € N : z,, € Y} is infinite;

— there exists y € Y] such that the set {n € N : z, € Zy} is infinite;

— there exists m € N such that the set {n € N :x, € Z\{Vin(y) : y € Y1}}
is infinite.

Suppose that for every n € N there exists y, € Y7 such that:

= Tp € LYn;

= Yn # Ym for n #m.

— In this case p(ynvym) < p(xnvyn) + p(ynaym) + p(ym,xm) = p((En,J}m)
and there exists y € Y such that y=limy,. By construction, y = lim z,,. The
assertions 9 and 10 are proved.

Let Y and Z be two paracompact p-spaces. Fix a perfect mapping ¢ :
Y — Y’ onto a metric space Y’. Since Z is a paracompact space, we may
consider that V;,(y) is a co-zero set of Z for all y € Y7 and n € N. Because the
family {Vi(y) : y € Y1} is discrete in Z, then there exists a perfect mapping
VU : Z — Z' onto a metric space Z’ such that U~1(¥(V,,(y))) = V,(y) for all
yeYandn e N.

Let X' =Y'U Z'. Consider the mapping g : X — X', where ¢ = ¢g|Y and
U = g|Z. On X’ we consider the quotient topology {U C X' : g~}(U) is open
in X'}. By construction, the mapping g is perfect. We put Y{ = g(¥1) = ¢(Y1)
and V/!(2) = U{¥(V,,(y)) : y € ¥71(2)} for all z € Y{ and n € N. By virtue of
the assertion 9 the space X’ is metrizable. If the spaces Y and Z are complete
metrizable, then the space X'is complete metrizable. The assertions 11 and
12 are proved. The proof is complete.

3.2.5. Theorem. Let (e¢;X,U;) be a uniform extension of a space X,Y
be an infinite discrete space and |Y'| € DS(e1X).Then there exists a uniform
extension (eX,U) of X such that:

1. (eX,U) is a uniform extension of the space e; X;

2. eX=e1 X UY and Y is a strongly discrete subset of the space eX;
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3au—w(eX,U)=u—w(e1 X,Uy);

4. if e1 X is a paracompact space, then eX is a paracompact space;

5. if e1.X is a normal space, then eX is a normal space;

6. if e; X is a collectionwise normal space, then eX is a collectionwise normal
space;

7. if e1 Xis a metacompact space, then eX is a metacompact space;

8. if e1 X is a perfectly normal space, then eX is a perfectly normal space;

9. if e; X is Cech complete, then eX is a Cech complete space;

10. if e1X is a p-space, then eX is a p-space;

11. the space eX has a countable base at every point y € Y;

12. if e; X is a first countable space, then eX is a first countable space;

13. if e1 X is a space of pointwise countable type, then eX is a space of
pointwise countable type.

Proof. In the space e; X we fix a discrete family {H, : a € A} of non-
empty open subsets, where |A| = |Y|. For every a € A fix a point b, € XN H,,
and a continuous function h,, : e1 X — [0, 1], where hq(by) = 1 and 1 X \ H, C
h;1(0). Let h: A — Y be a mapping such that the set h~!(y) is countable for
each y € Y. We consider that h™(y) = {a(n,y) : n € N} and by, ) = z(n, y)
forevery y € Y and n € N .

There exists a family P of continuous pseudometrics on e; X such that P
generates the uniformity U; on e1 X and py 4+ p2 € P for all p;,ps € P. We
consider that p(by,bp) > 1 for all p € P,a,u € A and a # p.

Let U(n,y) = U{Ha(m,y) U{y}t:m > n}ag(n,y)(y) = 1vg(n,y)(2) = 0 and
Iny) (@) = E{ha@m,y) : m > n} for every y,z € Y,y # 2,7 € e1X and neN.

We put dn(z,2) = Y {l (9ny)(®) = gy (2) |1y €Y} and d(x,2) =
Y A{2™"dy(x,2) :n € N} for all z,z €eX and n € N.

By construction:

—d(y,z)=2ify,z€eY and y # z ;

—d(y,z(n,y))=2""foreveryy € Y and n € N ;

— B(d,y,27"" 1) CU(n,y) for every y € Y and n € N ;

— B(d,z,r)Ne1 X is open in e; X for every x €eX and r;0.

On eX we consider the topology generated by the open base { B(d,y,2™"):y €
Y,n € N}JU{U C e; X:U is open in e; X}. At every point y € Y the space
eX has a countable base and the set Y is strongly discrete in eX. From these
properties of a space eX it follows the assertions 4-10 and 2. Obviously,
clex{ba : @« € A} DY. Therefore the sets X and e; X are dense in eX.

Fix a pseudometric p € P and n € N. Let X,, = U{B(d,y,27") : y € Y}
and Y, =Y U ({fa : @ € A} N X,,). By virtue of Proposition 3.2.1, on eX ,
there exists a continuous pseudometric e,(p) such that e, (p)(x,y)= p(x,y), if
z,y €eX\X,, and e,(p)(x,y)=0, if z,y € X,,42. Then P, = {a+en(p) : p €
P,n € N} is a family of continous pseudometrics on eX which generates the
topology of the space eX and some uniformity U on eX.
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We affirm that the uniform space (eX,U) is complete, i.e.(eX,U) is a uni-
form extension of the spaces e; X and X.

Let £ be a Cauchy filter of closed subsets of the space eX.

Case 1. Y € &.

Fix p1 = d + e1(p) € P1. There exists ® € £ such that p(x,y) < 1 for all
z,y € Pand ® CY. Let z € . If yeY and y # z, then pi(z,y) > d(z,y) =
Thus ® is a singleton set and NE = & # ().

Case 2. Y ¢ ¢.

There exists ® € ¢ such that ®NY = (). We may consider that d(z,y) < 274
for all z,y € ®. Let Yo = {y € Y : d(y, ®) < 274}. If Yy = 0, then X, N® = (),
F = X\ Xy is a closed subset of eX, ® C F and F € £. In this case £ is a
Cauchy filter of the uniform space (e; X, U;) and NE # 0.

Suppose that Yy # (). Then the set Yj is a singleton set. If y;, 32 € Yy, then
there exists x1,22 € ® such that d(y;,z1) < 27* and d(y2,22) € ®. Then
d(y1,y2) < d(y1,@1) + d(z1,22) + d(22,92) <3-27% <272 <2 and y; = ys.
Suppose that Yo={yo}. Since the set ® is closed in eX and yy # P, then
there exists n > 4 such that B(d,y0,27") N ® = (. In this case X, NP = 0,
eX \ X, € € and ¢ is a Cauchy filter of the uniform space (e; X, U;). Therefore
NE # (). The proof is complete.

3.2.6. Theorem. Let (e;.X, U;) be a uniform extension of a space X, (Y,v)
be a complete uniform space and d(Y,v) €DS(e1X,U;). Then there exists a
uniform extension (eX,U) of X such that:

1.(eX,U) is a uniform extension of the space (e1X,T(Ui)); 2. (Y,v) is
uniformly isomorphic to the subspace eX\e1 X of (eX, U); 3. u—w(eX,U) <
u—w(e1 X, Up)+u—w(Y,v); 4. if e; X and Y are paracompact Cech complete
spaces, then eX is a paracompact Cech complete space; 5. if e; X and Y are
paracompact p-spaces, then eX is a paracompact p-space; 6. if e X and Y
are paracompact spaces, then eX is a paracompact space; 7. if e1.X and Y are
normal spaces, then X is a normal space; 8.if e X and Y are perfectly normal
spaces, then X is a perfectly normal space; 9. if e1 X and Y are first countable
spaces, then X is a first countable space; 10. if e;X and Y are spaces of
pointwise countable type, then X is a space of pointwise countable type; 11. if
e1X and Y are spaces of countable type, then X is a space of countable type;
12. if e1X and Y are metrizable spaces, then X is a metrizable space.

Proof. Let Y] be a dense subset of the space Y and |Y;| = d(Y"). In the proof
of Proposition 3.2.1 there were constructed a uniform extension (e2 X, Us) of a
space e1 X, a continuous pseudometric d on ea X and a family P; of continuous
pseudometrics on eo X such that:

~Z = e3X \ e1X is a strongly discrete subspace of the space e2 X ;

—|Z] = |Y1], i.e. there exists a one-to-one correspondence h : Y, — Z;

—ifz,y € Z and x # y, then d(x,y) = 3 and p(z,y) = 0 for every p € Pr;

— the space e3 X has a countable base at every point y € Z;
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- {B(d,y,27") : n € N} is a base of the space e2X at a point y € Z;

— if p € Pp, then there exists neN such that p(x,z) = 0 for all z,z €
U{B(d,y,27™) 1y € Z};

— the family of pseudometrics Py = {d+p : p € P;} generates the uniformity
Us on a space e2 X;

— for every n € N the family P; generates on e1 X \U{B(d,y,27"):y € Y1}
the uniformity Uj.

Suppose that the uniformity V of the space Y is generated by the family
Pj3 of continuous pseudometrics.

We put eX =1 X UY.

For every p € Ps let e(p) be the (d, 1)-extension of the pseudometrics p on
eX. We identify the point y € Y; with the point h(y) € Z.

Fix p € P, and n € N. Let p/ be the (d,27")-modification of the pseu-
dometric p on e2X. We fix 29 € Z and put e,(p)(z,y) = p'(z,y) if z,y €
erX,en(p) = 0if 2,y € Y and en(p)(z,y) = en(p)(y,2) = p'(20,2) if y €Y
and z € e1 X. Now we put P = {e(p1) +en(p2) : p1 € P3,p2 € Prand n € N}.
The pseudometrics P generates the uniformity U on eX.

Obviously, (Y, V) is a uniform subspace of the space (eX,U), e; X is a dense
subspace of the space eX.

Let £ be a Cauchy filter of a space (X,U). The filter £ is convergent in X
in the following cases:

—® CY for some ¢ € &;

- O C e X \U{B(d,y,27") : y € Y1} for some neN and ¢ € ¢&;

— there exist n € N, y € Y and ® € £ such that ® C B(d,y,2™").

Suppose that for every n € N and ® € & the set n(®) = cix{y € Y7 :
® N B(d,y,27") # 0} is non-empty. Then n = {n(®) : ® € {,n € N} is a
Cauchy filter of the space (Y, V). If y € Nn, then y € NE. Therefore (X, U) is
a complete space and a complete extension of Y and e; X. Proposition 3.2.4
completes the proof.

3.2.7. Problems. Let P be a topological property and Y and e; X be
two spaces with the property P. Is it true that eX has the property P in the
following cases:

a) P is the property to be a metacompact space;

b) P is the property to be a p-space;

c¢) P is the property to be a Cech complete space;

d) P is the property to be a space with a G-diagonal;
e) P is the property to be a symmetrizable space.

3.3. The gluing operation and o-discretness

For every point x of a space X we put DS(z, X) = "{DS(clxH) : H is
openin X andx € H}, 7—ds(z, X) ={sup A: AC DS(z, X) and |A| < 7}
and ds(x, X) =Ny — ds(z, X).
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If X is a metric space or a space with a o-discrete net, then sup DS(z, X) €
ds(z, X).

For every subset A of a space X, by A? we denote the derived set of A, i.
e. the set of accumulation points of A.

3.3.1. Definition ((see [20]) for metric spaces). Let (X1, Uy) be a uniform
space, let A be a non-empty subset of the set X¢ and {(Yz, V,) : # € A} be a
family of complete uniform spaces. A uniform extension (Y, V') of the space
X = X; \ A is obtained by gluing the space (Y, V,) at the point = for every
x € A if the following conditions are satisfied:

Gi.Y=XUU{Y,:x € A},

Go. (Yz, V,) is a uniform subspace of the space (Y, V') for each = € A;

Gs. the subspace X is dense in Y;

Gy4. the natural mapping f : Y — X, where f(x) = z for every z € X and
f~Yx) =Y, for each z € A, is continuous;

Gs. if z, y € A and = # y, then Y, NY, =0.

3.3.2. Definition. Let (X, U;) be a uniform space, A be a non-empty
subset of X{ and a uniform extension (Y,V') the space X = X\ 4 is obtained
by gluing of the space (Y, V;) at the point = for every z € A. The gluing is
strongly at the point xy € A if for every open subset H of Y | that contains
Y., there exists an open subset U of X; such that 2o € U and Y, C H for
eachze ANU.

A mapping f: X — Y is called:

- a closed mapping at a point y € Y if f~1(y) # () and for every open subset
U C X, that contains f~!(y), there exists an open subset V of Y such that
yeVand f~Y(V) CU;

- a perfect mapping of a point y € Y if f~1(y) is a compact subset and f is
closed at y.

Gluing is strongly at a point x € A iff the natural mapping p: Y — Xy is
closed at a point z.

From the E. Michal’s theorem [78] it follows.

3.3.3. Corollary. Let (X, U1) be a space of pointwise countable type,
AC X{, X =X\ A and the uniform extension (Y, V) of X is obtained by
gluing the spaces {(Yz, V) : © € A} at the points of A.

The following assertions are equivalent:

1. the natural mapping p : ¥ — X is perfect; 2. gluing is strongly at each
point z € A.

Let p be a continuous pseudometric on a space X. There exist a metric

space (X/p, p) and a natural projection m, : X — X/p, where 7, ! (m,(z)) =
{y € X : p(z, y) = 0} and p(z, y) = p(my(x), my(y)) for all x, y € X. The
natural projection is continuous. Denote by X/p the completion of a metric

space (X/p, ).
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3.3.4. Definition. Let p be a continuous pseudometric on a space X.
The pseudometric p is a metric on a subset A C X if for every point z € A
and every open subset U C X that contains x there exists € > 0 such that
B(z, p,e) CU.

3.3.5. Proposition. Let (X1, U;) be a complete uniform space, A C X{,
X = X1 \ A, a continuous pseudometric d on X; is a metric on the set A,
{(Yz, Vz) : x € A} is a family of complete uniform spaces and the uniform
extension (Z, W) of the space Z; = X1/d \ m4(A) is obtained by gluing the
space (Y, V) at a point 7,(x) for every z € A. Then:

1.there exists a uniform extension (Y, V) of a space X which is a gluing of
the spaces (Y., V) at the points x € A; 2. if x € A and the gluing of (Y, V,,)
is strongly in Z, then the gluing of (Y., V,.) is strongly in X3, too; 3. (Y, V)
is uniformly isomorphic to some closed subspace of the Cartesian product of
the spaces (X1, Uy) and (Z, W).

Proof. Consider the projection 7y : X1 — Xj/d and the set A1 = my(A).
Let (Z, W) be the uniform extension of the space Z' = X;/d\ A; obtained
by gluing each space (Y., V;) at a point mg(z), x € A. By definition, Z =
Z'UU{Y, :x € A}

We put Y = X UU{Y, : « € A}. Consider the mappings p : ¥ — X; and
q:Y — Z, where:

- p(z) = x and ¢q(z) = m4(x) for each x € X;

- p~Y(x) = Y, for each x € A;

-q(y) =y for every y € Y, and z € A.

Now we consider the mapping ¢ : Y — X1 x Z, where ¢(y) = (p(v), q(v))
for every y € Y. By construction, ¢(y) # ¢(z) provided y, z € Y and y # z.
We identify y € Y with ¢(y) and consider Y = ¢(Y') as a uniform subspace
of the uniform space X1 x Z. Since ¢(Y;) =Y, for every z € A, (Y, V) is a
uniform subspace of the space Y.

Since p| X : X — X is an embedding and the mapping ¢ | X — Z is con-
tinuous, the space X = ¢(X) is a subspace of the space Y.

Let (z,2) € X1 x Z and (z, 2) ¢ Y = (V).

Case 1. z € X.

In this case z € Y and 7g(x) = ¢(x) # z. There exist two open subsets H;
and Hy of Z such that wy(x) € Hy, z € Hy and HiNHy =0. Let Hy = W;l(Hl)
and H = Hs X Hy. Then (z, z) € H and HNp(Y) =0.

Case 2. ¢ € A. L

In this case z ¢ Y, and z # m4(x). If r : Z — X;/d is the natural projection,
then r(z) # m4(z) and there exist two open subsets H; and Hy of Z such that
ma(z) € Hi, r(2) € Hy and Hi N Hy = 0. Let Hy = 7, (Hy), Hy = v~ (H>)
and H = H3 x Hy. Then (z, z) € H and H N ¢(Y) = (. Therefore p(Y) is a
closed subset of the space X; x Z.

Obviously, that the set X is dense in Y. The proof is complete.




Extensions and mappings of topological spaces 59

3.3.6. Proposition. Let (X;, d) be a complete metric space, X be a
dense subset of X, X7\ X = L, let {(Y,, V3) : € L} be a family of complete
uniform spaces, L = U{L,, : n € N}, where L, is a closed discrete subset of
X, for each n € N, L, N\ Ly, =0 for n # m, {H; : © € L} be a family of open
subsets of X1, {L,z :x € L, n € N} be a family of closed discrete subsets of
X7 such that:

A;. for every n € N the set M,, = L, UU{L,x : x € L, } is closed in Xj;

Ay. for every n € N the family {H, : x € L} is discrete in X7;

As. if myn € N,m #n and x € L, then x € H, \ Ly,x, Lz N Lyz =0
and L,z C Hy;

Ay ifx € L and x, € Lyx for n € N, then d(z, z,) < 27"

As. if m,n € N, n<m and H,, = U{H, : z € L,,}, then M,, N clH,, =0;

Ag. If x € L, then |Lyz| < |Lp41z| for each n € N, 7(x) = sup{Ly,x : m €
N} is an infinite cardinal and d(Y,) = 7(z).

Then there exists a uniform extension (Y, V) of the space X such that:

1.Y=XUU{Y;:2z € L} and (Y, V) is a gluing of the spaces (Y, V;) at
the points x € L; 2. u—w(Y, V) =sup{u —w(Ysz, Vz):x € L}; 3. ifx € L
and x,, € L,x, then the sequence {z, : n € N} is convergent to some point of
Yo, 4. Y, Cely(U{Lpx :n € N}) for every x € L; 5. if x € L and y € Yy,
then x(y, Y) = x(y, Yz); 6. if {Y, : © € L} are paracompact p-spaces, then Y
is a paracompact p-space; 7. if {Y, : x € L} are Cech complete paracompact
spaces, then Y is a Cech complete paracompact space.

Proof. Fix x € L. There exists a set A, of cardinality 7(x). Assume that
Ay =U{A,z : n € N}, where:

-if n <m, then A,z C A,x;

- |Apz| = |Lyz| for each n € N.

We may suppose that L,z = {zpe : @ € Ayz} and A, N A, =0 for x # y.
Let {yq : @ € Az} be a dense subset of the space Y.

Let Y = XUU{Y,:x e L}, L, =U{L; : i <n}and Y, = (X1 \ L)) UU{Y, :
xz € L} for every n € N. If n, m € N and n < m, then consider the natural
projection p(,, n) : Ym — Yn, where:

= Pim,n)(2) = 7 if v € X;

—ifz € Lj, and y € Yz, then p(, ) (y) = y;

- p(_nin)(x) =Y, ifxe L], \L,.

For every n € N there exist the projections p(, ,,) : Y — Yy, p: YV — Xj
and p,, : Y,, — X7 such that:

~ Pw,n)(@) =p() =pn(z) =2 if 2 € X;

—ifx € Lj, and y € Yy, then py(y) = p(y) = = and p(,, ) (y) = ¥;

—if x € L'\ L},, then p,(z) = 2 and p(zjln)(:c) =Y.

We assume that L1 = () and Y7 = X].
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Fix n € N, where n > 2. Let X/ = X; \ L/,\. On a set X,, = X, UU{A, :
x € L]} there exists a complete metric d,, such that:

— the metrizable space (X],, d) is a subspace of the space (X,,, d,);

—if z € L], and o € A, then limd,(d, o) = 0 and d,,(d, xma) < 1 for
every m € N;

—ifa, € U{A; iz € L} and « # 3, then d,,(«, 5) > 3.

By virtue of Theorem 3.2.5 there exists a uniform structure V,, on Y,, such
that:

1. (Y, V4,) is a uniform extension of the space X/ and Y,, \ X/ is uniformly
isomorphic to the discrete sum of the uniform spaces {(Y,, V) : x € L }; 2.

—w(Yy, V) =sup{u —w(Yy, Vi) :x € LI}; 3. if x € L], and o € A, then
Yo = limxpq; 4. if {(Yz, Vi) : @ € L} are paracompact spaces, then Y, is a
paracompact space; 5. if {Y; : x € L} are p-spaces, then Y, is a p-space; 6. if
{Yy:x €L} are Cech complete spaces, then Y;, is a Cech complete space.

Consider the mapping ¢ : Y — II{Y,, : n € N}, where ¢(y) = (p(w,n)(¥) :
n € N) for every y € Y. The set p(Y) is closed in II{Y;, : n € N}. We identify
Y with ¢(Y') and consider (Y, V') as a closed subspace of IT{(Y,, V;,) : n € N}.
The proof is complete.

3.3.7. Theorem. Let (e;X, U;) be a first-countable uniform extension
of a space X, let L, C eX \ X be a strongly discrete subset of the space
erX,let L = U{L, :n € N}, {(Yz, Vo) : x € L} be a family of complete
uniform spaces and let d{(Y,, V;) € ds(z, X) for every x € L. If (e1 X, Uy) is
a Baire space, then there exists a uniform extension (eX, U) and a uniformly
continuous mapping g : eX — e; X such that:

1. g(x) =z for every x € e1X \ L; 2. for every z € L the space (Y, V;) is
uniformly isomorphic to the subspace g~!(z) of (eX, U); 3. u — w(eX, U) <
u—w(eX, Uy) +sup{u —w(Yy, Vz) : « € L}; 4. if {e1 X, : o € L} are
Cech complete spaces, then eX is a paracompact Cech complete space; 5.
if (e1X,,Y;) : © € L are paracompact p-spaces, then eX is a paracompact
p-space; 6. x(y, eX) = x(y, Yz) for every y € Y, and x € L.

Proof. For every z € L we fix a sequence {m,(z) € DS(z, X) : n € N}
such that:

— Tp(z) < Tyi1(x) for every n € N;

—d(Yy, Vi) =sup{r,(z) :n € N}.

Let 7(z) = sup{m.(x) : n € N}, A, be a set of cardinality 7(z), A,z be a
subset of A, of cardinality 7,(z) and A,z C A, 41z for every n € N.

Since {Ly, : n € N} are strongly discrete sets of the first countable Baire
space e1 X, then there exist a family {H, : © € L} of open subsets of e; X and
a family {L,x : x € L, n € N} of strongly discrete sets of the space e; X such
that:

—{H, :x € L,} is a discrete family of e; X for every n € N;

~{z}UU{Lpz:n € N} C H, for every x € L;



Extensions and mappings of topological spaces 57

— the set M,, = U{{z} ULz :2x € U{L;:i<n}, me& N}is closed in e; X
for every n € N;

—ifn,me N, n<m and Hy, = U{H, : x € Ly, }, then M, NclH,, = 0;

—ifn,meN, n<mand x € L, then L,z N L,z = {;

—ifx € L and z, € Lyx for every n € N, then z = lim xy,;

— |Lpz| = 7 (x) for every x € L and n € N.

For every n, m € N we put Ly, = U{Lnz : © € L,}. Then Ly, is a
strongly discrete subset of the space e1.X.

Since €1 X is a first countable space and {L,,, Ly, : n, m € N} are strongly
discrete subsets of e; X, then there exists a continuous pseudometric d on e; X
such that d is a metric on the set A = U{L,, U Ly;, : n, m € N}. Consider
the projection 7g : ;X — e1X. Let (X1, d1) be the completion of the metric
space (e1X/d, cZ) We put L, = 74(Ly), © = m4(z) and L,x = m4(L,z) for all
n € N and x € L. The Propositions 3.3.6 and 3.3.5 complete the proof.

3.4. Ultrauniform spaces

An entourage U of the diagonal A(X) of a space X is called discrete if
U=U"!=2U.

3.4.1. Definition. A uniform space (X, U) is said to be ultrauniform if
there exists a base B of uniformity U such that:

— every entourage U € B is discrete;

— the base B is linearly ordered, i. e. if U, V € B, then U CV or V C U.

The completion of an ultrauniform space is ultrauniform.

3.4.2. Proposition (S. Nedev and M. Choban [137]). Every ultrauniform
space is hereditarily paracompact.

Proof. Let B be a linearly ordered base of the uniformity U on a space
X and every entourage from B be discrete. For every x € X and V € B
we put a(z, V) = {y € X : (z,y) € V}. Since V is a discrete entourage,
the family (V) = {a(z, V) : * € X} is a discrete cover of the space X.
If U,V € Band U C V, then a(z, U) C a(X, V) for every x € X. Thus
{a(xz, V) :V € B, x € X} is a base of rank one of the space X. Every space
with a base of rank one is hereditarily paracompact [8]. A family L of subsets
of X has rank one if for every two sets A, B € L we have A C B, or B C A,
or AN B =@. The proof is complete.

3.4.3. Lemma. Let (X, U) be an ultrauniform space and 7 = u—w(X, U).
Then:

1. dimX = 0; 2. if {H, : a € A} is a family of open subsets of X and
|A| < 7, then N{H, : « € A} is open in X, i. e. X is a Pr-space; 3. T is a
regular cardinal.

Proof is obvious.
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3.4.4. Theorem. Let (e;X, U;) be an ultrauniform extension of a space
X, (Y, V) be a complete ultrauniform space and 7 be an infinite regular
cardinal which satisfies the following conditions:

-d(Y,V)e DS(e1 X, U) and 7 € DS(e1 X, U);

—Y and e; X are P.-spaces;

— the uniform space (Y, V) is discrete or u — w(Y, V) = 7.

Then there exists a uniform extension (eX, U) of the spaces X and e X
such that:

1. (eX, U) is an ultrauniform space; 2. the space (Y, V) is uniformly
isomorphic to the subspace eX \ e1 X of (eX, U); 3. u—w(eX, U) = 7.

Proof. Since 7+ d(Y, V) € DS(e1 X, U), then there exists a family {M,, :
a € A} of subsets of the space X such that:

—|A| =d(Y, V) and |M,| = 7 for each a € A;

—if o, f € A and a # 3, then M, N Mg = 0;

— the set M = U{M, : a € A} is strongly discrete in e; X.

We may assume that M, = {z,3: 5 < 7}

Since e1 X is a Py-space, then either e; X is a discrete space, or u—w(e; X, Uy)
7. Therefore there exists a family {ys = {Hgy : A € I'g} : B < 7} of open
discrete covers of the space e; X such that:

~{Hpg = U{Hpg\ x Hgr : A € T'g} : f < 7} is a base of some complete
uniformity Us on eX and U; C Us;

—if B < § < 7, then 7¢ is a refinement of v, i. e. He C Hg;

— (e1X, Uy) is a complete ultrauniform space;

—if f <7 and A € I'g, then |Hgy N M| < 1.

Since |A| = d(Y, V), we may fix a dense subset Y1 = {y, : @ € A} of
the space Y. The uniform space (Y, V) is either discrete or u —w(Y, V) = 7.
Therefore there exists a family {wg = {Vj, : p € Qg} : B < 7} of open discrete
covers of the space Y such that:

~B={V3=U{Vg, x Vg, : p € Qg} : B < 7} is a base of the uniformity V'
onY;

—if B <& < 7, then we is a refinement of wg, i. e. Ve C Hg.

For every a € A and § < 7 we put Mog = {zqe : f < E < T}

For every f < 7 and pu € Qg we put Wg, = Vg, UU{Hpx € 73 : Yo € V3,
and Mz N Hgy #0 for some o € A}, 5 = {Hgy : A € Tg} U{Wp, : n € Qs}
and Wg = U{H x H : H € 33}. Let U be the uniformity on eX = e; X UY
generated by the base {W3 : 8 < 7}. The uniform extension (eX, U) is desired.
The proof is complete.

3.5. Extensions of locally compact spaces

In this section every space is assumed to be a completely regular Ts-space.
3.5.1. Proposition. Let bY be a Hausdorff compactification of a non-
empty space Y. Then there exists a pseudocompact space X such that:
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1. Y =X\ X and bY = clpxY; 2. the space X1 = X\ bY=X \ bY
is a countable compact locally compact dense subspace of the space X and
06X1 = 6X; 3. dim X = dimbY; 4. if g : bY — Z is a continuous mapping
onto a compact space Z and g~ 1(g(y)) = y for every y € bY \ Y, then there
exists a compactification bX of X such that g(Y)=bX \X and Z = clpxg(Y).

Proof. Let wy be the first uncountable ordinal number and W be the space
of all ordinal numbers < w; in the topology generated by the linear order on
W. Weput X = (W xbY)\ w1} xY) and X; = (W \ {w1}) x bY. Then
X1 =p0X =W xbY.

Let g : bY — Z be a continuous mapping onto a compact space and
g Yg(y)) = y for every y € bY \ Y. We put bX = X; U Z. Consider the
mapping ¢ : X — bX, where g = ¢ |bY and ¢(z) = z for every x € X;.
Then ¢(z) = x for every z € X. On bX consider the quotient topology. The
proof is complete.

A space is called a continuum if it is a connected compact Hausdorff space.
A space X is an arcwise connected or pathwise connected space if for every
pair of points a, b € X there exists a continuous mapping f : I — X of the
interval I =[0, 1] into X such that f(0)=a and f(1)=0b. A spaceX is locally
arcwise connected if the family {U C X : U is an open arcwise connected
subspace of X} is an open base of X (see [44]).

A space is called a Peano continuum if it is a locally arcwise connected
continuum.

3.5.2. Definition. A space X is said to be a marginal arcwise connected
space if there exist a cardinal 7, an embedding of X into I™ and a sequence
of arcwise connected subspaces {X,, : n € N} of I” such that:

- X=n{X,:neN}

— for every open subset U of I, which contains the closure ¢IX of X in I7,
there exists n € N such that U{X; : i >n} CU.

3.5.3. Examples.

1. The Tychonoff cube I"™ is a Peano continuum. 2. If a continuum X is a
Gs-subset of a Peano continuum Y, then X is a marginal arcwise connected
space. 3. Every metrizable continuum is a marginal arcwise connected space.

The set S(f) =Y \U{U : U is open in Y and the set cly f~'U is compact}
is called the singularity set of the mapping f : X — Y of a space X into a
space Y. If X is a locally compact space, then S(p) = N{cly f(X \ F) : F'is
a compact subset of X} (see [35]).

3.5.4. Proposition. Let f: X — Y be a continuous mapping of a locally
compact non-compact space X into a compact space Y. Then:

1. S(f) #\; 2. there exists a compactification bX of the space X such that
the spaces bX \X and S(f) are homeomorphic.

Proof. Asin Section 2.3 we consider the compact space Z = XUY with the
topology generated by the open base {U C X : U is open in X JU{f~}(V)\ F :
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V is open in Y and F' is a compact subset of X}. Then S(f) = clzX \ X and
bX = clzX. The proof is complete.

3.5.5.Theorem. Let X be a locally compact non-pseudocompact space
and Y be a separable marginal arcwise connected space X. Then:

1. there exists a Hausdorff compactification bY of Y such that bY is a
remainder of some Hausdorff compactification bX of X.

2. there exist a compact space Z, an embedding of Y in Z and a continuous
mapping ¢ : X — Z such that S(¢) = clzY.

Proof. There exist a cardinal 7, an embedding of Y into I” and a sequence
of arcwise connected subspaces {Y;, : n € N} of I” such that:

-Y=n{Y,:neN};

— for every open subset U of I”, which contains the closure ¢lY of Y in I”,
there exists n € N such that U{Y; : i > n} C U.

We put Z = I and bY=clzY. Fix a countable dense subset B ={b,, : n €
N} of the space Y. Fix a point by € Y. For every n € N we fix a continuous
mapping g, : I — Y, such that g,(0) = by and g, (1)=b,.

Since X is non-pseudocompact, there exists a subset A ={a,, € X:n € N}
and a continuous function f : X — R such that f(an+1) > 3+ f(ay) for every
n € N. For every n € N we fix an open subset U, of X and a continuous
function f,, : X — I such that a, € U,, f(a,) =1, X \ U, C f, ! and the set
clx U, is compact.

Now we construct the mapping ¢ : X — Z, where:

—p(x)=byifz € X\U{U, :n e N};

—if n € N and z € U, then ¢(x) = gn(fn(x)).

Since the family {U, : n € N} is discrete and ¢(x) = gn(fn(x)) for every
n € N and x €clxU,, the mapping ¢ is continuous.

Let H,, = Z \ clzY,. For every n € N there exists k = k(n) € N such that
Y; N H, = ( for every i > k.

Then ¢~ 1(H,) C U{U; : i < k} and the set clxo!(H,) is compact.

Since bY = Z \ U{H,, : n € N}, we have S(¢) C bY. If U is open in Z and
UNbY # (, then the set N(U) = {n € N : b, € U} is infinite. If n € N(U),
then a, € ¢~ }(U). Therefore the set ¢ ~1(U) is not compact and bY = S(¢p).

The assertion 2 is proved. The Construction 2.3.1 completes the proof.

3.5.6. Proposition. Let X be a locally compact non-pseudocompact
space and bY be a compactification of a separable arcwise connected space Y.
Then there exists a continuous mapping ¢ : X — bY such that S(p) = bY,
i.e. the mapping ¢ is singular.

Proof. As in the proof of Theorem 3.5.5. we consider that Y C bY C I”
for some cardinal 7 and put Y, =Y for each n € N. The proof is complete.

3.5.7. Corollary. Let X be a locally compact non-pseudocompact space
and K be a marginal arcwise connected compact space. Then K is a remainder
of some Hausdorff compactification X of X.
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3.5.8. Corollary. (see [74], Theorem 3, when X is connected). Let X be a
locally compact non-pseudocompact space and Y be a space which contains a
dense separable and arcwise connected subspace. Then every compactification
bY of Yis a remainder of X.

3.5.9. Corollary. (see [73] for Y metrizable). Let X be a locally compact
non-pseudocompact space and Y be a separable Peano continuum. Then Y is
a remainder of X.

3.5.10. Corollary. ([94], J.V.Rogers and [1], J.M.Aarts and P.van Emde
Boas, for metrizable separable X ). Let Y be metrizable continuum and let
X be a locally compact non-pseudocompact space. Then Y is a remainder of
X.

3.5.11. Theorem. Let X be a paracompact locally compact space. If the
space X is not compact, then:

1. if 7 € DS(X), the cardinal 7 is uncountable, Y is a compact space and
d(Y) < 7, then Y is a remainder of some compactification bX of the space X;
2. if dimX=0 and Y is a remainder of some compactification of the discrete
space D, of the cardinality m < 7,then Y is a remainder of some compactifion
bX of the space X.

Proof. The space X can be represented as the union of a family {X, : o €
A} of disjoint closed-and-open subspaces of X each of which has the Lindelof
property ([44], Theorem 5.1.27).

There exist a locally compact metric space Z and a perfect mapping ¢ :
X — Z of X onto Z such that X, = ¢ 1(¢(X,)) for each a« € A. Then
Zo = p(X4) is an open-and-closed subset of Z for every a € A. If the set
A is infinite and 7 € DS(X), then 7 < |A|. If the set A is countable, then
the space X is Lindelof and every closed discrete subspace of X is finite or
countable .

Case 1. ap € A and the subspace X, is not compact.

In this case Z,, is a locally compact non compact space with a countable
base.

Let Y be a metrizable connected compact space. By virtue of Aarts and
Emde Boas theorem [1] (see Theorem 3.5.5) there exists a compactification
bZ,, of the space Z,, such that Y = bZ,, \ Z,,. Then there exists a compact-
ification bX,,of the space X,, such that Y = bX,, \ Xqo,. Fix yo € Y and put
bX =X UY . On bX consider the following topology:

— the space X is an open subspace of the space bX;

—bXa, \ {yo} is an open subspace of the space bX;

— if U is an open subset of bX and yo € U, then F' = X \ (UU X,,) is a
compact subset of X ;

—if V' is an open subset of bX,,, yo € V and F is a compact subset of X,
then VUU{X, \ F:a € A\ {ag}} is open in bX.

In this conditions bX is a Hausdorff compactification of X and Y=bX\X.
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Case 2. 7 = |A| is an infinite cardinal. For every a € A fix a point a, € X,.

Let Y be a compact space and d(Y) < 7. Let Y7 be a dense subset of Y’
and |Y7] < 7. There exists a continuous mapping ¢ : X — Y into Y such
that for every y € Y] the set {aw € A : p(an) = y} is infinite. The continuous
mapping ¢ is singular, i.e. the set clxo (V) is not compact provided the
set V is open and non-empty. By virtue of Construction 2.3.1 there exists a
compactification bX of X such that Y=b0X\X.

Case 3. dimX=0.

We may assume that the set A is infinite and X, is a compact subset of X
for each a € A . Let Y be a compact space, D,,, be a infinite discrete space,
m <7, bD,, be a compactification of D,, and Y=bD,, \ D,,. We may assume
that m = 7. Consider that D,, = D, = {d, : « € A}. Then there exists a
mapping ¥ : X — D, such that ¥~!(d,) = X, for every a € A. The mapping
¥ is open and perfect. There exists a continuous extension g : X — bD, of
the mapping W. By construction, g(8X \ X) =Y. By virtue of Theorem 2.1.5
there exists a compactification bX of X such that Y = bX \ X. The proof is
complete.
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