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Abstract Several Internet-scale incidents from the recent years have demonstrated the
ability of self-propagating code, also known as ”network worms”, to infect large
numbers of hosts, exploiting vulnerabilities in the largely deployed operating
systems and applications. Capable of infecting a substantial portion of the
hosts within several minutes, and impacting the world-wide network opera-
tions by generating a distributed denial of service (DDoS) attack on the whole
Internet, network worms are considered a major security threat. So, a better
understanding of the worms’ propagation means will help to implement a more
efficient detection and defense.

1. INTRODUCTION

Recent worm incidents have indicated a lot of interest in implementing a
variety of scanning strategies to increase the worms’ spreading speed and de-
feat security defense measures. In this paper, we present some mathematical
models to analyze various scanning strategies that attackers have already used
or might use in the future. Mathematical analysis provides a better under-
standing of how multiple factors affect a worm’s propagation, and it can help
us to build a better defense against future worms. The scanning strategies
presented in the paper include idealized scan, uniform scan, divide-et-impera
scan, local preference scan, sequential scan.

2. EPIDEMIC MODELS

Computer worms look similar to biological viruses in their propagation be-
haviors and self-replication. Thus, the mathematical models developed for the
study of biological infectious diseases can be adapted to the study of computer
worm propagation. We briefly introduce two classical deterministic epidemic
models: simple epidemic model in homogeneous system and in interacting
groups, respectively. The models and analyses presented in this paper are
based primarily on these two models and their underlying principles.
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A. Simple epidemic model for homogeneous systems
The simple epidemic model is characterized by the following assumptions:

each and every host occupies one of two states: susceptible or infectious
(this model is also named in the literature as ,,SI model”);

once a host is infected, it stays permanently in the infectious state;

each host is assumed to have equal probability to contact any other host.

The equation of the model is:

dI(t)

dt
= βI(t)[N − I(t)], (1)

where N is the total number of hosts under consideration, I(t) is the total
number of infectious hosts at time t, η is the average worm scan rate, Ω is the
size of the worm’s scanning space, β is the pairwise rate of infection in worm
propagation model, β = η/Ω.

At t = 0, there are I(0) infected hosts, and [N − I(0)] susceptible. The
epidemic model SI has the following analytical solution

I(t) =
I(0)N

I(0) + [N − I(0)]e−βNt
, (2)

The spreading of an Internet worm or an epidemic disease is, in fact, a
stochastic process, but when considering a large-scale system consisting of a
large population N , which is the case of an Internet worm, it can be used a
mean value analysis based on the law of large numbers. Also, in the Internet
context, an infected host has equal probability of contacting any other host
when the worm uniformly scans the Internet. Thus, a uniform scan worm can
be modeled the same way as an epidemic disease in a homogeneous system.

B. Simple epidemic model for interacting groups
It is an extension of SI model, defined by equation (1), for non-homogeneous

systems. In this model, the system consists of K groups; each group has
population N1, N2, ..., Nk. Interactions between groups are different from
interactions within a group. The equation of the model becomes

dIk(t)

dt
= [βkkIk(t) + Σj 6=kβjkIj(t)][Nk − Ik(t)], (3)

where k ∈ {1, ..., K}, βjk is the infection rate, per interacting pair, of the
susceptible hosts in the k-th group by the infectious hosts in the j-th group.
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3. THE MODELS AND THE ANALYSIS OF
WORM SCANNING STRATEGIES

3.1. Idealized worm
This kind of worms would posses the IP addresses of all vulnerable hosts

in the Internet. Even if it is virtually impossible to implement them on the
global scale of the Internet, this type of scanning strategy is valuable as a
research model.

3.1.1. Perfect worm
Considered to be the fastest propagation worm, it knows the addresses of

all vulnerable hosts in the Internet, and all infected hosts fully cooperate
with each other such that they will not try to scan and infect an already
infected host. For this type of worm, any scan is successful in infecting another
vulnerable host.

The propagation model for the perfect worm is

dI(t)

dt
=

{
ηI(t), I(t) < N,

0, I(t) = N.
(4)

Suppose the perfect worm starts with I(0) infected hosts, the solution for
(4) is

I(t) = min[I(0)eηt, N ]. (5)

To illustrate the propagation speed of the perfect worm, we assume it has
some of the parameters identified for Code Red (η = 358 hosts/minute, N =
360000 total vulnerable hosts, and I(0) = 10).

From (5) it follows that all vulnerable population will be infected in T =
[lnN − lnI(0)]/η = 1.76sec. However, the above scenario did not consider
various time delays in the worm’s propagation like: the time to transfer the
worm code to the vulnerable host, the time to execute the worm infectious
code. If we consider the delay (e) from the moment when a worm scan is sent
out, to the moment when the vulnerable host just infected begins to infect
others, then the propagation model for the perfect worm becomes

dI(t)

dt
=

{
ηI(t− ε), I(t) < N,

0, I(t) = N,
(6)

where I(t− ε) = 0, ∀t < ε.

3.1.2. Flash worm
Staniford et al. defined the ,,flash worm”, as one which knows the IP ad-

dresses of all vulnerable hosts in the Internet (N = Ω) and uniformly scans the
vulnerable population. The propagation of a flash worm satisfies the epidemic
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spreading assumptions in a homogeneous system and can be modeled by the
simple epidemic model (1). The equation for the flash worm becomes

dI(t)

dt
= ηI(t)[N − I(t)]/N. (7)

Assuming some of the parameters identified for Code Red (η = 358 hosts/minute,
N = 360000 vulnerable hosts, and I(0) = 10), it can be determined that a
flash worm can infect almost all the vulnerable host in T = 2.5 seconds. Based
on these results, the delays due to code propagation are significant and should
be factored in the worm’s propagation model. Assuming a propagation delay
ε, (7) becomes

dI(t)

dt
= ηI(t− ε)[N − I(t)]/N, textwhere I(t− ε) = 0, ∀t < ε. (8)

3.2. Uniform scan worms
When a worm does not have the IP addresses of the vulnerable hosts, the

simplest solution is to scan randomly the entire IPv4 space (Ω = 232) in order
to identify potential victims. This scanning strategy was used by Code Red
(07/2001) and Slammer (01/2003). Based on (1) the propagation model for
Code Red type worms becomes

dI(t)

dt
= 2−32ηI(t)[N − I(t)]/N. (9)

An analysis between (7) and (9) shows that the scanning space of a flash
worm is much smaller than IPv4 (used by a Code Red type worm). Also,
because the propagation delays (e) are negligible in comparison with worm’s
spreading speed, we can ignore them.

3.2.1. ”Hit List” worm
This type of worm was defined by Staniford, as a way to improve the spread-

ing speed of a uniform scan worm. It has a list with IP addresses of some
vulnerable host in Internet. First, the worm behaves like a ,,flash worm” by
scanning and infecting the hosts from hit-list, and then it scans randomly the
entire IPv4 space to infect other vulnerable hosts.

3.2.2. ”Routing Worm”
Based on the BGP routing table, it has been established that only 28.6% of

the IPv4 space is routable. With no change in the scanning strategy, any worm
can improve its performances by scanning a smaller IP address space. Many
of the recent worms have already taken of this information. For example,
the scanning space for Win32.Doomjuice.a (2004) consisted of 160 class A
networks (Ω = 160 ∗ 224)
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Fig 1. The Propagation Performances for possible Code Red versions taking
advantage of ”Hit List” and ”Routing Worm” improvements.

It can be noticed that ,,Hit List” worm with I(0) = 10.000 can infect more
hosts in a short time due to its hit-list, but it has a slower speed than a

,,Routing worm” with Ω = 0.286 ∗ 232.
3.2.3. ”Divide-et-impera” scan worm
Another possibility to enhance the performances of a uniform scan worm

would be to use a ,,divide-et-impera” approach to allow different infected hosts
to scan and infect vulnerable hosts on distinct IP spaces. In the propagation
of this kind of worm, there will be no case when two infected hosts would try
to probe the same target.

The model assumes there is only one infected host initially in the system,
and that vulnerable hosts are uniformly distributed in the entire scanning
space O. Each infected host uniformly scans IP addresses in its scanning space.
Once a target is infected, half of the scanning space allocated to the host that
infected the target is transferred to the target (the space passed to the target
includes the target host), while the infecting host remains with half of its
original scanning space.

Based on these assumptions, none of the infected host will be subject to be
probed, and the scanning space will be Ω′ = Ω− I(t). So, the equation for a
uniform scan worm that uses a ,,Divide-et-impera” strategy is:

dI(t)

dt
= ηI(t)[N − I(t)]/(Ω− I(t)), (10)

For Internet worms, the number of vulnerable hosts N is much smaller
than Ω (I(t) < N << Ω). Therefore, Ω − I(t) ≈ Ω which means that when
vulnerable hosts are uniformly distributed, a ,,divide-et-impera” scan worm
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propagates in the same way as a uniform scan worm, and can be modeled by
the simple epidemic model (1).

3.3. Subnet scan worm
The uniform scan is the simplest scanning strategy that a worm may use.

However, it is not the optimal one because the vulnerable hosts are not uni-
formly distributed in Internet. A worm could increase its spreading speed
when it scans with a higher probability in the IP spaces that have a higher
density of vulnerable hosts.

In the following, we model and analyze a subnet scanning worm that has
probability p to uniformly scan IP addresses in its own ”/n” prefix subnetwork
and probability (1-p) to uniformly scan other IP addresses. A ,,/n” prefix
subnetwork represents the IP space where the addresses have the same first n
bits. Thus, in the current IPv4 Internet, a ,,/n” prefix subnetwork contains
232−n IP addresses.

This class of worms can be modeled based on the simple epidemic model for
interacting groups (3), where the worm scanning space Ω consists of K ,,/n”
prefix subnetworks (Ω = K ∗ 232−n), β′ = βkk - represents the pairwise rate
of infection in local scan and β′′ = βjk = βkj is the pairwise rate of infection
in remote scan. The model’s equation becomes

dI(t)

dt
= [β′Ik(t) + Σj 6=kβ

′′Ij(t)][Nk − Ik(t)], (11)

where k ∈ {1, ..., K} and

β′′ =
pη

232−n
, β′′ =

1− p)η
(K − 1)232−n

. (12)

The type of analysis can be easily extended to other kinds of local prefer-
ence scan strategies, such as local preference scanning with several levels of
locality. For example, Code Red II (08/2001) had two-level locality in its local
preference scan - the worm scanned the local class A network with a proba-
bility pA = 0.5 and the local Class B network with a probability pB = 0.375.
Another example is Win32/Sasser.worm (05/2004) that probed the local class
A network with a probability pA = 0.25 and the local Class B network with a
probability pB = 0.25.

When vulnerable hosts are uniformly distributed in a worm’s scanning
space, and so the worm propagation in each subnetwork is identical, subnet
scanning does not help a worm in its propagation speed.

Assuming the vulnerable hosts are uniformly distributed in m out of the K
subnetworks (N1 = ... = Nm = N/m) and all other (K −m) subnetworks are
not allocated (Nm+1 = ... = NK = 0), the equation for the each subnetwork
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becomes

dI(t)

dt
= [β′ + (m− 1)β′′]Ik(t)][Nk − Ik(t)], where k = 1, ...,m. (13)

The equation for the propagation in Internet (for all subnetworks) is

dI(t)

dt
= m

dI1(t)

dt
= [β′ + (m− 1)β′′]I(t)][N − I(t)]/m. (14)

If a subnet scan worm wants to propagate as fast as possible, the worm
should select a preference probability p that maximize the pairwise rate of
infection [β′ +(m−1)β”]/m in (14). Thus, the optimal preference probability
should be p = 1. Such a conclusion may seem unexpected, but it is reasonable
based on the assumption used that all those m ,,/n” subnetworks are consid-
ered identical. If p = 1, which means a worm only scans its own subnetwork,
then no worm scans will be wasted in those (K −m) empty subnetworks. In
this way, the worm achieves its fastest spreading speed. In reality, no sub-
network is exactly the same as the others, and the worm has to scan remote
networks in order to propagate to every part of the entire Internet.

The next chart shows the comparative simulation results between a Class
A routing worm, subnet scan worm (K = 256, m = 116) for various local
preference probabilities, and the original Code Red worm.

Fig. 2. Comparison of a Class A routing worm, subnet scan worm
(K = 256, m = 116) and the original Code Red worm.

When vulnerable hosts are not uniformly distributed in a worm’s scanning
space, subnet scan increases the worm’s propagation speed comparing with
uniform scan. The optimal local preference scan probability p increases when
the local scan is on larger subnetworks.
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3.4. Sequential scan worm
This scanning strategy assumes that once a vulnerable host is infected, it

selects a starting address (x) from where it scans IP addresses sequentially
(x+1, x+2,...).

A worm can select the start IP address (x) randomly, or close to its own ad-
dress with higher probability. For example, for its starting point, the Blaster
(08/2003) used the first address of the host’s Class C subnetwork with prob-
ability p = 0.4, and chose a random IP address with a probability 0.6.

If vulnerable hosts are uniformly distributed in a worm’s scanning space, a
random sequential scan worm has the same propagation speed as a uniform
scan worm and can be modeled by the SI epidemic model (1).

If a worm uses a local preference in selecting the start address, the worm
would propagate slower as the child worm copies are more likely to be wasted
on repeating their parents’ scanning trails.

Figure 3. Comparison of a random sequential scan worm, a sequential scan
worm with 0.4 local preference, and a uniform scan worm (100 simulation

runs; vulnerable hosts uniformly distributed in entire IPv4 space).

A recent example of a sequential scan worm is Win32.Doomjuice.a (01/2004).
It used a random sequential scan targeted to 160 Class A networks (Ω =
Ω160 ∗ 224) [4].

4. CONCLUSIONS

In terms of the scanning strategies, the summary results of the analysis
presented in this paper are:
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a subnet scan increases a worm’s propagation speed when vulnerable
hosts are not uniformly distributed. The optimal local preference prob-
ability increases when the subnet scan is on larger subnetworks;

when vulnerable hosts are uniformly distributed, the divide-et-impera
scan, the sequential scan, and the uniform scan are equivalent in terms
of the total number of infected hosts at any time;

for a sequential scan worm, using local preference in selecting the starting
point slows down the worm’s propagation speed.

Also, there are some results that should be considered in designing of a worm
defense system:

it is crucial to prevent attackers from identifying the IP addresses of
a large number of vulnerable hosts (I(0)), or obtaining the address in-
formation that helps them to reduce significantly the worm’s scanning
space (Ω);

it is necessary to detect the worm as early as possible to be able to avoid
a breakout and contain the propagation;

a worm monitoring system should cover many well distributed IP blocks
in order to accurately monitor the propagation of a non-uniform scan
worm, especially a sequential scan worm such as Blaster.
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