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1. INVERSE PROBLEMS OF TRANSITIVE
CLOSURE

Let G = (V, E) be an oriented graph.
Definition 1. The oriented graph G* = (V, E*) is called the transitive

closure of the graph G, where E∗ = {(x, y)| there is a directed path from x to
y}.

Definition 2. The oriented graph G = (V, E) is a self-transitive closure iff
its transitive closure does not differ from G, i.e. G* = G.

Let us consider a self-transitive closure graph G = (V, E). The inverse
problem of transitive closure (ITC) is to find G−1 = (V,E−1), where E−1 has
as least arcs as possible from G and the transitive closure of G−1 is G, i.e.
(G−1)∗ = G. Let us present other two definitions, which make the difference
between the quality of the solutions of the inverse transitive closure problem.

Definition 3. G−1 = (V, E−1) is called a solution for the inverse problem
of transitive closure, if and only if (G−1)∗ = G and the elimination of any arc
(x, y) from E−1 leads to a graph G′ = (V, E′), where E′ = E−1 − {(x, y)},
for which the transitive closure is not G, i.e. ((G′)∗ 6= G.

Definition 4. G−1 = (V, E−1) is called an optimal solution for the inverse
problem of transitive closure, if and only if any graph G′ = (V, E′) so that
(G′)* = G has at least the number of arcs of G−1, i.e. |E′| ≥ |E−1|.

Any optimal solution satisfies the inverse problem of transitive closure.

2. ALGORITHMS FOR THE ITC PROBLEM
The first idea that appears for solving the inverse problem is to find criteria

for elimination of arcs from E so that the resulted graph G′ = (V, E′) (E′ =
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E − {eliminated arcs}) still has graph G as its transitive closure. Here it is
such a criterion:

Theorem 1. If an arc (x, y) is eliminated from the graph G and in the
resulted graph G′ = (V, E′) (E′ = E − {(x, y)}) there is still a directed path
from x to y, then (G′)* = G*.

Proof. Let (x, y) ∈ E be an arc so that in the graph G′ = (V,E′ =
E − {(x, y)}) there is a directed path P ′ from x to y (1). Suppose that
(G′)∗ 6= G∗ ⇒ ∃(u, v) ∈ E∗ and (u, v) /∈ (E′)∗ iff there is a directed path P
from u to v in G* and there is no directed path from u to v in (G′)*.

There are two situations:
1. if the arc (x, y) /∈ P , then all arcs from P are in E and E′, so P is a

directed path in G′ (contradiction);
2. if the arc (x, y) ∈ P , then P = (u, ..., x, y, ..., v). Let P ′′ be the directed

path P, where the arc (x, y) is replaced by the path P ′ (see (1)), i.e. P ′′ = (u,
..., P ′, ..., v) = (u, ..., x, ..., y, ..., v), where all arcs are in E′. So, there is a
directed path P ′′ in G′ from u to v (contradiction).

In both cases we obtained contradiction, hence the assumption (G′)∗ 6= G∗
is false. So, (G′)* = G* and the theorem is proved.

Starting with Theorem 1 and remarking that the arcs (x, x), x ∈ V can be
also eliminated from G, we can easily write an algorithm for finding a solution
of the inverse problem of transitive closure.

Fig. 1. Algorithm 1 (elimination of arcs).

Theorem 2. The algorithm 1 finds a solution G−1 = (V, E−1) of the
inverse problem of transitive closure in a complexity of O(m2), where m is
the number of directed arcs in G = (V, E), i.e. m = |E|.

Proof. Obviously G−1 is a solution, because every directed arc was tested
for elimination, such that as a result of application of the algorithm 1 there is
no other arc in E−1 which can be eliminated any more. The test if there is a
directed path from a node x to a node y can be done in a complexity of O(m),
using a search algorithm (BFS or DFS). There are m tests, so the complexity
of the algorithm 1 is O(m2).

The initial graph G is a self-transitive closure graph and due to that, usually
it has many arcs, it is a so-called dense graph. So, algorithm 1 is slow, often
it runs in a complexity of O(n4), because in a dense graph m is closed to



Inverse problems of transitive closure 73

n2. There is another problem with the algorithm 1. It finds a solution of
the inverse problem, which is not necessarily optimal. Here is an example to
illustrate this case.

Let us apply algorithm 1 to the graph in the fig. 2.

Fig. 2. An example. Fig. 3. Solution found by algorithm 1.

First the algorithm eliminates the arcs (1, 1), (2, 2), (3, 3), (4, 4), (5, 5).
Suppose that in the second step the arcs (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2,
4), (4, 1), (4, 2), (4, 3) are eliminated. Finally, it is obtained the graph G−1

from the fig. 3. At the end of the algorithm, the graph G−1 has 7 directed
arcs. This is a solution of the inverse problem, but it is not optimal, because
an optimal solution has only 5 directed (fig. 4).

Fig. 4. Optimal solution.

Let us present a faster algorithm and prove that the found solution is op-
timal. The idea of this algorithm starts with the remark that the strongly
connected components of any solution G−1 of the inverse problem are the
same with the strongly connected components of the initial graph G.

Definition 5. K ⊆ V is a strongly connected component of the graph G =
(V, E) if for each nodes u, v ∈ K there is a directed path in G from u to v.

Definition 6. The graph Gc = (V c, Ec) is called the condensed graph of
G = (V, E) if it has as nodes all the strongly connected components of G and
the directed arcs of Gc are the connections between the strongly connected
components of G, i.e. V c = {K|K is a strongly connected component of G}
and Ec = {(K1, K2)|K1,K2 ∈ V c and ∃u ∈ K1, v ∈ K2 : (u, v) ∈ E}.

Using as few directed arcs from E as possible for each strongly connected
component so that it remains strongly connected and using the directed arcs
of the condensed graph, then an optimal solution for the inverse problem of
the transitive closure is obtained.
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Theorem 3. In a self-transitive closure graph G there is a directed path
from x to y (x, y ∈ V ), iff there is a directed path from x to y in a solution of
the inverse problem denoted by G−1.

Proof. ” <= ” If a directed path P is from G−1, as E−1 ⊆ E, it exists in
G. ” => ” Let P = (x = u1, u2, ..., ur = y) be a directed path in G. For any
directed arc (ui, ui+1)(i ∈ 1, 2, ?, r − 1) from P, there is a directed path Pi in
G−1, from ui to ui+1. We replace every arc (ui, ui+1) with the path Pi in P.
It is obtained the path P ′ = (Pu1, Pu2, ?, Pur−1) from x to y.

Theorem 4. K ⊆ V is a strongly connected component of a self-transitive
closure graph G = (V, E), iff K is a strongly connected component of any
solution G−1 of the ITC problem.

Proof. Directly from Theorem 3.
Theorem 5. If K ⊆ V is a strongly connected component of a self-

transitive closure graph G = (V, E), then the graph GK = (K, EK) is complete,
where EK = {(x, y) ∈ E|x, y ∈ K}, i.e. EK = {(x, y)|x, y ∈ K}.

Proof. Let x and y be two arbitrary nodes from K. Since K is a strongly
connected component, then there is a directed path from the node x ∈ K to
node y ∈ K and as G = G∗ it follows that (x, y) ∈ EK , whence the theorem.

Theorem 6. Let Gc be the condensed graph of the self-transitive closure
graph G = G*. Any directed arc (Ki,Kj)(i 6= j) of the condensed graph must
be in the set of arcs E−1 of any solution G−1 = (V, E−1) of the ITC problem,
i.e. ∃x ∈ Ki and ∃y ∈ Kj so that (x, y) ∈ E−1.

Proof. Let (G−1)c = {V ′, (E−1)c} be the condensed graph of G−1. Using
the Theorem 4, it is obviously that ((G−1)c)∗ = (Gc)∗ (2). Let (Ki,Kj) be
an arbitrary chosen directed arc of the condensed graph Gc. Then (Ki, Kj) ∈
(Ec)∗ (3).

Suppose that for any x ∈ Ki and for any y ∈ Kj : (x, y) /∈ E−1. It follows
that (Ki,Kj) /∈ (E−1)c, therefore (Ki,Kj) /∈ ((E−1)c)∗ (4). From (2), (3) and
(4), a contradiction follows.

Fig. 5. Algorithm 2 (using the condensed graph).
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Theorem 7. The algorithm 2 finds an optimal solution G−1 = (V,E−1) of
the inverse transitive closure problem.

Proof. In the step 3 of the algorithm, in the set E−1 we introduce directed
arcs that form directed elementary cycles of each strongly connected compo-
nent (which has the minimum number of arcs of all directed cycles). In the
step 4, in the set E−1 we introduce directed arcs that connects the strongly
connected components of the condensed graph. The algorithm finds an op-
timal solution for the inverse problem of transitive closure ((G−1)∗ = G and
there is no other solution with a less number of arcs) - see Theorems 4, 6.

Theorem 8. The complexity of algorithm 2 is O(min{m+n, n·p}), where m
is the number of directed arcs, n is the number of nodes of the self-transitive
closure graph G = (V, E), i.e. m = |E|, n = |V | and p is the number of
strongly connected components of G.

Proof. The complexity of the step 1 of the algorithm is O(1). The complex-
ity of the step 2 is O(m+n) using the depth first search algorithm (DFS). The
complexity of the step 3 is O(n), because s1+s2+ ...+sp = n. The complexity
of the step 4 is O(n) (there are at most n-1 arcs found in step 2 that connect
the strongly connected components, because the condensed graph is a forest of
trees). So, the complexity of the whole algorithm is O(m + n). Using the fact
that in the self-transitive closure graph G any strongly connected component
is complete (Theorem 5), the condensed graph can be also found in step 2 in
a complexity of O(n · p) with the algorithm presented in fig. 6.

Being a self-transitive closure graph, the graph G has many arcs (it is
”dense”). In most of the cases m is larger than n · p. So, it is better to
use the algorithm from fig. 6 to find the condensed graph.

3. THE NUMBER OF OPTIMAL SOLUTIONS
Here we compute the number of optimal solutions for the ITC problem.
Theorem 9. The number of optimal solutions of the inverse transitive clo-

sure problem is
∏p

i=1(si−1)!·∏1≤i<j≤p Ni,j , where Ni,j = si ·sj, if ∃(Ki, Kj) ∈
Ec or ∃(Kj ,Ki) ∈ Ec and Ni,j = 1, otherwise.

Proof. All optimal solutions are generated from the condensed graph
Gc = (V, Ec). In order to obtain different optimal solutions, the nodes from
every strongly connected component must be permuted (noncircular). The
noncircular permutations of k order are obtained by holding one position and
permuting the other k-1. So, there are (k-1)! noncircular permutations of k
order (1).

If the directed arcs which connect the strongly connected components links
different nodes from components, different optimal solutions are obtained.
Here Ni,j is the number of possible different links between the strongly con-
nected components Ki and Kj , if there is an arc (Ki, Kj) or (Kj ,Ki) that
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connects the components in the condensed graph (2). So, using (1) and (2),
the theorem is proved.

Fig. 6. Algorithm for finding the strongly connected components of a self-transitive closure
graph.

Theorem 10. If the graph G is (weakly) connected (there is a path between
every two nodes of G), then the number of optimal solutions of the inverse
problem of transitive closure is

∏p
i=1 si! · sp−2

i
Proof. If the graph G is connected then, between every two components Ki

and Kj there is an arc (Ki,Kj) or (Kj ,Ki) that connects them. This implies
that

∏

1≤i<j≤p

Ni,j =
∏

1≤i<j≤p

si · sj =
p∏

i=1

sp−1
i .

It follows (by Theorem 9) that the number of optimal solutions of the ITC
problem is

p∏

i=1

(si − 1)! ·
∏

1≤i<j≤p

Ni,j =
p∏

i=1

(si − 1)! ·
p∏

i=1

sp−1
i =

p∏

i=1

si! · sp−2
i .




