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Abstract A short survey of topics in biomathematics is followed by a presentation of the
mathematical models from biodynamics and medicine studied by the group
of nonlinear dynamics and bifurcation of one of the authors (AG). Then a
systematic approach of treating these models is formulated. Open problems
and topics which can be investigated by this approach are presented. The state
of the art in the joint studies on hydrodynamic stability carried out by the first
two authors is sketched and possible connections with the field of interest of
the third author are revealed.
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1. TOPICS IN BIOMATHEMATICS
Here we discuss the mathematical models associated with biological quantities and math-

ematical models governing their transformations. Then we briefly present the main topics

in biomathematics.

Biomathematics is a branch of applied mathematics dealing with mathemat-
ical investigation of geometric, analytical, algebraic, statistical, probabilistic
etc aspects involved into the mechanical, physical, chemical phenomena or
equilibria occurring in biological systems. Indeed, in order to study biological
systems from mathematical point of view, with a biological characteristic
(object), we associate a mathematical object. If this characteristic under-
goes changes in time and/or space, this means that in the biological system a
motion (change, growth, transformation, phenomenon, process, dynamics) oc-
curs. It is unanimously assumed that the corresponding biological phenom-
enon is a particular physico-chimical phenomenon. As a consequence, this
motion must obey the general laws of physics and/or chemistry and some spe-
cific laws and ”material relationships”. From this perspective, biology can be
viewed as the thermodynamics of biological systems. Here by thermodynam-
ics (also referred to as the third thermodynamics) it is understood the most
general science describing the motion and including all basic disciplines and
all interdisciplinary area, e.g. mechanics, physics, electromagnetism, M.H.D.,
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classical thermodynamics, chemistry. In the resulting formalism there is no
place for soul or other properties specific to living systems only: every bi-
ological concept is associated with a concept from particular subdomains of
thermodynamics. Naturally, every mathematical model governing a biologi-
cal modification belongs to such a subdomain and in it only concepts specific
to that subdomain occur. The biological aspect appears mainly during the
derivation of the model and in the biological interpretation of its solution.

Once formalized mathematically, the biological model becomes a topic of
mathematics and it must be studied by specific tools. However, usually, sim-
plifying ideas of biological nature must be incorporated if the resulted model
is supposed to be solved at least numerically. For example, a bone may be
conceived as a particular solid and, correspondingly, its displacement and/or
deformation is governed by a model from mechanics of rigid bodies, or elas-
ticity, or, more general, thermodynamics of elastica, in dependence on the
practical needs.

Another example: the blood may be conceived as a particular non-Newtonian
fluid the motion of which is governed by some model of fluid mechanics, or,
more general, thermodynamics of fluids.

Therefore, every mathematical model of a biological quantity and every
mathematical model governing its changes are borrowed from various branches
of thermodynamics of inanimate bodies (matter and/or field).

In addition, as already mentioned, with a biological quantity or biologi-
cal change several mathematical models can be associated, according to the
complexity and needs one has in view. For example, for some purposes, it
is sufficient to assimilate a bone with a rigid body, in other circumstances a
finer model of elastic medium is necessary. Similarly, the blood, urine, saliva,
tears, bile, sperm, lymph, cerebrospinal liquid, prespiration, mammary secre-
tion, amniotic liquid can be assimilated with a Newtonian fluid, or a mixture
of fluids in dependence on how accurate must be described its motion.

There is a key point in choosing one mathematical model or other for a
quantity characterizing a biological, chemical, physical, mechanical, econom-
ical a.s.o. system and its change (evolution). This is the energy, and, corre-
spondingly, the energy equation, establishing a balance between the rate of
change of the total internal energy of the system and the energy, power, ra-
diation etc. For instance, for pure mechanical systems, total internal energy
consists of the kinetic and potential energies and its rate of change is balanced
by the power. If the heat is important in the functioning of that system, its
total internal energy must contain a new energy related to heat. As a result,
the rate of change of this total internal energy is balanced by the mechanical
power supplemented by heat and radiation. If the system is an electrically
conductor, then the definition of the total internal energy must contain an
electrical component too. Correspondingly, its rate of change is balanced by
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the former terms supplemented by an electrical power. Any time that the
energy equation was not true, in the sense that the balance did not hold, it
meant that the total internal energy was not defined suitably. It must contain
a new part and, correspondingly, a new ”power” must occur in the energy
equation.

Some biochemists assert and some medical evidence plead for a specific
energy for living bodies, but no mathematical model exist for it. This is why
we frame our study in the thermodynamics.

In thermodynamics the geometric model (of a material system (substance))
is a continuum. There is an alternative geometric model, namely a totally
discrete (disconnected) set. Correspondingly, there is another science dealing
with the phenomena occurring in these systems: statistical physics (chem-
istry etc). There exists a connection between thermodynamics and statistical
physics. In this paper we limit ourselves to thermodynamics.

There is a huge number of topics treated in mathematical biology. They
are grouped in: mathematical biology in general; physiological, cellular and
medical topics; genetics and population dynamics.

The second group treats: biophysics, biomechanics (including biomechani-
cal solid mechanics), developmental biology, pattern formation, cell movement
(chemotaxis etc.), neural biology, physiology (general), physiological flows (in-
cluded in biological fluid dynamics which, in addition, treats biopropulsion in
water and in air and other topics), cell biology, biochemistry, molecular bi-
ology, kinetics in biochemical problems (pharmacokinetics, enzime kinetics
etc., related to chemical kinetics, reaction effects in flows, chemically reacting
flows), medical applications, biomedical imaging and signal processing (re-
lated to Radon transformation, integral transforms, signal theory), medical
epidemiology, plant biology.

The third group treats: genetics ( related to genetic algebras), problems
related to evolution, protein sequences, DNA sequences, population dynamics,
epidemiology, ecology, animal behaviour.

In our opinion, due to the huge diversity of the biosphere, this enumeration
reveals only a small part of the possible and necessary topics, namely those
which at the time being are of interest for applied mathematicians, physi-
cists and chemists. For others the association of the biological quantities and
biological changes with mathematical models is not yet available.

An important conclusion for someone wishing to deal with mathematical
biology is, first, to learn about the topics treated by thermodynamics and,
second, to fix her/his biological objectives requiring a specific branches of
thermodynamics. The first two authors of the paper are fluid dynamicists,
therefore they fulfill the first requirement. The third author is a pure mathe-
matician (geometer). Together, we attempt to study dynamics and bifurcation
in mathematical models describing various aspects of the cancer.
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Finally, we quote the main subjects dealt with in a few treatises of math-
ematics, some of them general, some others concerning only a narrower topic:
continuous or discrete population models for single species, continuous models
for interacting populations, discrete growth models for interacting populations,
reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii re-
action, perturbed and coupled oscillators and black holes, reaction-diffusion,
chemotaxis and nonlocal mechanisms, oscillator generated wave phenomena,
biological waves (single species models or multi-species diffusion models), trav-
elling waves in reaction-diffusion systems with weak diffusion (analytical tech-
nique), spatial pattern formation with reaction/population interaction diffu-
sion mechanisms, animal coat patterns and other practical applications of
reaction-diffusion mechanisms, neural models of pattern formation, mechan-
ical models for generating pattern and form in development (including mor-
phogenesis, formation of microvili, cartilage formation), epidemic models and
the dynamics of infections diseases, geographic spread of epidemics [1].

To narrower topics separate textbooks and proceedings are dedicated.
An example is biological and biochemical oscillators [2] including : oscilla-
tory behaviour, excitability, and propagation phenomena on membranes and
membrane-like interfaces, stability properties of metabolic pathways with feed-
back interactions, damping of mitochondrial volume oscillations by propanolol
and related compounds, glycolytic oscillations, oscillations in tissues, oscilla-
tions in growing cell populations, circadian oscillations.

The large diversity of biological phenomena was described in an enormous
number of papers. We estimate this number of order of milions if we take into
account that only to cancer more than 1.600.000 works are devoted. Usually,
the books are published in series like Lecture Notes in Biomathematics [3] or
Biomathematics [4]. A lot of books or chapters treating biological phenomena
can be found in series in life sciences [5], or synergetics [6], or chemistry, or
physics etc., or even applied mathematics [7].

This is due to the fact that, as we show in Section 2, the equations gov-
erning various types of phenomena (mechanical, physical, chemical, econom-
ical etc.) are derived from a common trunk and, when approximated, these
equations are the same for several distinct phenomena. Indeed, the first ap-
proximations contain the same expansion functions. The difference occurs in
the coefficients. In particular, frequently, the governing models in biology are
presented together with models in economics, e.g. the Goodwin model, the
Gompertz model. The Lotka-Volterra models are common to some phenom-
ena in biology and chemistry; the Hodgkin-Huxley model is used in physiology
and electric circuits. They are among the simplest and are derived as a result
of severe approximations. Of course, the more simplifying hypotheses are as-
sumed, the simpler and applicable to a more general domain are the resulting
approximate equations. The largest number of papers on biological phenom-
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ena are short papers and they are spread through the existing journals. Only
a few of these journals are devoted to biomathematics, e.g. [9], [10]. Most of
them are devoted to other domains (especially physics, chemistry and applied
mathematics) but contain applications to biology too.

The level and type of mathematics involved in these papers range from the
heuristical and elementary mathematics till the most advanced achievements
of (the conglomerate called) global analysis. We are interested in those math-
ematical treatments of models of biodynamics involving (ordinary or partial)
differential equations and using techniques of dynamical systems theory and
(static, imperfect and dynamic) bifurcation theory.

This paper was conceived as an address to scientists of various orientations
willing to form a group intended to carry out analytically, numerically and
experimentally some applications of biomathematics in medicine. This group
must contain at least applied mathematicians and physicists.

2. MATHEMATICAL MODELS IN
BIODYNAMICS

First, one of the most general models of thermodynamics is described. Then the particular

models treated by the group of the first author are presented.

One among the most general models governing equilibria and motion of
material systems (substances and fields), geometrically modelled as (mathe-
matical) continua Ω ⊂ R3 consists of some differential equations [11], referred
to as global equations of motion

d

dt
G(t, Ω′) = ΦG + pG + sG, t ∈ R, ∀Ω′ ⊂ Ω (1)

constitutive equations (of material), which can be algebraic, differential, inte-
gral, integro-differential or, more general, functional

ΦG = ΦG(G), (2)

constraints imposed by physical (generically speaking) reasons, e.g.

C(G) < 1 (3)

initial conditions
G(0, Ω′) = G0(Ω′), ∀Ω′ ⊂ Ω

and boundary conditions
G|∂Ω = GW , (5)

where G(t, Ω′) is a global quantity, e.g. the mass, and it is a function of the
time t and the subdomain Ω′ of the domain Ω (occupied by the physical system
(body)). The equation of motion (1) is a balance equation which shows that
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the rate of change of the global quantity G is balanced by the sum of the flux
ΦG of the quantity G through the frontier ∂Ω′ of Ω′, the production pG of G
and the supply sG of G due to external influences on the part of the system
from Ω′. If pG = 0, then the balance equation is said to be a conservative
equation. The terms in (1) are scalars, e.g. the mass, energy, entropy, or
vectors, e.g. momentum, momentum of momentum. Equation (1) models a
physical (biological) law, e.g. the second law of Newton, the mass balance
or conservation, the total internal energy conservation. The components of
(1) are present in all phenomena; of course, some of them can vanish for
particular cases. Therefore the equation (1) is the common trunk leading
to similar mathematical solutions and, correspondingly, to similar (in some
nonevident always) aspects of the modeled phenomenon.

The superscript G shows that for each G , specific ΦG, pG and sG corre-
spond. For instance, if G is the mass, ΦG, pG and sG are the mass flux, mass
source and supply of mass respectively. In the case of a mechanical system,
if G is the angular momentum, ΦG, pG and sG are the stress terms, zero,
and the body force. If G is the total internal energy and the system is me-
chanical, then G = Ec + Ep, where Ec and Ep are the kinetic and potential
energy, respectively and ΦG = pG = 0, while sG is the power of the forces
acting on the system. If the system is physical and is heat conducting, then
G = Ec + Ep + Eh, where Eh is part of energy due to heat and ΦGis the
heat flux, pG = 0 and sG contains supplementary terms due to radiation. If
the system is electromagnetic, then, apart from these quantities, influences of
the electrical and magnetic fields must be considered. We already remarked
that if the system is biological, this system must be considered as a particular
mechanical physical, chemical etc. system.

In additional assumptions on the regularity of the functions occurring in
equations (1), these equations become partial differential equations. For fur-
ther simplified assumptions, equations (1) can become ordinary differential
equations. For instance, in many cases the mass can be written as m(t,Ω′) =∫
Ω′ ρ(t,x)dx, where ρ is the mass density, the momentum can have the ex-

pression M(t, Ω′) =
∫
Ω′ ρ(t,x)u(t,x)dx, the total internal energy reads as

E(t,Ω′) =
∫
Ω′ ρ(t,x)u2

2 (t,x) + e(t,x)dx, where u(t,x) is the velocity at the
time t and point x and e is the internal energy. The quantities ρ, u and e
are fields and they are called local quantities. In the adopted formalism [11],
the internal energy is defined as the difference from the total internal energy
and the kinetic energy (it is in e that possible types of energies, other than
those from the inanimate world, would appear. But in this case, other global
quantities, specific only to living systems, must be introduced). In regular-
ity conditions for ρ, u and e the global conservation equations (1) for the
mass momentum and energy in a fluid system become local equations, namely
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partial differential equations, valid for every t ∈ R, x ∈ Ω,

∂ρ

∂t
+ ∇ · (ρu) = 0, (6)

∂u
∂t

+ u∇u =
1
ρ
∇ · T +

1
ρ
F, (7)

∂e

∂t
+ u · ∇e =

1
ρ
∇ · q + u · 1

ρ
F, (8)

where in (7) and (8) we took into account (6), and (6) and (7) respectively,
T is the stress tensor, F is the body force and q is the heat flux. If the fields
ρ, u, e, T, F and q are homogeneous, i.e. they do not depend on x, then
(6), (7) and (8) become the ordinary differential equations d

dtρ = 0, d
dtu = F,

d
dte = u ·F, i.e. the equations characteristic to the rigid motion (the constant
ρ was included in F). The first equation shows that the fluid is incompressible,
the second equation is the Newton equation where F is the resultant of the
forces acting upon the system and the third equation is the energy equation
from mechanics of rigid bodies. These equations degenerate into algebraic
equations characteristic to equilibria when u and e do not depend on time
either.

More general, (1) become ordinary differential equations if the global quan-
tities are homogeneous fields. This is the case of most equations in biomath-
ematics. With them finite-dimensional dynamical systems are associated and
their study, analytical as well as numerical, is easier than in the case of partial
differential equations.

The equations (6), (7) and (8) (and, in general, (1)) are formally the same
for any type of fluids (systems),which can have the property of having the
momentum flux of the form T · n, where n is the outer normal to Ω′. The
difference between various fluids, e.g. the blood, urine or amniotic fluid is
mathematically specified by the constitutive equations connecting the fluxes
and the global quantities, e.g. excitation and response. For instance, the stress
in the blood depend on D = [∇u+∇uT ]/2, the velocity of deformation tensor,
as well as some of its derivatives, while the urine can be suitably modeled by
T = −pI, where I is the unit tensor and p is the static pressure. In general, in
(2) ΦG(G) are some operators, e.g. differential, integral or functional of the
quantities G. These operators cannot be arbitrary; they must obey at most
five principles, e.g. objectivity, isotropy. As a result the form of (2) simplifies
and (2) become algebraic relationships relating the fluxes (e.g. T, q, e) to D
and other basic quantities and some of their derivatives.

In the constitutive equations and in the constitutive expressions for the
fluxes (called the constitutive functions) the coefficients are functions of the
temperature T and ρ or T and p taken at equilibrium. Their form is referred to
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as the equations of state, e.g. for energy, entropy. The classical thermodynamic
equation of state connects ρ, T , p, e.g. the Gay-Lussac equation.

Consequently, the material is characterized mathematically by constitutive
equations and state equations. In the inanimate world the occurring coef-
ficients are measured experimentally or are deduced from the statistical as-
sociated models. In living bodies it is only rarely possible to measure these
coefficients. For instance, in order to characterize what kind of material is a
tumor in its formation and development, when the quoted constitutive equa-
tions depend on the time too, we must know how look these equations and so,
which are the numerical values of their coefficients.

The constraints (3) are related to the type of the physical, biological etc.
quantity. For instance, the concentration cannot be greater than 1, the density
is always positive.

The initial conditions (4) connect the phenomenon at the actual time to
the past while the boundary conditions liberate the system existing in Ω from
the exterior. In a more complex modeling the coefficients in the constitutive
equations depend on the time derivative of u and other basic quantities. In
this case we say that the material has a memory. We think that, in most of
the circumstances, the living organs in a body or living beings are materials
with memory.

We exemplify these by a few Cauchy problems for some systems of first
order ordinary differential equations describing biological phenomena, which
were studied by the first author group.

The FitzHugh-Nagumo (F-N) model, the mostly investigated by us, is the
Cauchy problem [13], [12]

ẋ1 = c(x1+x2−x3
1/3−Acosωt), cẋ2 = −(x1+bx2−a), x1(0) = xo

1, x2(0) = x0
2

(9)
where · ≡ d/dt, t, the time, is the independent variable, x, y : R → R, x =
x(t), y = y(t) are the unknown functions, a, b, c, A and ω are real parameters.
The problem (9) is also called the Bonhoeffer-Van der Pol (BVP) model and
describes the electrical behaviour along a neuronal membrane subject to the
action of a periodic external stimulus. It also governs the initiation of the
heart beats and follows from the reaction-diffusion equations governing the
wave propagation in excitable media

ε
d

dt
x1 = ε2D1 � x1 + f(x1, x2),

d

dt
x2 = ε2D2 � x2 + g(x1, x2) (10)

where D1 and D2 are the transport coefficients, f and g are reaction terms
and ε is some parameter. In the case of the cardiac muscle x1 is the electrical
potential. FitzHugh derived (9) from the four-dimensional experimental model
of Hodgkin and Huxley and put it as the basis of the axon physiology. The
problem (9) generalizes the electrical Van der Pol oscillator. If x1 and x2 do
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not depend on space variables and f(x1, x2) = x1 +x2 −x3
1/3, and g(x1, x2) =

−(x1 + bx2 − a), the system (10) reduces to (9), for the case of A = ω = 0, i.e.
when the forcing is absent.

Mainly we dealt with the case without forcing [12], [13], which, for a, b and c
fixed, generates a two-dimensional dynamical system. The static and dynamic
bifurcation diagrams were determined by analytic [12], [13] and numerical
[14] methods. Two asymptotic dynamics as μ = c−2 → 0 and (a, b) is very
close to the curve of the Hopf bifurcation values were studied analytically and
numerically [15]. The attention was focused on the relaxation oscillations of
the heart and oscillations in two and three times, related to concave limit
circles (French canards). When the forcing is present, the dynamical F-N
system is three-dimensional. In this case, for specific situations, the chaotic
dynamics was studied by reducing the continuous dynamics to a discrete one
[13] and by treating numerically the resulting discrete dynamical system [16].

In [17] the static, dynamic and perturbed bifurcation was studied for the
Gray-Scott model

u̇ = a(1 − u) − uv2 − bu, v̇ = a(c − v) + uv2 + bu − dv, (11)

where the unknown functions u and v are the concentrations of the two reac-
tants, while the parameters a, b, c and d are related to the sedimentation time,
noncatalyzed conversion, influence of the catalyzer and rate of decomposition
of the catalyzer respectively. The Cauchy problem for (11) governs a chemical
reaction in the presence of the noncatalyzed enzymes.

Two models in oncology are dealt with in [18]. The first is the lymphocytes-
tumor model

ẋ = αx − xy, ẏ = xy − (y/α) − kx + σ, x(0) = x0, y(0) = y0, (12)

where the unknown functions x and y represent the number of malign cells
and the number of lymphocytes, respectively and the real parameters α, k and
σ are related to the coefficients of the rates of change of the cells (action of the
immunitary system on the malign cells), the natural death of the malign cells
and the tumor surface interacting with lymphocytes, diffusion of lymphocytes.
In the case of a treatment, the number of unknown functions and parameters
increases. The second model is a immuno-tumoral model

ẋ = −x−x2+xy, ẏ = −(e+b)x+ly−ex2+(l+c)xy−b, x(0) = x0, y(0) = y0,
(13)

where the state functions x and y represent the free lymphocytes situated on
the tumor surface and the total number of tumoral cells. The parameters
have meanings similar to those in (12). For both these models the static and
dynamic bifurcation diagrams were determined analytically and the results
were represented graphically. It was found that the large number of parameters
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leads to notable difficulties of the theoretical study and the graphs must be
based on the perturbed bifurcation theory. These two features are common to
the majority of mathematical models of cancer, which explains the existence
of a small number of papers devoted to rigorous mathematical treatment in
the field, in spite of the huge quantity of studies devoted to the topic. Keeping
only a few parameters means a poor model of the cancer, its evolution and its
treatment.

A form specific to biochemistry of a balance equation is the mass action law:
the velocity of reaction is a sum of two terms. The first is proportional to the
product of the concentrations of the reactants while the second is proportional
to the product P of the biochemical reaction. More exactly, the rate of change
of the concentrations c1 and c2 of the reactants has the quoted properties.
Therefore the mathematical model of this law is [17]

ċ1 = −k1c1c2 + k−1p, ċ2 = −k1c1c2 + k−1p, ṗ = k1c1c2 − k−1p. (14)

An extensive list of references on the mathematical models in biodynamics
can be found in [19].

3. DYNAMICS AND BIFURCATION IN SOME
BIOLOGICAL MODELS

The synthetic results on the dynamics and bifurcation associated with the
Cauchy problem ut=0 = u0 for the differential vector equation

u = f(α,u) (15)

are presented in the form of static, imperfect and dynamic bifurcation dia-
grams. Let us present the main steps to obtain them.

The static bifurcation diagram (sbd) is a graphical representation of the
stationary solution set u(α) in dependence on the (scalar or vector) parameter
α.

If dimu+dimα > 3, then only sections in this diagram can be represented.
But, in this case, the problem of finding all nonequivalent sbd’s arises. This
problem is solved by considering one component, say α1 = λ, of α as a control
parameter, all others being assumed small. In addition, λ is supposed to vary
near some value λ0, usually taken as equal to zero. Denote τ1 = α2, · · · , τm =
αm+1. Then the sbd existing for τ ≡ (τ1, · · · , τm) = 0 is deformed when τ
vary in a neighborhood of 0. If the number m of the small scalar parameters
is smaller than 5, then only a finite number of nonequivalent sbd’s exist.
Correspondingly, in the small parameter space τ there are some manifolds
B, H and D separating some zones. All sbd’s corresponding to all τ from
one zone are equivalent. Therefore, up to this equivalence, in each zone some
bifurcation diagram persists and, consequently, it suffices to draw a single sbd.
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Then the imperfect or (perturbed) bifurcation diagram (ibd) consists of these
zones and the corresponding one sbd in each of them.

The dynamic bifurcation diagram (dbd) is similar to the ibd. The parameter
space is divided into zones (strata) such that the dynamical systems (of a
dynamical scheme, i.e. family of dynamical systems) corresponding to the
points (parameters) belonging to one zone are topologically equivalent. Then
the phase portrait of one dynamical system corresponding to a point in each
zone suffices to characterize topologically the dynamic behavior for the entire
zone. The configuration represented by strata is called the parameter portrait.
The dbd consists of the parameter portrait and one phase portrait for each
stratum.

A combined dynamics and bifurcation study proceeds in several steps [20]:
the stationary solutions (corresponding to equilibria of the dynamical system
associated with (15)) are deduced; for each equilibrium the linearized system
around that point is written; the eigenvalues are computed. If the real part
of all eigenvalues are non null, then the equilibrium is hyperbolic and, by
Hartman-Grobman theorem, the nonlinear dynamical system is locally equiv-
alent to the linearized dynamical system. In this case no other study is nec-
essary; if at least one eigenvalue has a null real part, then the equilibrium
u is non hyperbolic. Assume that we are in the two-dimensional case for u
and assume that u corresponds to α; let us transform u and α such that u
and α are carried at the origin; let us form the problem (15) for α, called
the problem at the point ; determine the normal form for the problem (15) at
the point; this form indicates which are the corresponding miniversal unfold-
ings. We determine them by means of the existing theories; let us perform
the same study around each non-hyperbolic point; during these investigations
some important manifolds occur( the manifold S of the double equilibria, the
manifold HC of the Hopf bifurcation values, the manifold Q of the double zero
eigenvalues (i.e. of the Bogdanov-Takens bifurcations), the manifolds B−T of
the homoclinic bifurcations, the manifold Ba of the Bautin bifurcation, man-
ifolds of degenerate bifurcations). All these manifolds are separating in the
parameter space the so-called strata. The configuration of strata represents
the parameter portrait; for one point of each stratum the phase portrait is
represented; if the mentioned manifolds are complicated in geometrical struc-
ture, the manifolds B, H and D are determined. These manifolds are extra
strata in the parameter portrait.

All these steps were used systematically in the studies of the first author’s
group, in the hope to realize as complete an analysis as possible, using all
existing theoretical and numerical approaches. These studies ended by pub-
lication of research monographs devoted to a single or at most two models.
Later on, it was proved that other new directions of research arose even for
the very minutely investigated models. Presently, a lot of open problems re-
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vealed are waiting for their solution: the asymptotic behavior for the parame-
ter portrait and the corresponding phase portraits; the perturbed bifurcation
diagrams for the above-mentioned manifolds; global bifurcations; the geomet-
ric and mechanics classification of the periodic oscillations; the degenerated
bifurcations; the French canard phenomenon etc.; for the three-dimensional
case the presence of chaos is probable and a systematic and complete study is
not conceivable in general.

4. THERMAL CONVECTION
The collaboration of the first two authors in the framework of hydrodynamic

stability theory, developed during the last 16 years, mainly concerned the
derivation of stability criteria for mechanical equilibria of fluid layers, which
can be a premise for interesting applications to biological fluid dynamics. Their
studies were devoted to complex fluids subject to several physical influences
(thermal, electrical, magnetic fields, concentration, porosity, compressibility,
non Newtonicity). Variational methods (extending some of the existing ones),
Fourier series combined with backwards integration techniques and a direct
method based on the characteristic equation were frequently used in these
studies [21].

For most of the fluid flows of interest in real-world applications, the direct
use of the methods of functional analysis lead to results very unsatisfactory
for users. This is due, in principle, to the fact that some changing-sign terms
are estimated by their norm. In addition, some physical effects disappear
by projection (and, so, symmetrization of some operators) on the problem
spaces. These types of problems remain for dozens of years as a challenge for
fluid dynamicists. Such a problem was solved by us by means of several ideas
(borrowed from simpler cases of ode’s): a change of the governing problem
is necessary before applying to it the projection; this change must contain
several parameters to be chosen so that the remained symmetric operators
preserve all physical parameters; the changing-sign terms must be included in
sign-preserving terms by suitable definition of the Liapunov functional; it is
necessary an optimal change of the parameters for stability bounds as well as
for the simplicity of usually cumbersome computations. Thus, the problem
governing the nonlinear stability of the mechanical equilibrium of a horizontal
layer Ω of a binary fluid mixture subject to two competing effects temperature
and concentration when the Soret and Dufour thermodiffusive currents are
present reads [21]

∂v
∂t

+ v∇v = −∇p + (Rθ − sCγ)k + Δv,

Pr

(∂θ

∂t
+v ·∇θ

)
= (1+Nλ2τ−1)Δθ +Rv · k+NλσΔγ, (t,x) ∈ (o,∞)×Ω,
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Sc

(∂γ

∂t
+ v · ∇γ

)
= Δγ + λσ−1τ−1Δθ + Cv · k, (16)

where t is the time, v, θ, γ are perturbed velocity, temperature and concen-
tration unknown field, while R, C, s, Pr, N, λ, τ, σ, Sc are physical parameters.
Boundary conditions and the requirement of the solenoidality are imposed
energy method yielding results much better than the existing ones.

An inspired handling with algebraic (Young) and integro-differential (Poincaré)
inequalities made possible the improvement of the Navier-Stokes spectrum of
the bounds for the model [23]

dv
dt

+ Ãv = R(v), (17)

where Ãv = Av + Muv, A is related to the projection of the Laplacian on
the space N of solenoidal vectors (17), Mu is the projection on N of the
linearization of the advective nonlinear term in the Navier-Stokes equations
about the basic vector fields u, and R is the projection on N of the nonlinear
advective term in perturbation velocity v.

The assumption of normal mode perturbations transformed the pde’s into
ode’s and the boundary conditions became two-point conditions. The trace of
the complexity of the fluid and physical effects can be pursuited in the very
high order of differentiation in the ode’s and in the presence of physical para-
meters. The complexity of flow can be viewed in the complicated boundary
conditions. An example of such a two-point eigenvalue problem is

[(
D2 − a2

)2 − M2D2
] (

D2 − a2
)
w − b1a

2w = 0, z ∈ [−0.5, 0.5],

W = DW =
[(

D2 − a2
)2 − M2D2

]
w = 0, at z = ±0.5. (18)

where W (z) is the unknown function and a,M, b1 are physical parameters. By
adapting the direct method in the theory of ode’s to, in [24] was determined
the secular equation. False secular points, not detected by a straightforward
application of a numerical method, were found by a bifurcation analysis of the
characteristic manifold.

It is in these bifurcation problems and in the study of dynamics generated
by ode’s possessing several parameters that the third author can help the first
ones. The geometric forms involves are extremely complicated; some of them
are fractals. Therefore a specialist in fractal geometry, integral geometry and
computation geometry is necessary.
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