OPTIMIZATION OF THE NUMBER OF EXECUTANS IN MAINTENANCE WORKS

S. Dziţac, H. Goia, I. Dziţac, M. Cârlan

University of Oradea, Agora University of Oradea

sdzitac@rdslink.ro, idzitac@rdsor.ro

Abstract One direction in order to improve the maintenance works, integrated in the maintenance strategy focused on reliability, is the optimized configuration of the human resources needed for the maintenance. The operationalization of the criteria: "minimal total costs" was made by adapting the Monte Carlo simulation method and the expertons method for computing the optimal staff number. Within the article there are presented case studies for the transportation system and preparation of the solid fuel from the termofication electrical power station from Oradea [1-6].

1. INTRODUCTION

The optimum criterion "total minimum costs" [1,2], that corresponds to a certain number of necessary executing personnel, is established by equation

$$C_t = C_d + D,\tag{1}$$

where: C_t is the total cost - m.u/t.u (monetary units / time units); C_d costs for the payment of existing executing personnel (available) in the maintenance activity - repating of TPSSF, in certain frame of time - m.u/t.u; D is the damage inflicted by the absence (lack, unavailable) of a certain number of personnel that does not participate, although it is necessary to perform the work.

For establishing the two components of total costs we use equations

$$C_d = c \cdot M,\tag{2}$$

126 S. Dziţac, H. Goia, I. Dziţac, M. Cârlan

$$D = q \cdot E(\Delta M), \tag{3}$$

where: c is the average income of an executant (salary, pay rise, bonuses) m.u/t.u.; M is the number of available personnel (that exists in that activity); q the damage inflicted due to the absence of an individual in the production process - $m.u/t.u.; E(\Delta M)$ is the average number of personnel deficit 4 (mathematic expectance of shortage - lack of personnel)

$$E(\Delta M) = \sum_{K} \Delta M_K \cdot p_K, \qquad (4)$$

where: ΔM_K represents the shortage of personnel in the case that a certain number of personnel is available M_K , and p_K is the probability to have this shortage. Regarding the unit costs q and q, the financial records and other papers recommend using for medium qualification personnel equation

$$q = (2 \div 5)c \tag{5}$$

and equation

$$q = (5 \div 10)c \tag{6}$$

for high qualification personnel.

2. METHODS TO DETERMINE THE OPTIMAL NUMBER OF EXECUTANTS

2.1. MONTE CARLO SIMULATION METHOD [3-6]

For solving this problem we will present - based on the analysis of a case study - regarding the substantiation of the optimum number of personnel in the maintenance activity specific to the maintenance and repairing activity in a TPSSF (transport and preparation system of solid fuel) - three techniques of the "Monte-Carlo simulation method":

- one process concerns the random "selection" of the moments that data is recorded;
- the second will be used for building an artificial sample, that is statistically representative;
- the third is used for establishing iteratively the "minimum total costs" and, as a consequence, the "optimum number of locksmiths in the maintenance work".

Case study: determining the optimum number of personnel in the maintenance activity of a TPSSF at CET I Oradea (power and heating station).

Let $T_r = 120$ working days (one semester) be the reference time frame, $\theta = 50$ working days "selected" randomly. Using the random number N_r that is formed with the first five digits of the ratio θ/T_r we obtain out of table 1 extracted from the set of one milion random numbers of Rand Corporation those numbers of lower or at most equal value with the number of items N_r .

The order of recording the personnel necessity is given by the succession in which the numbers are read. This personnel necessity if appreciated by the work coordinator (head of repairs) and corresponds to a degree of employment of $(70 \div 80\%)$.

It follows: $\frac{\theta}{T_r} = \frac{50}{120} \Longrightarrow \frac{\theta}{T_r} = 0.41666$. So, $N_r = 41666$.

We will record the first 50 numbers $N_0 \leq N_r$, and we select the date of the recording the personnel necessity as a function of the reading order. The volume of the statistic sample is n = 50.

In Table 2 is presented the number of necessary personnel for the maintenance work execution with a percent of employment of locksmiths of $G_0 = (70 \div 80)\%$.

So, $M_n \in [20; 40]$.

We deduce the length of the grouping interval, by STURGESS equation

$$L = \frac{M_n^{max} - M_n^{min}}{1 + 3.322 \text{lg}n} \Longrightarrow L = 3, \tag{7}$$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
84980 62458 9703 078397 55048 23912 81105 68517 67954 16570 22116 33646 17545 31321 73520 40050 90553 59002 26619 02930 68645 15068 56898 87021 64838 92133 44221 92531 70313 24969 26518 39122 96561 56004 17704 47400 30837 74348 66239 32704 36493 41666 27871 71329 43920 11199 36521 96194 15831 08968 77402 12994 59892 85581 01041 46622 98897 39585 57825 36521 83679 97154 40341 84741 41628 78664 80727 18313 82950 12335 73364 38416 93128 10297 75287 71989 58152 42467 23339 55111 14499 83965 <th>13407</th> <th>62899</th> <th>78937</th> <th>90525</th> <th>46460</th> <th>97660</th> <th>23490</th> <th>19853</th> <th>06933</th> <th>69767</th>	13407	62899	78937	90525	46460	97660	23490	19853	06933	69767
22116 33646 17545 31321 73520 40050 90553 59002 26619 02930 68645 15068 56898 87021 64838 92133 44221 92531 70313 24969 26518 39122 96561 56004 17704 47400 30837 74348 66239 32704 36493 41666 27871 71329 43920 11199 36521 96194 15831 08968 7402 12994 59892 85581 01041 46662 98897 3588 57825 36521 3679 97154 40341 84741 41628 78664 80727 18313 82950 12335 73364 38416 93128 10297 75287 74989 58152 42467 23339 55311 14499 83965 75403 18002 82712 5590 04313 33101 64775 42237 59122 92855	50230	63237	94083	93634	53166	41836	28205	28215	47766	03076
68645 15068 56898 87021 64838 92133 44221 92531 70313 24969 26518 39122 96561 56004 17704 47400 30837 74348 66239 32704 36493 41666 27871 71329 43920 11199 36521 96194 15831 08688 77402 12994 59892 85581 01041 46662 98897 39588 57825 36521 33679 97154 40341 84741 41628 76644 80727 18313 82950 12335 71802 39356 02981 89107 19722 7045 028808 68012 52485 55139 57494 72484 22676 44311 79942 98351 10265 29761 39565 45332 73364 38416 93128 10297 75287 74989 58152 42467 23339 53311 14499 83965 75403 18002 82712 5590 64341 65510 77763 36684 40747 03084 07734 88940 15656 37895 94559 01332 31016 48621 1291 068707 45427 82145 74644 53625 10791 21789 14093 06268 48472 18782 51646 37564 70812 98331 9611 012424 98601 19089 3	84980	62458	9703	078397	55048	23912	81105	68517	67954	16570
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22116	33646	17545	31321	73520	40050	90553	59002	26619	02930
36493 41666 27871 71329 43920 11199 36521 96194 15831 08968 77402 12994 59892 85581 01041 46662 98897 39588 57825 36521 3879 97154 40341 84741 41628 78664 80727 18313 82950 12335 71802 39356 02981 89107 19722 7045 028808 68012 52485 55139 57494 72484 22676 44311 79942 98351 10265 29761 39565 45332 73364 38416 93128 10297 75287 74989 58152 42467 23339 55311 14499 83965 75403 18002 82712 5590 064941 65510 77763 33684 40747 03084 07734 88940 15656 37895 94559 01332 33101 64795 42237 59122 92855 62097 76116 76977 94570 49799 41080 48621 1291 068707 45427 82145 74644 53625 10791 21789 14093 06268 48472 18782 51646 37564 70812 98331 9611 012424 98601 19089 35365 13800 83745 40141 38817 63835 13486 19526 27122 42515 4	68645	15068	56898	87021	64838	92133	44221	92531	70313	24969
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	26518	39122	96561	56004	17704	47400	30837	74348	66239	32704
83679 97154 40341 84741 41628 78664 80727 18313 82950 12335 71802 39356 02981 89107 19722 7045 028808 68012 52485 55139 57494 72484 22676 44311 79942 98351 10265 29761 39565 45332 73364 38416 93128 10297 75287 74989 58152 42467 23339 55311 14499 83965 75403 18002 82712 5590 064941 65510 77763 33684 40747 03084 07734 88940 15656 37895 94559 01332 3101 64795 42237 59122 92855 62097 76116 76977 94570 49799 41008 46621 1291 068707 45427 82145 7644 53625 10791 21789 14093 06268 48472 18782	36493	41666	27871	71329	43920	11199	36521	96194	15831	08968
71802 39356 02981 89107 19722 7045 028808 68012 52485 55139 57494 72484 22676 44311 79942 98351 10265 29761 39565 45332 73364 38416 93128 10297 75287 74989 58152 42467 23339 55311 14499 83965 75403 18002 82712 5590 064941 65510 77763 33684 40747 03084 07734 88940 15656 37895 94559 01332 3101 64795 42237 59122 92855 62097 76116 76977 94570 49799 41080 48621 1291 0668707 45427 82145 74644 53625 10791 21789 14093 06268 48472 18782 51646 37564 70812 98331 9611 012424 98601 19089 35365 13800 83745 40141 38817 63835 13486 19526 27122 42515 43618 42110 93402 93997 67721 75037 70444 1695 047720 88646 29966 38144 62556 07864 41681 95285 44153 31709 13358 04626 56938 54729 67757 68412 8842 35676 49766 19159 95355 98213 3	77402	12994	59892	85581	01041	46662	98897	39588	57825	36521
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	83679	97154	40341	84741	41628	78664	80727	18313	82950	12335
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	71802	39356	02981	89107	19722	7045	028808	68012	52485	55139
	57494	72484	22676	44311	79942	98351	10265	29761	39565	45332
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	73364	38416	93128	10297	75287	74989	58152	42467	23339	55311
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14499	83965	75403	18002	82712	5590	064941	65510	77763	33684
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	40747	03084	07734	88940	15656	37895	94559	01332	33101	64795
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42237	59122	92855	62097	76116	76977	94570	49799	41080	48621
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1291	068707	45427	82145	74644	53625	10791	21789	14093	06268
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48472	18782	51646	37564	70812	98331	9611	012424	98601	19089
2996638144625560786441681952854415331709133580462656938547296775768412888423567649766191599535598213342621515727545145222594047239934255546747030425459181960812476315060972433915147933387127455810018537612155937319899287836772644297346696495796497149542890714784313519381445891409793694951489820413101940353756428198022410183193784761491050677731998957047592821811882744532104207344381352403023180460180523906965590678585188643392746019037002831365587467821859986457238832298086625455251553121581466808623327524047205470734307430685960007551781722757395511839836918435431367169405111868368221989632681112028638728500365081275086020350889028002909376683851776828172852157770923249040345 <td>35365</td> <td>13800</td> <td>83745</td> <td>40141</td> <td>38817</td> <td>63835</td> <td>13486</td> <td>19526</td> <td>27122</td> <td>42515</td>	35365	13800	83745	40141	38817	63835	13486	19526	27122	42515
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	43618	42110	93402	93997	67721	75037	70444	1695	047720	88646
34262151572754514522259404723993425554674703042545918196081247631506097243391514793338712745581001853761215593731989928783677264429734669649579649714954289071478431351938144589140979369495148982041310194035375642819802241018319378476149105067773199895704759282181188274453210420734438135240302318046018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	29966	38144	62556	07864	41681	95285	44153	31709	13358	04626
918196081247631506097243391514793338712745581001853761215593731989928783677264429734669649579649714954289071478431351938144589140979369495148982041310194035375642819802241018319378476149105067773199895704759282181188274453210420734438135240302318046018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	56938	54729	67757	68412	88842	35676	49766	19159	95355	98213
3761215593731989928783677264429734669649579649714954289071478431351938144589140979369495148982041310194035375642819802241018319378476149105067773199895704759282181188274453210420734438135240302318046018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	34262	15157	27545	14522	25940	47239	93425	55467	47030	42545
54289071478431351938144589140979369495148982041310194035375642819802241018319378476149105067773199895704759282181188274453210420734438135240302318046018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	91819	60812	47631	50609	72433	91514	79333	87127	45581	00185
194035375642819802241018319378476149105067773199895704759282181188274453210420734438135240302318046018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	37612	15593	73198	99287	83677	26442	97346	69649	57964	97149
95704759282181188274453210420734438135240302318046018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	54289	07147	84313	51938	14458	91409	79369	49514	89820	41310
018052390696559067858518864339274601903700283136558746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	19403	53756	4281	98022	41018	31937	84761	49105	06777	31998
746782185998645723883229808662545525155312158146680862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	95704	75928	21811	88274	45321	04207	34438	13524	03023	18046
0862332752404720547073430743068596000755178172275739551183983691843543136716940511186836822198963268111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	01805	23906	96559	06785	85188	64339	27460	19037	002831	36558
39551 18398 36918 43543 13671 69405 11186 83682 21989 63268 11120 28638 72850 03650 81275 08602 03508 89028 00290 93766 83851 77682 81728 52157 77092 32490 40345 75076 58202 58038 70955 59693 26838 96011 56555 84390 12982 09083 33398 29974	74678	21859	98645	72388	32298	08662	54552	51553	12158	14668
111202863872850036508127508602035088902800290937668385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	08623	32752	40472	05470	73430	74306	85960	00755	17817	22757
8385177682817285215777092324904034575076582025803870955596932683896011565558439012982090833339829974	39551	18398	36918	43543	13671	69405	11186	83682	21989	63268
70955 59693 26838 96011 56555 84390 12982 09083 33398 29974	11120	28638	72850	03650	81275	08602	03508	89028	00290	93766
	83851	77682	81728	52157	77092	32490	40345	75076	58202	58038
47386 17462 18874 74210 29555 83653 07742 79452 91472 12611	70955	59693	26838	96011	56555	84390	12982	09083	33398	29974
	47386	17462	18874	74210	29555	83653	07742	79452	91472	12611

Table 1 Extracted from the set of one million random numbers of Rand Corporation.

$M_n \in$	26	30	23	33	30	26	30	33	25	30
	30	21	36	30	26	32	23	28	30	31
	33	36	28	36	20	30	30	25	32	28
	24	29	35	28	35	29	25	37	21	31
	27	32	30	40	25	32	38	28	34	40

Table 2 The number of necessary personnel for executing maintenance work.

where: M_n^{max}, M_n^{min} are the maximum and minimum number of necessary personnel estimated by the manager.

In Table 3 we present the appearance frequencies of necessary personnel for the execution of maintenance work in certain time frames.

Table 3 The appearance frequencies of personnel.

The statistic sample is representative to a Gauss type distribution. As a function of computing items in Table 2 we will construct a volume statistic sample n' = 75 (for a greater degree of veracity). We will proceed as follows: computing probabilities p_K based on frequencies f_K in Table 3, with equation

130 S. Dziţac, H. Goia, I. Dziţac, M. Cârlan

$$p_K = \frac{f_K}{\sum_K f_K}, \text{ with } \sum_K p_k = 1$$
(8)

Κ	M_{sup}	f_K	p_K	p_K^{cum}	
1	22	3	0.06	0.06	We take into account
2	25	7	0.14	0.20	
3	28	9	0.18	0.38	the upper limit of the interval M^{sup} , σ^{cum} is
4	31	14	0.28	0.66	interval M^{sup} ; p_K^{cum} is the cumulated
5	34	8	0.16	0.82	
6	37	6	0.12	0.94	probability
7	40	3	0.06	1.00	

and the results are recorded in Table 4.

Table 4 Probabilities p_K computed as a function of the frequencies f_K .

Now with each cumulated probability we associate an interval of random numbers having as lower limit the natural number of five digits given by the previous cumulated probability and, as an upper limit, the natural number given by the respective cumulated probability minus one. We read 75 random consecutive numbers of Table 1 and function of the associated interval in which they are, we obtain the artificial statistic sample of volume (Table 5).

In Table 6 we present the probability intervals associated to the value M_K .

As a function of the values M_{S_J} in Table 5 the frequency values may be computed (Table 7). Although the graph approximates the normal (Gaussian) form the artificial sample, in order to "correct" the influence of frequency $f_3(28) = 12 < f_2(25) = 16$, we will group the values M_K (Sturgess equation is only informative). The new grouping is presented in Table 8.

The iterative computing of the optimum number of personnel necessary to execute the maintenance work is presented next, in Table 9 (the computing items of Table 7 will be considered).

J	Random number	M_S	J	Random number	M_S		Random number	M_S
1.	13407	25	26.	19403	25	51.	68707	34
2.	50230	31	27.	95704	40	52.	18782	25
3.	84980	37	28.	01805	22	53.	13800	25
4.	22116	28	29.	74678	34	54.	42110	31
5.	68645	34	30.	08623	25	55.	38144	31
6.	26518	28	31.	39551	31	56.	54729	31
7.	36493	28	32.	11120	25	57.	15157	25
8.	77402	34	33.	83851	37	58.	60812	31
9.	83679	37	34.	70955	34	59.	15593	25
10.	71802	34	35.	47386	31	60.	07147	25
11.	57494	31	36.	62899	31	61.	53756	31
12.	73364	34	37.	63237	31	62.	75928	34
13.	14499	25	38.	62458	31	63.	23906	28
14.	40747	31	39.	33646	28	64.	21859	28
15.	42237	31	40.	15068	25	65.	32752	28
16.	01291	22	41.	39122	31	66.	18398	25
17.	48472	31	42.	41666	31	67.	28638	28
18.	35365	28	43.	12994	25	68.	77682	34
19.	43618	31	44.	97154	40	69.	59693	31
20.	29966	28	45.	39356	31	70.	17462	25
21.	56938	31	46.	72484	34	71.	78937	34
22.	34262	28	47.	38416	31	72.	94083	40
23.	91819	37	48.	83965	37	73.	09703	25
24.	37612	28	49.	03084	22	74.	17545	25
25.	54289	31	50.	59122	31	75.	56898	31

Table 5 $\,$ First 75 random numbers in Table 1 and M_{SJ} values.

K	M_K	Associated interval
1	22	$(00000 \div 05999)$
2	25	$(06000 \div 19999)$
3	28	$(20000 \div 37999)$
4	31	$(38000 \div 65999)$
5	34	$(66000 \div 87999)$
6	37	$(82000 \div 93999)$
7	40	$(94000 \div 99999)$

Table 6 The probability intervals associated with the value M_K .

K	M_K	Frequency	Probability		
n n	MK		f_K	p_K	
1	22		3	0.04000	
2	25	Th	16	0.21333	
3	28		12	0.16000	
4	31		24	0.32000	
5	34		12	0.16000	
6	37		5	0.06667	
7	40		3	0.04000	
	2	$\sum_{K} f_{K}$	75	1.0000	

Table 7 Probabilities p_K computed as a function of the frequencies f_K

K	K M_K	Frequency	Frequency				
	MIK		f_K	p_K			
1	$(22 \div 27)$		19	0.25333			
2	$(28 \div 33)$		36	0.48000			
3	$(34 \div 40)$		20	0.26667			
	\sum_{F}	75	1.0000				

Table 8 Probabilities p_K computed as a function of the frequencies f_K

Table 9 shows us that the optimum number of personnel that corresponds to total minimum costs is M = 35 locksmiths for maintenance activity.

2.2. EXPERTONS METHOD [3-6]

Let A_h^{inf} and A_h^{sup} the lower and upper limits for the appreciations of a group S of experts, be given numerically (linguistically) and let $[a_n^{inf}; a_n^{sup}] \subset [0; 1]$ the intervals associated with these appreciations transposed on a linear scale with seven levels. The experton is a statistical construction given as a two column table whose elements are the relative cumulated frequencies 9, $f_c^r(\alpha_K)$ associated with the appreciation intervals that correspond to the α_K levels

$$f_c^r(\alpha_K) = [f_c^{r \ inf}(\alpha_K); f_c^{r \ sup}(\alpha_K)]$$
(9)

The defining measure of an experton is the mathematical expectance, E(Ex(Z))given by the equation

$$E(Ex(Z)) = [E^{inf}(Ex(Z)); E^{sup}(Ex(Z))],$$
(10)

where

$$E^{inf/sup}(Ex(Z)) = \frac{1}{n_t - 1} \sum_K f_c^r \; ^{inf/sup}(\alpha_K) \tag{11}$$

Ex(Z) is some experton (Z).

Iteration	M_k	M	ΔM	p_K	$E(\Delta M)$	C	D	C_t	Observation
	22		-	-					
	25		-	-					
	28	30	-	-					
1.	31		1	0.32000	1.83	30c	11c	41c	-
	34]	4	0.16000					
	37]	7	0.06667					
	40		10	0.04000					
	22		-	-					
	28		-	-					Total
2.	31	35	-	-	0.33	35c	2c	37c	minimum
Δ.	34		1	-	0.00	300		570	costs
	37		2	0.06667					COSIS
	40		5	0.04000					
	22								
	31								
3.	34	36	-	-	0.23	36c	1.4c	37.4c	-
	37		1	0.06667					
	40		4	0.04000					
	22		-	-					
	28		_	-					
	31	07	_	-	0.10	07		07.7	
4.	34	37	_	_	0.12	37c	0.7c	37.7c	-
	37		_	-					
	40	1	3	0.04000					

Table 9 Computation of the optimum number of personnel necessary for executing the maintenance work.

Between the mathematical expectance of an experton and the average interval appreciation, m(a) we have relation

$$m(a) = E(Ex(Z)), \tag{12}$$

where

$$m(a) = \left[\frac{\sum_{n} a_{n}^{inf}}{n}; \frac{\sum_{n} a_{n}^{sup}}{n}\right]$$
(13)

Table 10 presents the semantic of the 7th level scale, the simbol for each level, the level and the step.

$\left \begin{array}{c} n_t \end{array} \right $ Semantic	Simbol	Level (α)	Step $(\Delta \alpha)$
1 Dissatisfactory	D	0	0
2 Almost dissatisfactory	AD	0,167	0,167
3 Slightly satisfactory	SS	0,333	0,167
4 Satisfactory	S	0,5	0,167
5 Well	W	0,667	0,167
6 Almost very well	AVW	0,833	0,167
7 Very well	VW	1	0,167

Table 10 The semantic of the 7th level linear scale.

Case study: establishing of the optimum number of locksmiths for the maintenance activity in TPSSF of CET I Oradea.

A group of four experts expose each of them their opinion - based of verification, measurements, functioning samples - regarding the operational capacity (the state of the respective equipment) and its availability (safetyness in operation), the appreciations being distinguished with the symbols of the scale steps (table 11).

We present the algorithm for constructing the expertons (Tables 12 and 13).

136 S	5.	Dziţac,	Η.	Goia,	Ι.	Dziţac,	M.	$C\hat{a}rlan$
-------	----	---------	----	-------	----	---------	----	----------------

E_{τ}	$E_1:20$	executants	$E_2: 24 \ \epsilon$	executants
$\frac{E_{\tau}}{e_J}$	Appreciation	Interval	Appreciation	Interval
e_1	W; AVW	$(0, 667 \div 0, 833)$	W;AVW	$(0, 667 \div 0, 833)$
e_2	W	0,667	S;W	$(0, 500 \div 0, 667)$
e_3	W;VW	$(0,667 \div 1)$	AVW	0,833
e_4	W;AVW	$(0, 667 \div 0, 833)$	W;VW	$(0, 667 \div 1)$
m(ac)	*	$(0, 667 \div 0, 833)$	*	$(0, 667 \div 0, 833)$
E_{τ}	$E_3:28$	executants		
$\frac{E_{\tau}}{e_J}$	Appreciation	Interval		
e_1	S;W	$(0, 500 \div 0, 667)$		
e_2	AVW;VW	$(0, 833 \div 1)$		
e_3	AVW;VW	$(0, 833 \div 1)$		
e_4	S;W	$(0, 500 \div 0, 667)$		
m(ac)	*	$(0, 667 \div 0, 833)$		

Table 11 The opinions of the four experts based on measurements and functioning samples.

We obtain the expertons of the couples

 $(Ex(E_1)) \land (Ex(E_2)) = Ex(E_1 \bigtriangleup E_2);$ $(Ex(E_2)) \land (Ex(E_3)) = Ex(E_2 \bigtriangleup E_3);$

 $(Ex(E_3)) \land (Ex(E_1)) = Ex(E_3 \bigtriangleup E_1);$

It follows: $E_1 \triangle E_2$ - first place, $E_2 \triangle E_3$ - second place, $E_3 \triangle E_1$ - third place

So: E_1 first and third place, E_2 first and second place, E_3 second and third place

It follows that the classification is: $E_2 - E_1 - E_3$.

The optimium number of personnel for executing the maintenance work at CET I Oradea TPSSF it justifies to be: $M_optimum = 24$ executants.

E_{τ}	Scale	f^a	f_c^a	$f_c^r: E_x(E_\tau)$	$E[Ex(E_{\tau})]$
E_1	0 0.167 0.333 0.500 0.667 0.833 1	$ \begin{array}{ c c c c } \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 4 \\ \hline 0 \\ \hline 1 \\ \hline \\ 0 \\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0,667;0,833]
E2	0 0.167 0.333 0.500 0.667 0.833 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[0,667;0,833]
E ₃	0 0.167 0.333 0.500 0.667 0.833 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 2 \\ \hline 2 \\ \hline 0 \\ \hline 2 \\ \hline 0 \\ \hline 2 \\ \hline 0 \\ \hline 2 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[0,667;0,833]

Table 12 The method of constructing the expertons of the couples.

Table 13 The method of constructing the expertons of the couples (cont'd).

3. CONCLUSIONS

The optimization of maintenance work consists in the optimized configuration of human resources for TPSSF maintenance, which materializes in:

- determining the optimum number of human resources destined to maintenance work, that we have determined in this paper;

- establishing the optimum make-up of equipment that operationalize the maintenance work;

-optimizing the number of teams that carry out the maintenance work;

- the optimum allocation of maintenance teams.

In establishing the optimum number of personnel that carry out maintenance work it is recommended to use "the minimum total cost" criterion, taking into account the contradictory fundamental components of costs: the component that corresponds to having the personnel and the component that corresponds to the damage caused by not doing the maintenance work at the proper time due to lack of personnel. In this paper the operationalization of the criterion was made by simulation and by applying the expertons method.

4. ACKNOWLEDGMENT

This paper is dedicated to anniversary of 65 years from birth of prof. dr. Adelina Georgescu (borne in Drobeta Turnu-Severin on April 25, 1942), a prominent personality and a dynamic promoter of the Romanian and international contemporary applied mathematics.

Professor Adelina Georgescu graduated the Faculty of Mathematics (Bucharest), section of fluid mechanics in 1965, with a thesis on subsonic aerodynamics. Under the supervision of Professor Caius Iacob she prepared a doctorate in hydrodynamic stability theory, a pioneering field for that period. In 1970 she defended her Ph. D. Thesis and became Doctor in Mathematics. Between 1965 and 1990 she worked at the Institute of Fluid Mechanics and Aerospatial Constructions, Bucharest, and at The Institute of Mathematics, Bucharest, alternatively, reaching all scientific degrees. In 1990 she was the initiator of

140 S. Dziţac, H. Goia, I. Dziţac, M. Cârlan

the project of a new research institute, the Institute of Applied Mathematics, of the Romanian Academy. The Institute was born in 1991 and Professor Adelina Georgescu held the function of Director (and Principal Researcher I) until 1995. Her intention was to create a strong group in nonlinear dynamics. In 1997, as the Institute was not lead in the scientific direction envisaged by Prof. Georgescu, she moved to the University of Piteşti, where she is acting so far.

Professor Adelina Georgescu is main founder (1992) and president (1992- up to the present) of the Romanian Society of Applied and Industrial Mathematics (ROMAI). Prof. A. Georgescu is founder (1993) and main organizer of the annual ROMAI Conference on Applied and Industrial Mathematics (CAIM, 1993- up to the present). Also, she is founder (2005) and Editor in Chief (2005- up to the present) of the ROMAI JOURNAL (an international journal edited by ROMAI Society). Congratulations and thank you professor Adelina Georgescu for your great endeavour and contributions in dissemination of Romanian research on applied and industrial mathematics and its integration in a global international knowledge society.

This work was supported by Research Center on "Advanced Information Technologies in Management and Engineering" of Agora University, Oradea, Romania.

References

- [1] A. Carabulea, Engineering of energy systems, E.J. Iasi, 1986 (Romanian).
- [2] V. Cătuneanu, Florin Popențiu, Optimization of the systems reliability, Ed. Acad. Române, Bucureşti, 1989 (Romanian).
- [3] M. Cârlan, Optimum problems in engineering technical systems, Ed. Acad. Române, Bucureşti, 1994 (Romanian).
- [4] I. Dzitac et al., Monte Carlo method: Hazard and determinism, Ed. Univ. din Oradea, 2001 (Romanian).
- [5] S. Dzitac, Monte Carlo method applied to the analysis of the reliability of electrical systems and equipments, PhD Report, Oradea, 2007 (Romanian).
- [6] H. Goia, Contributions to the implementation of RBM maintenance strategy to the equipments from the STPCS structure, PhD Thesis, 2006 (Romanian).