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Crystallization of liquid phase state in the case of composite lattice is de-

scribed by the system of nonlinear integral equations with kernel depending

on modulus of arguments difference [1], obtaining by the uncoupling of N.N.

Bogolyubov equation hierarchy on second distribution function. Suppose that

forming crystal molecules belong to M different classes and the number of i-th

class molecules in the volume V is equal to Ni, N =
∑M

i=1Ni

∂Fi
∂qα

+
1

θv

M∑

j=1

nj
∂Φij(|q − q′|)

∂qα
Fij(q, q

′)dq′ = 0, q = (q1, q2, q3) (1)

Here θ = kT , k – Boltzman constant, T – temperature, ni = Ni

N , v = V
n ⇒

nj

v =
Nj

V = 1
vj

, Φij(|q − q′|) = Φji(|q − q′|) – the potential energy of i-th and

j-th molecule classes interaction which are disposed at the points q and q′.

Carrying out the approximation Fij(q, q
′) = Fi(q)Fj(q

′)Gij(|q − q′|),
lim

|q−q′|→∞
Gij(|q − q′|) = 1; Gij(|q − q′|) = 0 at |q − q′| ≤ a, where Gij(|q − q′|)

is radial distribution function of two types of particles, transform (1) to the
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form

∂Fi(q)

∂qα
+

1

θv

M∑

j=1

nj
∂Uij(q)

∂qα
Fi(q) = 0,

Uij(q) =

∫

(q′)





|q−q′|∫

∞

dΦij(r)

dr
Gij(r)dr




Fi(q

′)dq′.

Setting Fi(q) = 1
λi

exp

{
− 1
θv

M∑
j=1

nj
|q−q′|∫
∞

dΦij(r)
dr dr

}
, where 1

λi
is a constant not

depending on coordinates and defining from the condition of density normal-

ization limV→∞ 1
V

∫
Fi(q)dq = 1, and ρi(q) = 1

vi
Fi(q) = 1

λivi
eui(q) we obtain

the system of nonlinear integral equations

ln{λFi(q)} = ui(q) = −1

θ

M∑

j=1

∫
1

λvj
Kij(|q − q′|)euj(q

′)dq′,

Kij(|q − q′|) = Kji(|q − q′|) =
|q−q′|∫
∞

dΦij(r)
dr Gij(r)dr, where q = (q1, q2, q3)

are Cartesian coordinates. As far as 1
vi

= ni

v = 1
Mv , the system of integral

equations takes the form

ui(q) +
1

Mvθλ

M∑

j=1

∫
Kij(|q − q′|)euj(q

′)dq′ = 0. (2)

As far as composite lattice consists of M identical sublattices here, like in

[2], it is introduced the common constant of normalization λ.

First, give a brief introduction to crystallographic groups. It is know [3]

that all symmetry groups of 3-dimensional homogeneous discrete space – spa-

tial crystallographic groups – are three times periodic. The translations group

T = {a = m1a1+m2a2+m3a3}, mi ∈ Z propagates any point into 3D-periodic

system of points, that is a spatial lattice. Crystalline lattices are divided into

7 crystalline systems, that are called the syngonies. Bravais mathematically

showed that for the crystals of 7 syngonies, 14 types of lattices are possible. Be-

sides of translational symmetry the crystallographic groups are characterized
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by the point symmetry K – the aggregate of rotation and reflection operations

being the symmetry of elementary cell. There are 32 point groups called the

crystalline classes which are compatible with the translation group. However,

the space crystallographic groups have new elements of symmetry that are

absent in translation and point groups: screw displacements and glide reflec-

tions. Screw displacement is the translation with subsequent rotation at some

angle around the translation axis. Glide reflection is the reflection in some

plane with subsequent translation along this plane. Both indicated symmetry

elements are formed by commuting elements; these elements themselves can

be absent in crystallographic group.

Remark 1. Give the geometric interpretation of composite lattice. There

are identical particles in the lattice nodes possessing the color symmetry of

the point group K. For the nonsymmorphic group C5
2h of monoclinic syngony

such particles may be interpreted as a ball, divided into 4 parts by two mutual

perpendicular planes passing through the ball center, each part of the ball

being colored into white or black. The translation group T propagates such

particles into space-periodic systems that are sublattices of the considered

crystal. The transformations of nonsymmorphic group transfers one sublattice

into another, which is shifted on some translation α = (α1, α2, α3), αi ∈ (0; 1)

(see the table of nonsymmorphic crystallographic groups in the appendix to

the monograph [3]). Moreover, every particle in the new sublattice is turned

by the corresponding transformation of the point group K .

At the crystallization phenomenon investigation naturally arises the prob-

lem of periodic solutions construction ui(q) = u0i + wi(q, ε), wj(q, ε) =
∑

l
wle

2πi〈lj ,q〉, (lj = m
(1)
j l(1) + m

(2)
j l(2) + m

(3)
j l(3) is the inverse lattice vec-

tor) in the form of Fourier series on inverse lattice vectors, bifurcating from

homogeneous density distribution ρi(q) = ρ0i = 1
v0i

, v0j = Mv0. Since the

sublattices consist of identical but having different orientations particles and

have the same translation group, we can take ρi0 = ρ0 and ui0 = u0, and small
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parameter ε should be determined by the relation

expu0

Mvθλ
=

expu0

Mv0θ0λ0
+ ε = µ0 + ε.

System (2) in the vector-functions w = {wi(q, ε)}M1 takes the form

Bsws ≡ ws(q) + µ0

M∑

j=1

∫
Ksj(|q − q′|)wj(q′)dq′ =

− ε
M∑

j=1

∫
Ksj(|q − q′|)ewj(q

′)dq′ − µ0

M∑

j=1

∫
Ksj(|q − q′|)[ewj(q

′)−

wj(q
′)− 1]dq′ ≡ Rs(w, ε) (3)

Remark 2. By virtue of Remark 1, system (2) possesses the group symme-

try of nonsymmorphic crystallographic group corresponding to the composite

lattice consisting of M sublattices of one type molecules oriented by point

group K = C2h (|K| = M , |C2h| = 4) transformations. Nonsymmorphic

group transformations transfer equations of the system (2) into each other,

leaving invariant the whole system. The connection between the sublattices

of the composite lattice and equations are realized by screw rotation and glide

reflection.

The system of integral equations (3) is considered in the space of vector-

functions C1(Π0), Π0 is the elementary cell of periodicity, and kernels Ksj(|q−
q′|) are sufficiently smooth, so

∫
Ksj(|q− q′|)uj(q′)dq′, q ∈ Π0 can be differen-

tiated with respect to the parameter q.

Further the general case of composite lattice will be illustrated by the exam-

ple of crystallization with translation lattice consisting of four primitive sub-

lattices Γm of monoclinic syngony with nonsymmorphic group C5
2h [3] which

have nontrivial screw rotation and glide reflection.

Describe the zero-subspace of linearized system (3)

Bsws ≡ ws(q) + µ0

M∑

j=1

∫
Ksj(|q − q′|)wj(q′)dq′ = 0, s = 1, . . . ,M (4)
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presenting the components of vector-function w by Fourier series on inverse lat-

tice vectors (index k is numbering the three-tuples of integers (m
(1)
j ,m

(2)
j ,m

(3)
j ))

wj(q
′) =

∑

k

wkje
2πi〈lkj ,q〉, lkj = m

(1)
kj l(1) +m

(2)
kj l(2) +m

(3)
kj l(3), m

(p)
kj ∈ Z

Bsws =
∑

k

wkse
2πi〈lks,q〉 + µ0

M∑

j=1

∫
Ksj(|q − q′|)

∑

k

wkje
2πi〈lkj ,q

′〉dq′ =

∑

k

wkse
2πi〈lks,q〉 + µ0

M∑

j=1

∫
Ksj(|q − q′|)

∑

k

wkje
2πi〈lkj ,q〉e−2πi〈lkj ,q−q′〉dq′ =

∑

k

wkse
2πi〈lks,q〉 + µ0

∑

k

M∑

j=1

wkje
2πi〈lkj ,q〉

∫
Ksj(|q − q′|)e−2πi〈lkj ,q−q′〉dq′

(5)

Compute the integrals Its =
∫
Kts(|q − q′|)e−2πi〈lks,q−q′〉dq′. Setting q̃ =

q − q′ = xe1 + ye2 + ze3 = x̃a1 + ỹa2 + z̃a3; aj = a1je1 + a2je2 + a3je3




a1

a2

a3


 = AT




e1

e2

e3


⇒




x

y

z


 = A




x̃

ỹ

z̃




performing the change of variables

x = x̃a11 + ỹa12 + z̃a13

y = x̃a21 + ỹa22 + z̃a23

z = x̃a31 + ỹa32 + z̃a33

and then carrying out the transition to spherical coordinates one get

Its =

∫ ∞

0
ρ2K(ρ)2π

∫ 1

−1
exp

[
− 2πiρ

detA
Rkst

]
dt =

2detA

Rks

∫ ∞

0
ρK(ρ) sin

(
2πρRks
detA

)
dρ

Omitting tedious computations, write the expression for Rks
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Rks = R(m
(1)
ks
,m

(2)
ks
,m

(3)
ks

) =n
m

(1)2

ks

�
(a2

21 + a2
22 + a2

23)(a2
31 + a2

32 + a2
33)− (a21a31 + a22a32 + a23a33)2

�
+

m
(2)2

ks

�
(a2

11 + a2
12 + a2

13)(a2
31 + a2

32 + a2
33)− (a11a31 + a12a32 + a13a33)2

�
+

m
(3)2

ks

�
(a2

21 + a2
22 + a2

23)(a2
11 + a2

12 + a2
13)− (a11a21 + a12a22 + a13a23)2

�
+

2m
(1)
ks
m

(2)
ks

�
(a11a31 + a12a32 + a13a33)(a21a31 + a22a32 + a23a33)− (a11a21 + a12a22 + a13a23)(a2

31 + a2
32 + a2

33)
�
+

2m
(1)
ks
m

(3)
ks

�
(a11a21 + a12a22 + a13a23)(a21a31 + a22a32 + a23a33)− (a11a31 + a12a32 + a13a33)(a2

21 + a2
22 + a2

23)
�
+

2m
(2)
ks
m

(3)
ks

�
(a11a21 + a12a22 + a13a23)(a11a31 + a12a32 + a13a33)− (a21a31 + a22a32 + a23a33)(a2

11 + a2
12 + a2

13)
�o 1

2

(6)

System (5) takes the form

∑

k

wkse
2πi(m

(1)
ks
x+m

(2)
ks
y+m

(3)
ks
z)−

µ0

∑

k

M∑

j=1

wkje
2πi(m

(1)
kj
x+m

(2)
kj
y+m

(3)
kj
z) 2detA

Rkj

∫ ∞

0
ρKsj(ρ) sin

(
2πρRkj
detA

)
dρ = 0

(7)

with the determinant

∆k =

[
Iδsj − µ0

2detA

Rkj(mkj)

∫ ∞

0
ρKsj(ρ) sin

(
2πρRkj(mkj)

detA

)
dρ

]
, s, j = 1,M

(8)

Thus, conversion to zero of the determinant (8) defines the eigenvalues µ0

and presents the crystallization criterion [4] with corresponding composite

lattice.

Kernels Ksj(|q− q′|) = Kjs(|q− q′|) are invariant with respect to the group

of Euclidean space motion R3 including also the transformations g of non-

symmorphic crystallographic groups G Ksj(|gq − gq′|) = Ksj(|q − q′|). The

corresponding operators Ksjf(q) =
∫
Ksj(|q− q′|)f(q′)dq′ are invariant to the

shift operators by virtue of kernels Ksj invariance relative to simultaneous

motions in R3 of arguments q and q′. Indeed, since dq′ is invariant relative to
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the G measure in R3, one has

(Ksjf)(gq) =

∫
Ksj(|gq−q′|)f(q′)dq′

q′=gq̄
=

∫
Ksj(|q−q̄|)f(gq̄)dq̄ = KsjT (g)f(q)

Therefore, by applying nonsymmorphic transformation T (g) to the s-th equa-

tion (4) one gets

T (g)ws(q) + µ0

M∑

j=1

∫
Ksj(|q − q̄|)wj(gq̄)dq̄ =

= T (g)ws(q) + µ0

M∑

j=1

∫
Ksj(|q − q̄|)T (g)wj(q̄)dq̄ = 0

Hence, together with some solution w = (w1, . . . , wM )T of the linearized

system (4) it has the solutions T (g)w = (T (g)w1, . . . , T (g)wM )T . Therefore

system (4) is invariant to the transformations T (g).

Further the obtained result is illustrated on the example of the nonsymmor-

phic group C5
2h of monoclinic syngony [3]. Here the basic translation vectors

should be chosen in the form

a1 = αi, a2 = βi + γj, a3 = δk

such that the inverse lattice vectors take the form

l(1) =
[a2,a3]

Ω
=

1

α
i− β

αγ
j; l(2) =

[a3,a1]

Ω
=

1

γ
j; l(3) =

[a1,a2]

Ω
=

1

δ
k,

where Ω = 〈a1, [a2,a3]〉 = αγδ.

R2
kj = δ2[m

(1)
kj β −m

(2)
kj α]2 +m

(1)2

kj γ2δ2 +m
(3)2

kj α2γ2

The group C5
2h is generated by the elements [3]

(1
2 tz, r), (1

2 tx, σh) and (1
2 tx+ 1

2 tz, σhr). Then the functions w1 = e2πi〈l1,q〉 =

e2πi(m
(1)
k1 x̃+m

(2)
k1 ỹ+m

(3)
k1 z̃), (1

2 tx+
1
2 tz, σhr)w1 = (−1)m

(1)
k1 +m

(3)
k1 e2πi(−m

(1)
k1 x̃−m

(2)
k1 ỹ−m

(3)
k1 z̃),

(1
2 tx, σh)w1 = (−1)m

(1)
k1 e2πi(m

(1)
k1 x̃+m

(2)
k1 ỹ−m

(3)
k1 z), (1

2 tz, r)w1 =

(−1)m
(3)
k1 e2πi(−m

(1)
k1 x̃−m

(2)
k1 ỹ+m

(3)
k1 z̃) are the first components of the vector solu-

tions of linearized system (4).
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Thus, according to Remark 2, the zero subspace is generated by the vector-

functionsW = (w1(q), . . . , wM (q))T , T (g1)W, . . . , T (gM )W , wk(q) = T (gk)w1(q) =

w1(gkq), k = 1, . . . ,M , where gk are numbered together with sublattices el-

ements of nonsymmorphic group symmetry. Since T (gk) can be stationary

subgroup element, the dimension of the zero subspace of the linearized matrix

operator B = B(µ0) = (I − µ0K) of the system (3), i.e. the multiplicity of

the eigenvalue µ0, may be equal to the divisors of the corresponding point

group symmetry order or some of their sums in the case of several generating

elements in the zero subspace N(B) under the action of gk ∈ G, k = 1, . . . ,M .

By virtue of the symmetry Ksj = Kjs the linearized matrix operator is

symmetric and it generates a symmetric determinant of the system of algebraic

equations.

Remark 3. The values Rkj , j = 1, . . . ,M are invariant to the point group

transformations. The proof of this assertion does not follow from symmetry

considerations and it is checked for each nonsymmorphic group apart.

Four dimensional branching equation construction for the system

(3) with group symmetry C5
2h of monoclinic syngony in the case of

one general position vector generating N(B)

The connection between the sublattices of composite lattice and equations

is realized by the transformations of the nonsymmorphic group

(
1

2
tz, r) ∼= (1, 4)(2, 3), (

1

2
tx, σh) ∼= (1, 3)(2, 4), (

1

2
tx+

1

2
tz, σhr) ∼= (1, 2)(3, 4)

(9)

The equations transferring into each other it is necessary to fulfill the fol-

lowing symmetry relations between the kernels of the integral operators

K11 = . . . = K44; K14 = K23 = K32 = K41;

K12 = K21 = K34 = K43; K13 = K31 = K24 = K42.
(10)

It is practically impossible to perform bifurcating equation construction in

the case of arbitrary m
(j)
k1 , thus for the simplicity take m

(j)
k1 = 1.
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Choose the basis vectors of the zero subspace N(B) in the form

Φ1 =




ϕ1 = e2πi(x+y+z)

ϕ2 = e2πi(−x−y−z)

ϕ3 = −e2πi(x+y−z)

ϕ4 = −e2πi(−x−y+z)



, Φ2 = (1

2 tx + 1
2 tz, σhr)Φ1 =




ϕ2

ϕ1

ϕ4

ϕ3



,

Φ3 = (1
2 tx, σh)Φ1 =




ϕ3

ϕ4

ϕ1

ϕ2



, Φ4 = (1

2 tz, r)Φ1 =




ϕ4

ϕ3

ϕ2

ϕ1




For the simplification of notations hereinafter we will omit the symbol

”tilde”, i.e. x, y, z will be considered as coordinates along axes a1, a2 and a3

respectively.

In order to compute the bifurcating solutions in the neighborhoods of the

parameter critical value, bifurcation theory methods [5] are applied.

Let E1 and E2 be two Banach spaces. The nonlinear equation

Bx = R(x, λ), R(0, 0) = 0, Rx(0, 0) = 0 (11)

is considered. Here B : E1 → E2 is a closed linear Fredholm operator (R(B) =

R(B), R(B) is the range of the operator B) with dense in E1 domain D(B),

N(B) = span{Φ1, . . . ,Φn} is its null-subspace, N∗(B) = span{Ψ1, . . . ,Ψn} ⊂
E∗2 is its defect-subspace. The nonlinear operator R(x, λ) is supposed to be

defined and sufficiently smooth in x and λ in a neighborhood of (0, 0) ∈
E1

.
+ Λ, Λ is the parameter space. According to Hahn-Banach theorem

there exist biorthogonal systems {Γj}n1 ∈ E1, 〈Φi,Γj〉 = δij and {Zk}n1 ∈ E2,

〈Zk,Ψl〉 = δkl, generating the projectors P =
n∑
j=1
〈·,Γj〉ϕj : E1 → N(B),

Q =
n∑
j=1
〈·,Ψj〉zj : E2 → E2,n = span{z1, . . . , zn} and the following direct

sum expansions E1 = En1
.
+ E∞−n1 , En1 = N(B), E2 = E2,n

.
+ E2,∞−n,

E2,∞−n = R(B). Then the Lyapounov-Schmidt method allows to reduce
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the problem (11) of construction of small norm solutions to nonlinear finite-

dimensional equations system that is the bifurcation equation.

Here Zs = Φs,

Γ1 = Ψ1 =
1

4|Π0|
Φ2, Γ2 = Ψ2 =

1

4|Π0|
Φ1, Γ3 = Ψ3 =

1

4|Π0|
Φ4, Γ4 = Ψ4 =

1

4|Π0|
Φ3

Write system (3) in the power series expansion introducing the parameters

ξk, k = 1, . . . , 4 and the Schmidt correction operator

B̃W =




w1(q)

· · ·
w4(q)


+ µ0KW +

4∑

j=1

〈W,Γj〉Zj = −ε




∑4
j=1K1j(|q − q′|)dq′

· · ·
∑4

j=1K4j(|q − q′|)dq′


 (11)

−εK




w1(q
′) + w1(q′)2

2! + . . .

· · ·
w4(q

′) + w4(q′)2

2! + . . .


− µ0K




w1(q′)2

2! + w1(q′)3

3! + . . .

· · ·
w4(q′)2

2! + w4(q′)3

3! + . . .


+

4∑

j=1

ξjZj

ξj = 〈W,Γj〉

K =




∫
K11(q

′)dq′ . . .
∫
K14(q

′)dq′

· · · · · · · · ·
∫
K41(q

′)dq′ . . .
∫
K44(q

′)dq′




By the implicit operators theorem the first equation (12) has a unique so-

lution W = W (ξ, ε). Branching system takes the form

L(i)(ξ, ε) ≡ ξi − 〈W (ξ, ε),Γi〉 = 0, i = 1, . . . , 4

We find the solutions of the first equation (12) in the form of the series

W (q, ε) =
∑

|α|+k≥1

Wα;kξ
αεk.

Omitting tedious computations write out the main part of the branching

system

f1(ξ, ε) = Aξ1ε + Bξ2
3 + Cξ1

2
ξ2 + Dξ1ξ3ξ4 + Eξ2ξ3

2 + Fξ2ξ4
2 + . . . = 0 (12)

f2(ξ, ε) = Aξ2ε + Bξ1
3 + Cξ2

2
ξ1 + Dξ2ξ3ξ4 + Eξ1ξ4

2 + Fξ1ξ3
2 + . . . = 0

f3(ξ, ε) = Aξ3ε + Bξ4
3 + Cξ3

2
ξ4 + Dξ1ξ2ξ3 + Eξ4ξ1

2 + Fξ4ξ2
2 + . . . = 0

f4(ξ, ε) = Aξ4ε + Bξ3
3 + Cξ4

2
ξ3 + Dξ1ξ2ξ4 + Eξ3ξ2

2 + Fξ3ξ1
2 + . . . = 0
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The obtained system allows the group (9) of substitutions p1 = (12)(34),

p2 = (13)(24), p3 = (13)(23).

Passing to real variables ξ1 = τ1 + iτ2, ξ2 = τ1 − iτ2, ξ3 = τ3 + iτ4,

ξ4 = τ3 − iτ4 one gets the branching system in the new base

Φ̂1 =




cos 2π(x+ y + z)

cos 2π(x+ y + z)

− cos 2π(x+ y − z)
− cos 2π(x+ y − z)



, Φ̂2 =




sin 2π(x+ y + z)

− sin 2π(x+ y + z)

− sin 2π(x+ y − z)
sin 2π(x+ y − z)



,

Φ̂3 =




− cos 2π(x+ y − z)
− cos 2π(x+ y − z)

cos 2π(x+ y + z)

cos 2π(x+ y + z)



, Φ̂4 =




− sin 2π(x+ y − z)
sin 2π(x+ y − z)
sin 2π(x+ y + z)

− sin 2π(x+ y + z)



.

t1(τ , ε) = Aτ1ε+Bτ1(τ
2
1 − 3τ2

2) + Cτ1(τ
2
1 + τ2

2) +Dτ1(τ
2
3 + τ2

4) + (13)

+E[τ1(τ
2
3 − τ2

4) + 2τ2τ3τ4] + F [τ1(τ
2
3 − τ2

4)− 2τ2τ3τ4] + . . . = 0

t2(τ , ε) = Aτ2ε+Bτ2(τ
2
2 − 3τ2

1) + Cτ2(τ
2
1 + τ2

2) +Dτ2(τ
2
3 + τ2

4) +

+E[−τ2(τ
2
3 − τ2

4) + 2τ1τ3τ4]− F [τ2(τ
2
3 − τ2

4) + 2τ1τ2τ4] + . . . = 0

t3(τ , ε) = Aτ3ε+Bτ3(τ
2
3 − 3τ2

2) + Cτ3(τ
2
3 + τ2

4) +Dτ3(τ
2
1 + τ2

2) +

+E[τ3(τ
2
1 − τ2

2) + 2τ1τ2τ4] + F [τ3(τ
2
1 − τ2

2)− 2τ1τ2τ4] + . . . = 0

t4(τ , ε) = Aτ4ε+Bτ4(τ
2
4 − 3τ2

3) + Cτ4(τ
2
3 + τ2

4) +Dτ4(τ
2
1 + τ2

2) +

+E[−τ4(τ
2
1 − τ2

2) + 2τ1τ2τ3]− F [τ4(τ
2
1 − τ2

2) + 2τ1τ2τ3] + . . . = 0
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Applying the transformations

t1τ2 − t2τ1 = 2Bτ1τ2(τ
2
1 − τ2

2) + E[τ1τ2(τ
2
3 − τ2

4)− τ3τ4(τ
2
1 − τ2

2)] +(14)

+F [τ1τ2(τ
2
3 − τ2

4) + τ3τ4(τ
2
1 − τ2

2)] + . . . = 0

t1τ2 + t2τ1 = Aτ1τ2ε+ (C − 2B)τ1τ2(τ
2
1 + τ2

2) +Dτ1τ2(τ
2
3 + τ2

4) +

+(E − F )τ3τ4(τ
2
1 + τ2

2) + . . . = 0

t3τ4 − t4τ3 = 2Bτ3τ4(τ
2
3 − τ2

4) + E[τ3τ4(τ
2
1 − τ2

2)− τ1τ2(τ
2
3 − τ2

4)] +

+F [τ3τ4(τ
2
1 − τ2

2) + τ1τ2(τ
2
3 − τ2

4)] + . . . = 0

t3τ4 + t4τ3 = Aτ3τ4ε+ (C − 2B)τ3τ4(τ
2
3 + τ2

4) +Dτ3τ4(τ
2
1 + τ2

2) +

+(E − F )τ1τ2(τ
2
3 + τ2

4) + . . . = 0

adding and subtracting first and third, second and fourth equation of the

system (15) bring the branching system to the form

t̃1(τ , ε) = B[τ1τ2(τ
2
1 − τ2

2) + τ3τ4(τ
2
3 − τ2

4)] + (15)

+F [τ1τ2(τ
2
3 − τ2

4) + τ3τ4(τ
2
1 − τ2

2)] + . . . = 0

t̃2(τ , ε) = B[τ1τ2(τ
2
1 − τ2

2)− τ3τ4(τ
2
3 − τ2

4)] +

+E[τ1τ2(τ
2
3 − τ2

4)− τ3τ4(τ
2
1 − τ2

2)] + . . . = 0

t̃3(τ , ε) = Aε(τ1τ2 + τ3τ4) + (C −B)[τ1τ2(τ
2
1 + τ2

2) + τ3τ4(τ
2
3 + τ2

4)] +

+(D + E − F )[τ1τ2(τ
2
3 + τ2

4) + τ3τ4(τ
2
1) + τ2

2] + . . . = 0

t̃4(τ , ε) = Aε(τ1τ2 − τ3τ4) + (C −B)[τ1τ2(τ
2
1 + τ2

2)− τ3τ4(τ
2
3 + τ2

4)] +

+(D − E + F )[τ1τ2(τ
2
3 + τ2

4)− τ3τ4(τ
2
1) + τ2

2] + . . . = 0

Note that the written system in the real basis possesses the substitutions

p1 : τ1 → τ1, τ2 → −τ2, τ3 → τ3, τ4 → −τ4;

p2 : τ1 ↔ τ3, τ2 ↔ τ4; p3 : τ1 ↔ τ3, τ2 ↔ −τ4

(17)

The first two equations (16) are considered as the system relative to (τ2
1−τ2

2),

(τ2
3−τ2

4) with determinant ∆ = 2[τ1τ2τ3τ4(EF−B2)+B(E−F )(τ2
1τ

2
2+τ

2
3τ

2
4)].
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I. If ∆ 6= 0, which is possible for (B2−EF )2−4B2(E−F )2 < 0 (|B2−EF | <
2|B(E−F )|), then τ2

1 = τ2
2 6= 0 and τ2

3 = τ2
4 6= 0 (inequality to zero should be

taken place at least in one case). Then the last two equations of the system

(16) are reducing to one of the following forms

A. τ1 = τ2, τ3 = τ4.

For τ1 6= 0, τ3 6= 0 one has

Aε+ 2(C −B)τ2
1 + 2(D + E − F )τ2

3 = 0

Aε+ 2(C −B)τ2
3 + 2(D + E − F )τ2

1 = 0

τ1 = ±τ3 = ±
√

−Aε
2(−B+C−D−E+F ) +o(|ε|1/2), sign ε = −signA(−B+C−D−

E + F ), any sign combinations are possible

For τ1 6= 0, τ3 = 0 one gets the equation Aτ2
1ε− 2Bτ4

1 = 0

τ1 = ±
√
Aε

2B
+ o(|ε|1/2), sign ε = sign (AB)

For τ1 = 0, τ3 6= 0 one gets Aτ2
3ε− 2Bτ4

3 = 0

τ3 = ±
√
Aε

2B
+ o(|ε|1/2), sign ε = sign (AB)

In the case B. τ1 = −τ2, τ3 = −τ4 we obtain the same equations.

C. τ1 = −τ2, τ3 = τ4.

For τ1 6= 0 č τ3 6= 0 one has

Aε+ 2(−B + C)τ2
1 + 2(D − E + F )τ2

3 = 0

−Aε+ 2(B − C)τ2
3 + 2(−D + E − F )τ2

1 = 0

τ1 = ±
√

−Aε
2(−B + C +D − E + F )

+ o(|ε|1/2),

sign ε = −sing A(−B + C +D − E + F );

τ3 = ±
√

Aε

2(B − C +D − E + F )
+ o(|ε|1/2),

sign ε = sing A(B − C +D − E + F )
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For τ1 6= 0, τ3 = 0 one gets the equation Aε+ 2(−B + C)τ2
1 = 0

τ1 = ±
√

Aε

2(B − C)
+ o(|ε|1/2), sign ε = signA(B − C)

For τ1 = 0, τ3 6= 0 one gets −Aε+ 2(B − C)τ2
3 = 0

τ3 = ±
√

Aε

2(B − C)
+ o(|ε|1/2), sign ε = signA(B − C)

In the case D. τ1 = −τ2, τ3 = τ4 we obtain the same equations.

II. Let ∆ = 0, which is possible for (B2−EF )2 ≥ 4B2(E−F )2 (|B2−EF | ≥
2|B(E − F )|), then if E 6= F

τ3τ4 =
B2 − EF ±

√
(B2 − EF )2 − 4B2(E − F )2

2B(E − F )
τ1τ2 = kτ1τ2.

Then the last two equations of the system (16) are written in the form

(τ2
1 + τ2

2)[(C −B) + k(E − F )] + (τ2
3 + τ2

4)D = −Aε,

(τ2
1 + τ2

2)k + (τ2
3 + τ2

4)[(C −B) + k(E − F )] = −Akε,

whence

τ2
1 + τ2

2 =
−Aε[(C −B) + k(E − F )−D]

[(C −B) + k(E − F )]2 − kD ,

τ2
3 + τ2

4 =
−Aε[(C −B) + k(E − F )− 1]

[(C −B) + k(E − F )]2 − kD .

Thus, all obtained solutions are presented in the form of series, converging in

the small neigbourhood of ε = 0, W =
∑
τ0
k(ε

1/2)Φ̂k +O(|ε|), where τ0
k(ε

1/2)

are the leading terms. Taking into account group transformations their number

can be decreased.
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