ALGEBRAS OF CONTINUOUS FUNCTIONS AND COMPACTIFICATIONS OF SPACES

Mitrofan M.Choban, Laurențiu I.Calmuţchi

Tiraspol State University, Chişinău, Republic of Moldova

mmchoban@email.ro

Keywords: *g*-compactification, compactification, algebra of functions.

2000 MSC: 54D35, 54D40.

1. INTRODUCTION

The notion of compactness is one of the most important notions.

A generalized compactification or a g-compacification of a space X is a pair (Y, e_Y) , where Y is a compact Hausdorff space and $e_Y : X \to Y$ is a continuous mapping such that the set $e_Y(X)$ is dense in Y. If e_Y is an embedding, then Y is called a compactification of X, we identify $x = e_Y(x)$ for any $x \in X$ and consider that $X \subseteq Y$.

Let (Y, e_Y) and (Z, e_Z) be two g-compactifications of a space X. We consider that $(Y, e_Y) \leq (Z, e_Z)$ if there exists a continuous mapping $f : Z \to Y$ such that $e_Y = f \circ e_z$, i.e. $e_Y(x) = f(e_Z(x))$ for any $x \in X$. If $(Y, e_Y) \leq (Z, e_Z)$ and $(Z, e_Z) \leq (Y, e_Y)$, then f is a homeomorphism and we say that the gcompactifications (Y, e_Y) , (Z, e_Z) are equivalent. We identify the equivalent g-compactifications. In this case the set GC(X) of all g-compactifications of the space X is a complete lattice with the maximal element $(\beta X, \beta_X)$. The minimal element of the lattice GC(X) is the one-point space. The compactification βX is the Stone-Čech compactification of the space X.

Let L be a non-empty subset of the lattice GC(X). Then the maximal element $\lor L$ and the minimal element $\land L$ are determined in GC(X). Problems connected with the g-compactifications $\lor L$, $\land L$ are among the most interesting problems of the topology. We use the terminology from [3]. Denote by |A| the cardinality of the set A, by $cl_X A$ or clA the closure of the set A in the space X.

2. PARTIAL ALGEBRAS

Denote by K the ring of complex numbers.

A set A is called a partial algebra if for some pairs $x, y \in X$ there are determined the sum x + y and the multiplication $x \cdot y$ such that:

1. the multiplication and sum are associative, commutative and distributive.

2. for every $x \in A$ and $\alpha \in K$ it is defined $\alpha X \in A$ such that:

2.1. $\alpha(x+y) = \alpha x + \alpha y$ for all $x, y \in A$ and $\alpha \in K$;

2.2. $(\alpha + \beta)x = \alpha x + \beta x$ for all $x \in A$ and $\alpha, \beta \in K$;

2.3. $1 \cdot x = x$ for any $x \in A$;

3. $\alpha(\beta x) = (\alpha \beta)x$ for all $x \in A$ and $\alpha, \beta \in K$;

4. there exist two distinct elements $0, 1 \in A$ such that $0 \cdot x = 0$ and $0 + x = 1 \cdot x = x$ for any $x \in X$.

Let A be a partial algebra. A subset $I \subseteq A$ is called an ideal of A if: $I \neq \emptyset; x + y \in I$ provided $x, y \in I$ and x + y is defined in A; $x \cdot y \in I$ provided $x \in I$ and $x \cdot y$ is defined in A; if $\alpha \in K$ and $x \in I$, then $\alpha x \in I$. A maximal ideal of A is called a proper ideal of A if it is not contained in other proper ideal of A. Let M(A) be the set of maximal ideals of A. For every $x \in A$ we put $M(x, A) = \{I \in M(A) : x \in I\}$. Then $M(x_1, ..., x_n, A) = \cap\{M(x_i, A) : i \leq n, n \in \mathbb{N} = \{1, 2, ...\}\}$. If $L \subseteq A$, then $M(L, A) = \cap\{M(x, A) : x \in L\}$.

The family $\{M(L, A) : L \subseteq A\}$ is a closed basis of the topology of the space M(A).

Theorem 2.1. The ideal space M(A) is a compact T_1 -space.

Proof. Let $\{M(L_{\lambda}, A) : \lambda \in \Gamma\}$ be a given family of closed sets and $\cap \{M(L_{\lambda}, A) : \lambda \in P\} \neq \emptyset$ for any non-empty finite subset $P \subseteq \Gamma$. Assume that: for every two elements $\alpha, \beta \in \Gamma$ there exists $\gamma \in \Gamma$ such that $M(L_{\gamma}, A) \subseteq M(L_{\alpha}, A) \cap M(L_{\beta}, A)$; if the set $P \subseteq A$ is finite and $M(P, A) \cap M(L_{\alpha}, A) \neq \emptyset$ for every $\alpha \in \Gamma$, then $M(P, A) = M(L_{\beta}, A)$ for some $\beta \in \Gamma$.

We put $I = \bigcup \{L_{\lambda} : \lambda \in \Gamma\}$. Then $I \in M(A)$ and $I \in \bigcap \{M(L_{\alpha}, A) : \alpha \in \Gamma\}$. It is obvious that M(A) is a T_1 -space. The proof is complete.

3. SPECIAL COMPACTIFICATION OF THE FIELD K

Let $C = \{z \in K : |z| = 1\}$. For every $z \in C$ we fix an improper number ∞_z such that:

1. $\infty_z \neq \infty_x$ provided $x \neq z$;

2. if $x, y \in C$, $x \neq -y$ and $z = \alpha(x + y)$ for some positive number α , then we consider that $\infty_z = \infty_x + \infty_y$;

3. if $x, y \in C$ and z = xy, then $\infty_z = \infty_x \cdot \infty_y$;

4. $x + \infty_y = \infty_y + x$ for any $x \in K$ and $y \in C$;

5. if $x \in K, y \in C, z \in C$ and $z = \lambda xy$ for some positive λ , then $\infty_z = x \cdot \infty_y = \infty_y \cdot x$;

6. $0 \cdot \infty_z = \infty_z \cdot 0 = 0$ for any $z \in C$.

We put $\bar{K} = K \cup \{\infty_z : z \in C\}$ and $\Omega = \{\infty_z : z \in C\}$. There exists an one-to-one mapping $\varphi : \bar{K} \to B = \{x \in K : | x | \leq 1\}$ such that $\varphi(0) = 0, \varphi(\infty_z) = z$ for any $z \in C, \varphi(x) = x \cdot (1+|x|)$ for any $x \in K$. On \bar{K} we consider the topology with respect to which φ is a homeomorphism. Then \bar{K} is a compactification of the space K and \bar{K} is a partial algebra. If $x, y \in C$ and x = -y, then $\infty_x + \infty_y$ is not determined. We consider that $-\infty_x = \infty_{(-x)}$. If R is the field of reals, then $+\infty = \infty_1, -\infty = \infty_{(-1)}$ and $R \cup \{-\infty, +\infty\} \subseteq K$. We put $\bar{R} = R \cup \{-\infty, +\infty\} = [-\infty, +\infty]$. Thus \bar{R} is a compactification of the reals and \bar{R} is homeomorphic to the closed interval.

4. PARTIAL ALGEBRAS OF FUNCTIONS

Fix a topological space X. Denote by $C(X, \bar{K})$ the set of all continuous functions of X into \bar{K} and $C^0(X, K) = \{f \in C(X, K) : f(X) \text{ is a bounded}$ subset of $K\}$. If $f \in C^0(X, K)$, then $cl_K f(X)$ is a compact subset.

A function $f \in C^0(X, K)$ possesses a compact support if there exists a compact subset $F \subseteq X$ such that $f^{-1}(K \setminus \{0\}) \subseteq F$. In this case $supp(f) = cl_X f^{-1}(K \setminus \{0\})$ is a compact subset. Let $C_0(X, K) = \{f \in C(X, K) : supp(f)$ is a compact set $\}$.

Definition 4.1. A subset $A \subseteq C(X, \overline{K})$ is an algebra of functions on X if: - $0 \in A$, where 0(x) = 0 for any $x \in X$; - if f is a constant function, then $f \in A$;

- if $f, g \in A$ and $f + g \in C(X, \overline{K})$, then $f + g \in A$;
- if $f, g \in A$ and $f \cdot g \in C(X, \overline{K})$, then $f \cdot g \in A$;
- if $f \in A$, then $-f \in A$ and $\overline{f} \in A$;
- if $f \in A$, then $\lambda f \in A$ for any $\lambda \in K$.

For every subset $L \subset C(X, \overline{K})$ there exists a minimal algebra a(L) generated by the set L.

Definition 4.2. Let (Y, e_Y) be a g-compactification of a space X. Then $C(X, K, Y, e_Y) = \{f \circ e_y : f \in C(X, \overline{K})\}$ is called the algebra of functions on X continuously extendable on Y.

Theorem 4.3. Let X be a topological space $X_0 = \bigcup \{U : U \text{ is open in } X \text{ and } cl_X U \text{ is a compact Hausdorff subspace}\}$ and $L \subseteq C(X, \overline{K})$. Then there exists a unique g-compactification (Y, e_Y) of the space X with the following properties:

1. every function $f \in L$ is continuously extendable on Y, i.e. there exists a unique continuous function $ef \in C(Y, K)$ such that $f = ef \circ e_Y$.

2. if $y_1, y_2 \in Y \setminus e_y(X_0)$ and $y_1 \neq y_2$, then there exists $f \in L$ such that $ef(y_1) \neq ef(y_2)$.

3. if the set U is open in X and cl_XU is a Hausdorff compact subset of X, then $e_y(U)$ is an open subset of Y and $e_Y \mid U : U \to e_Y(U)$ is a homeomorphism.

Proof. If X is a compact Hausdorff space, then Y = X. Suppose that the space X is not a compact Hausdorff space. Let $\{(x_{\alpha}, F_{\alpha}) : \alpha \in A\}$ be the set of all pairs (x, F), where $x \in X_0, F$ is a closed subset of X and $x \notin F$. For every $\alpha \in A$ fix a continuous function $\varphi_{\alpha} : X \to [0, 1] \subseteq K$ such that $\varphi_{\alpha}(x_{\alpha}) = 0$ and $F_{\alpha} \cup (X \setminus X_0) \subseteq \varphi_{\alpha}^{-1}(1)$. Let X_{α} be the closure of the set $\varphi_{\alpha}(X)$ in K. Then $(X_{\alpha}, \varphi_{\alpha}) \in GC(X)$.

For every $f \in L$ denote by Y_f the closure of the set f(X) in \overline{K} . Then $(Y_f, f) \in GC(X)$.

If $X_0 \cup L = \emptyset$, then (Y, e_Y) is the one-point g-compactification. Suppose that $X_0 \cup L \neq \emptyset$. Denote by (Y, e_Y) the minimal g-compactification with the following properties:

- $(Y, e_Y) \ge (X_\alpha, \varphi_\alpha)$ for any $\alpha \in A$;
- $(Y, e_Y) \ge (Y_f, f)$ for any $f \in L$.

By construction, the functions from $L \cup \{\varphi_{\alpha} : \alpha \in A\}$ are continuously extendable on (Y, e_Y) . Hence, $e_Y \mid Z : Z \to e_Y(Z)$ is a homeomorphism. If $\alpha \in A$ and $e\varphi_{\alpha}$ is the extension of φ_{α} on Y, then $x_{\alpha}\alpha \in e\varphi_{\alpha}^{-1}[0, 1)$ and $e\varphi_{\alpha}^{-1}[0, 1)$ is an open subset of Y. Thus $e_Y(X_0)$ is an open subset of Y.

Thus (Y, e_Y) satisfies all conditions of Theorem 4.3.

Fix $(S, e_S) \in GC(X)$ with the properties of the Theorem 4.3. Then the functions from $L \cup \{\varphi_{\alpha} : \alpha \in A\}$ are continuously extendable on S and $(S, e_S) \ge$ $sup(\{(Y_f, f) : f \in L\} \cup \{(X_{\alpha}, \varphi_{\alpha}) : \alpha \in A\}) = (Y, e_Y)$ and there exists a continuous mapping $g: S \to Y$ such that $e_Y = g \circ e_S$.

We affirm that g is a homeomorphism and the g-compactifications (Y, e_Y) , (S, e_S) are equivalent. Suppose that g is not a homeomorphism. Then there exists two distinct points $s, s_2 \in S$ such that $g(s_1) = g(s_2)$.

If $x_1 \in X \setminus X_0$ and $x_2 \in X X_0$, then $\varphi_{\alpha}(x_1) \neq \varphi_{\alpha}(x_2)$ provided $x_1 = x_2$. In this case $e_Y(x_1) = e_Y(x_2)$. Therefore $s_1, s_2 \in S \setminus e_S(X_0)$. Let *ef* be the continuous extension of the function $f \in L$ on (S, e_S) . Thus $e_f(s_1) = e_f(s_2)$ for every $f \in L$, a contradiction with the condition 2. The proof is complete.

Corollary 4.4 Let X be a locally compact Hausdorff space and $L \subseteq C(X, K)$. Then there exists a unique compactification Y of the space X such that:

1. every function $f \in L$ is continuously extendable on Y;

2. if $y_1, y_2 \in Y \setminus X$ and $y_1 \neq y_2$, then there exists $f \in L$ such that $ef(y_1) \neq ef(y_2)$;

3. X is an open and dense subspace of the space Y.

Theorem 4.5. Let X be a topological space, $X_0 = \bigcup \{U : U \text{ is open in} X \text{ and } cl_X U \text{ is a compact Hausdorff subspace}\}, L \subseteq C(X, K) \text{ and } L \cup \{f \in C(X, K) : supp(f) \subseteq X_0\}$. Then the maximal ideal space $M(\overline{L})$ of the algebra L is the g-compactification with the properties from Theorem 4.3.

Proof. Let (Y, e_f) be the g-compactification from Theorem 4.3. For every

 $f \in I$ denote by ef the continuous extension of f on (Y, e_Y) . We consider that $e_Y(Z) = Z \subseteq Y$. From the Stone-Weierstrass theorem ([3], Theorem 3.2.21) the algebra $\{ef : f \in \overline{L}\}$ is dense in the Banach algebra C(Y, K) of all continuous functions of Y into K. The maximal ideal spaces $C(\overline{L})$ and M(C(Y, K)) are homeomorphic to the space Y [4]. The proof is complete.

Remark 4.6 For the Riemanian surfaces X and functions $L \subseteq C(X, \overline{R})$ the Corollary 4.4 was proved by C. Constantinescu and A. Cornea in [2], while for any locally compact X Hausdorff space, by M. Brelot [1].

Remark 4.7. The set $L \subseteq C^0(X, K)$ and the subalgebra $I \subseteq C^0(X, K)$ generate the same *g*-compactification of the Brelot-Constantinescu-Cornea type.

Let A(X, K) be the set of all closed subalgebras of the Banach algebra $C^0(X, K)$ with the sup-norm $||f|| = \sup\{|f(x)| : x \in X\}$. Then there exist an one-to-one correspondence $k : A(X, K) \to GC(X)$ and a mapping c : $A(X, K) \to GC(X)$ such that:

1. if $A \in A(X, K)$ and $k(A) = (Y, e_Y)$, then $A = \{f \circ e_Y : f \in C(Y, K)\}$ and Y is the maximal ideal space of the algebra A;

2. $A, B \in A(X, K)$, then $A \subseteq B$ iff $k(A) \leq k(B)$;

3. if $A \in A(X, K)$ and $c(A) = (Y, e_Y)$, then (Y, e_Y) is the g-compactification of the Brelot-Constantinescu-Cornea type generated by the algebra A;

4. by construction, $k(A) \leq c(A)$ for any algebra $A \in A(X, K)$;

5. c(A(X, K)) is the set of all g-compactifications of the Brelot-Constantinescu-Cornea type;

6. if X is a locally compact Hausdorff space, then c(A(X, K)) is the set of all compactifications of the space X;

7. if $|X| \le 1$, then c = k.

Example 4.8. Let X be a locally compact non-compact Hausdorff space and A be the algebra of constant functions. Then c(A) is the one-point Alexandroff compactification of X and k(A) is the one-point minimal g-compactification of X.

Example 4.9. Let X be the space of reals and $A = \{f \in C^0(X, K) : [-3,3] \subseteq f^{-1}(0)$. Then c(A) is the Stone-Čech compactification βX of X and

 $k(A) = (Y, e_Y)$ is a g-compactification. In this case $e_Y([-3, 3])$ is an one-point subset of the space Y.

Example 4.10. Let X = [0, 1) be endowed with the topology generated by the open base $\{X \cap [x, x+\epsilon) : x \in X, \epsilon > 0\}$, Y be the space [0, 1] in the natural topology, $e_Y(x) = x$ for any $x \in X$ and $A = C^0(Y, K) \subseteq C^0(X, K)$. Then (Y, e_Y) is a g-compactification of the space X and $c(A) = k(A) = (Y, e_Y)$. In this case c = k.

References

- [1] M. Berlot, On topologies and boundaries in potential theory, Springer, Berlin, 1971.
- [2] C. Constantinescu, A. Cornea, *Ideale Raunder Riemannscher Flachen*, Ergeb. Math., 32, Springer, Berlin, 1963.
- [3] R. Engelking, General topology, PWN, Warszava, 1977.
- [4] I. M. Gelfand, A. N. Kolmogoroff, On rings of continuous functions on topological spaces, Doklady Akad. Nauk SSSR, 22(1939), 11-15.