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1. INTRODUCTION

The notion of compactness is one of the most important notions.

A generalized compactification or a g-compacification of a space X is a pair

(Y, eY ), where Y is a compact Hausdorff space and eY : X → Y is a continuous

mapping such that the set eY (X) is dense in Y . If eY is an embedding, then

Y is called a compactification of X, we identify x = eY (x) for any x ∈ X and

consider that X ⊆ Y .

Let (Y, eY ) and (Z, eZ) be two g-compactifications of a space X. We con-

sider that (Y, eY ) ≤ (Z, eZ) if there exists a continuous mapping f : Z → Y

such that eY = f ◦ez, i.e. eY (x) = f(eZ(x)) for any x ∈ X. If (Y, eY ) ≤ (Z, eZ)

and (Z, eZ) ≤ (Y, eY ), then f is a homeomorphism and we say that the g-

compactifications (Y, eY ), (Z, eZ) are equivalent. We identify the equivalent

g-compactifications. In this case the set GC(X) of all g-compactifications of

the space X is a complete lattice with the maximal element (βX, βX). The

minimal element of the lattice GC(X) is the one-point space. The compacti-

fication βX is the Stone-Čech compactification of the space X.

Let L be a non-empty subset of the lattice GC(X). Then the maximal

element ∨L and the minimal element ∧L are determined in GC(X). Problems

connected with the g-compactifications ∨L,∧L are among the most interesting

problems of the topology.
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We use the terminology from [3]. Denote by |A| the cardinality of the set

A, by clXA or clA the closure of the set A in the space X.

2. PARTIAL ALGEBRAS

Denote by K the ring of complex numbers.

A set A is called a partial algebra if for some pairs x, y ∈ X there are

determined the sum x + y and the multiplication x · y such that:

1. the multiplication and sum are associative, commutative and distributive.

2. for every x ∈ A and α ∈ K it is defined αX ∈ A such that:

2.1. α(x + y) = αx + αy for all x, y ∈ A and α ∈ K;

2.2. (α + β)x = αx + βx for all x ∈ A and α, β ∈ K;

2.3. 1 · x = x for any x ∈ A;

3. α(βx) = (αβ)x for all x ∈ A and α, β ∈ K;

4. there exist two distinct elements 0, 1 ∈ A such that 0 · x = 0 and

0 + x = 1 · x = x for any x ∈ X.

Let A be a partial algebra. A subset I ⊆ A is called an ideal of A if:

I 6= ∅; x + y ∈ I provided x, y ∈ I and x + y is defined in A; x · y ∈ I provided

x ∈ I and x · y is defined in A; if α ∈ K and x ∈ I, then αx ∈ I. A maximal

ideal of A is called a proper ideal of A if it is not contained in other proper

ideal of A. Let M(A) be the set of maximal ideals of A. For every x ∈ A we

put M(x,A) = {I ∈ M(A) : x ∈ I}. Then M(x1, ..., xn, A) = ∩{M(xi, A) :

i ≤ n, n ∈ N = {1, 2, ...}}. If L ⊆ A, then M(L,A) = ∩{M(x,A) : x ∈ L}.
The family {M(L,A) : L ⊆ A} is a closed basis of the topology of the space

M(A).

Theorem 2.1. The ideal space M(A) is a compact T1-space.

Proof. Let {M(Lλ, A) : λ ∈ Γ} be a given family of closed sets and ∩{M(Lλ, A) :

λ ∈ P} 6= ∅ for any non-empty finite subset P ⊆ Γ. Assume that: for

every two elements α, β ∈ Γ there exists γ ∈ Γ such that M(Lγ , A) ⊆
M(Lα, A)∩M(Lβ, A); if the set P ⊆ A is finite and M(P, A)∩M(Lα, A) 6= ∅
for every α ∈ Γ, then M(P, A) = M(Lβ, A) for some β ∈ Γ.

We put I = ∪{Lλ : λ ∈ Γ}. Then I ∈ M(A) and I ∈ ∩{M(Lα, A) : α ∈ Γ}.
It is obvious that M(A) is a T1-space. The proof is complete.
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3. SPECIAL COMPACTIFICATION OF THE

FIELD K

Let C = {z ∈ K :| z |= 1}. For every z ∈ C we fix an improper number ∞z

such that:

1. ∞z 6= ∞x provided x 6= z;

2. if x, y ∈ C, x 6= −y and z = α(x + y) for some positive number α, then

we consider that ∞z = ∞x +∞y;

3. if x, y ∈ C and z = xy, then ∞z = ∞x · ∞y;

4. x +∞y = ∞y + x for any x ∈ K and y ∈ C;

5. if x ∈ K, y ∈ C, z ∈ C and z = λxy for some positive λ, then ∞z =

x · ∞y = ∞y · x;

6. 0 · ∞z = ∞z · 0 = 0 for any z ∈ C.

We put K̄ = K ∪ {∞z : z ∈ C} and Ω = {∞z : z ∈ C}. There exists

an one-to-one mapping ϕ : K̄ → B = {x ∈ K :| x |≤ 1} such that ϕ(0) =

0, ϕ(∞z) = z for any z ∈ C,ϕ(x) = x · (1+ | x |) for any x ∈ K. On K̄ we

consider the topology with respect to which ϕ is a homeomorphism. Then K̄

is a compactification of the space K and K̄ is a partial algebra. If x, y ∈ C and

x = −y, then ∞x +∞y is not determined. We consider that −∞x = ∞(−x). If

R is the field of reals, then +∞ = ∞1, −∞ = ∞(−1) and R∪{−∞, +∞} ⊆ K.

We put R̄ = R ∪ {−∞, +∞} = [−∞, +∞]. Thus R̄ is a compactification of

the reals and R̄ is homeomorphic to the closed interval.

4. PARTIAL ALGEBRAS OF FUNCTIONS

Fix a topological space X. Denote by C(X, K̄) the set of all continuous

functions of X into K̄ and C0(X,K) = {f ∈ C(X, K) : f(X) is a bounded

subset of K}. If f ∈ C0(X, K), then clKf(X) is a compact subset.

A function f ∈ C0(X,K) possesses a compact support if there exists a

compact subset F ⊆ X such that f−1(K\{0}) ⊆ F . In this case supp(f) =

clXf−1(K\{0}) is a compact subset. Let C0(X, K) = {f ∈ C(X, K) : supp(f)

is a compact set}.
Definition 4.1. A subset A ⊆ C(X, K̄) is an algebra of functions on X if :

- 0 ∈ A, where 0(x) = 0 for any x ∈ X;
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- if f is a constant function, then f ∈ A;

- if f, g ∈ A and f + g ∈ C(X, K̄), then f + g ∈ A;

- if f, g ∈ A and f · g ∈ C(X, K̄), then f · g ∈ A;

- if f ∈ A, then −f ∈ A and f̄ ∈ A;

- if f ∈ A, then λf ∈ A for any λ ∈ K.

For every subset L ⊂ C(X, K̄) there exists a minimal algebra a(L) generated

by the set L.

Definition 4.2. Let (Y, eY ) be a g-compactification of a space X. Then

C(X, K, Y, eY ) = {f ◦ ey : f ∈ C(X, K̄)} is called the algebra of functions on

X continuously extendable on Y .

Theorem 4.3. Let X be a topological space X0 = ∪{U : U is open in X

and clXU is a compact Hausdorff subspace} and L ⊆ C(X, K̄). Then there

exists a unique g-compactification (Y, eY ) of the space X with the following

properties:

1. every function f ∈ L is continuously extendable on Y , i.e. there exists a

unique continuous function ef ∈ C(Y,K) such that f = ef ◦ eY .

2. if y1, y2 ∈ Y \ey(X0) and y1 6= y2, then there exists f ∈ L such that

ef(y1) 6= ef(y2).

3. if the set U is open in X and clXU is a Hausdorff compact subset

of X, then ey(U) is an open subset of Y and eY | U : U → eY (U) is a

homeomorphism.

Proof. If X is a compact Hausdorff space, then Y = X. Suppose that the

space X is not a compact Hausdorff space. Let {(xα, Fα) : α ∈ A} be the set of

all pairs (x, F ), where x ∈ X0, F is a closed subset of X and x 6∈ F . For every

α ∈ A fix a continuous function ϕα : X → [0, 1] ⊆ K such that ϕα(xα) = 0

and Fα ∪ (X\X0) ⊆ ϕ−1
α (1). Let Xα be the closure of the set ϕα(X) in K.

Then (Xα, ϕα) ∈ GC(X).

For every f ∈ L denote by Yf the closure of the set f(X) in K̄. Then

(Yf , f) ∈ GC(X).

If X0 ∪ L = ∅, then (Y, eY ) is the one-point g-compactification.

Suppose that X0 ∪ L 6= ∅.
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Denote by (Y, eY ) the minimal g-compactification with the following prop-

erties:

- (Y, eY ) ≥ (Xα, ϕα) for any α ∈ A;

- (Y, eY ) ≥ (Yf , f) for any f ∈ L.

By construction, the functions from L ∪ {ϕα : α ∈ A} are continuously

extendable on (Y, eY ). Hence, eY | Z : Z → eY (Z) is a homeomorphism.

If α ∈ A and eϕα is the extension of ϕα on Y , then xαα ∈ eϕ−1
α [0, 1) and

eϕ−1
α [0, 1) is an open subset of Y . Thus eY (X0) is an open subset of Y .

Thus (Y, eY ) satisfies all conditions of Theorem 4.3.

Fix (S, eS) ∈ GC(X) with the properties of the Theorem 4.3. Then the

functions from L∪{ϕα : α ∈ A} are continuously extendable on S and (S, eS) ≥
sup({(Yf , f) : f ∈ L} ∪ {(Xα, ϕα) : α ∈ A}) = (Y, eY ) and there exists a

continuous mapping g : S → Y such that eY = g ◦ eS .

We affirm that g is a homeomorphism and the g-compactifications (Y, eY ),

(S, eS) are equivalent. Suppose that g is not a homeomorphism. Then there

exists two distinct points s, s2 ∈ S such that g(s1) = g(s2).

If x1 ∈ X \ X0 and x2 ∈ X X0, then ϕα(x1) 6= ϕα(x2) provided x1 = x2.

In this case eY (x1) = eY (x2). Therefore s1, s2 ∈ S\eS(X0). Let ef be the

continuous extension of the function f ∈ L on (S, eS). Thus ef(s1) = ef(s2)

for every f ∈ L, a contradiction with the condition 2. The proof is complete.

Corollary 4.4 Let X be a locally compact Hausdorff space and L ⊆ C(X, K).

Then there exists a unique compactification Y of the space X such that:

1. every function f ∈ L is continuously extendable on Y ;

2. if y1, y2 ∈ Y \X and y1 6= y2, then there exists f ∈ L such that ef(y1) 6=
ef(y2);

3. X is an open and dense subspace of the space Y .

Theorem 4.5. Let X be a topological space, X0 = ∪{U : U is open in

X and clXU is a compact Hausdorff subspace}, L ⊆ C(X,K) and L ∪ {f ∈
C(X, K) : supp(f) ⊆ X0}. Then the maximal ideal space M(L̄) of the algebra

L is the g-compactification with the properties from Theorem 4.3.

Proof. Let (Y, ef ) be the g-compactification from Theorem 4.3. For every
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f ∈ I denote by ef the continuous extension of f on (Y, eY ). We consider

that eY (Z) = Z ⊆ Y . From the Stone-Weierstrass theorem ([3], Theorem

3.2.21) the algebra {ef : f ∈ L̄} is dense in the Banach algebra C(Y, K) of

all continuous functions of Y into K. The maximal ideal spaces C(L̄) and

M(C(Y, K)) are homeomorphic to the space Y [4]. The proof is complete.

Remark 4.6 For the Riemanian surfaces X and functions L ⊆ C(X, R̄) the

Corollary 4.4 was proved by C. Constantinescu and A. Cornea in [2], while for

any locally compact X Hausdorff space, by M. Brelot [1].

Remark 4.7. The set L ⊆ C0(X,K) and the subalgebra I ⊆ C0(X, K)

generate the same g-compactification of the Brelot-Constantinescu-Cornea

type.

Let A(X,K) be the set of all closed subalgebras of the Banach algebra

C0(X,K) with the sup-norm ||f || = sup{|f(x)| : x ∈ X}. Then there exist

an one-to-one correspondence k : A(X, K) → GC(X) and a mapping c :

A(X, K) → GC(X) such that:

1. if A ∈ A(X,K) and k(A) = (Y, eY ), then A = {f ◦ eY : f ∈ C(Y,K)}
and Y is the maximal ideal space of the algebra A;

2. A,B ∈ A(X,K), then A ⊆ B iff k(A) ≤ k(B);

3. if A ∈ A(X, K) and c(A) = (Y, eY ), then (Y, eY ) is the g-compactification

of the Brelot-Constantinescu-Cornea type generated by the algebra A;

4. by construction, k(A) ≤ c(A) for any algebra A ∈ A(X, K);

5. c(A(X,K)) is the set of all g-compactifications of the Brelot-Constantinescu-

Cornea type;

6. if X is a locally compact Hausdorff space, then c(A(X, K)) is the set of

all compactifications of the space X;

7. if |X| ≤ 1, then c = k.

Example 4.8. Let X be a locally compact non-compact Hausdorff space

and A be the algebra of constant functions. Then c(A) is the one-point Alexan-

droff compactification of X and k(A) is the one-point minimal g-compactification

of X.

Example 4.9. Let X be the space of reals and A = {f ∈ C0(X, K) :

[−3, 3] ⊆ f−1(0). Then c(A) is the Stone-Čech compactification βX of X and
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k(A) = (Y, eY ) is a g-compactification. In this case eY ([−3, 3]) is an one-point

subset of the space Y .

Example 4.10. Let X = [0, 1) be endowed with the topology generated by

the open base {X∩[x, x+ε) : x ∈ X, ε > 0}, Y be the space [0, 1] in the natural

topology, eY (x) = x for any x ∈ X and A = C0(Y, K) ⊆ C0(X,K). Then

(Y, eY ) is a g-compactification of the space X and c(A) = k(A) = (Y, eY ). In

this case c = k.
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