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1. INTRODUCTION

The notion of compactness is one of the most important notions.

A generalized compactification or a g-compacification of a space X is a pair
(Y, ey ), where Y is a compact Hausdorff space and ey : X — Y is a continuous
mapping such that the set ey (X) is dense in Y. If ey is an embedding, then
Y is called a compactification of X, we identify z = ey (z) for any x € X and
consider that X C Y.

Let (Y,ey) and (Z,ez) be two g-compactifications of a space X. We con-
sider that (Y,ey) < (Z,ez) if there exists a continuous mapping f : Z — Y
such that ey = foe,, i.e. ey(z) = f(ez(z)) forany z € X. If (Y,ey) < (Z,ez)
and (Z,ez) < (Y,ey), then f is a homeomorphism and we say that the g-
compactifications (Y,ey), (Z,ez) are equivalent. We identify the equivalent
g-compactifications. In this case the set GC(X) of all g-compactifications of
the space X is a complete lattice with the maximal element (6X,3y). The
minimal element of the lattice GC(X) is the one-point space. The compacti-
fication 3X is the Stone-Cech compactification of the space X.

Let L be a non-empty subset of the lattice GC(X). Then the maximal
element VL and the minimal element AL are determined in GC(X). Problems
connected with the g-compactifications VL, AL are among the most interesting

problems of the topology.
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We use the terminology from [3]. Denote by |A| the cardinality of the set
A, by clx A or clA the closure of the set A in the space X.

2. PARTIAL ALGEBRAS

Denote by K the ring of complex numbers.

A set A is called a partial algebra if for some pairs x,y € X there are
determined the sum x + y and the multiplication « - y such that:

1. the multiplication and sum are associative, commutative and distributive.

2. for every x € A and o € K it is defined aX € A such that:

21. a(x+y)=azr+ay for all z,y € A and a € K;

22. (a+p)r=ax+ pxforallz € A and o, € K;

2.3. 1.2 =x for any x € A;

3. a(fz) = (af)x for all z € A and «, § € K;;

4. there exist two distinct elements 0,1 € A such that 0 -2z = 0 and
04+x=1-2=xfor any x € X.

Let A be a partial algebra. A subset I C A is called an ideal of A if:
I#0;x+y eI provided z,y € I and x + 1y is defined in A; x -y € I provided
x € I and x -y is defined in A; if o € K and = € I, then ax € I. A maximal
ideal of A is called a proper ideal of A if it is not contained in other proper
ideal of A. Let M(A) be the set of maximal ideals of A. For every z € A we
put M(z,A) ={I € M(A) : x € I}. Then M(x1,...,2n, A) = {M(z;, A) :
i<nnmeN={1,2,..}}. f L C A, then M(L,A) =nN{M(z,A):x € L}.

The family {M (L, A) : L C A} is a closed basis of the topology of the space
M(A).

Theorem 2.1. The ideal space M(A) is a compact Ti-space.

Proof. Let {M (L), A) : A € I'} be a given family of closed sets and N{M (Ly, A) :
A € P} # () for any non-empty finite subset P C TI'. Assume that: for
every two elements «,3 € I' there exists v € I' such that M(L,, A) C
M(Lqo, A)N M(Lg, A); if the set P C A is finite and M (P, A)N M (Lq, A) # 0
for every o € T', then M (P, A) = M(Lg, A) for some 3 €T.

We put I =U{Ly: A€TI}. ThenI € M(A) and I € "{M(Ly,A):ae€T}.
It is obvious that M (A) is a Ti-space. The proof is complete.
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3. SPECIAL COMPACTIFICATION OF THE
FIELD K

Let C ={z € K :| z |=1}. For every z € C we fix an improper number oo,
such that:

1. 00, # o0, provided = # z;

2. ifx,y € C, z # —y and z = a(x + y) for some positive number «, then
we consider that 0o, = 00, + 00y;

3. if z,y € C and z = xy, then 0o, = 00, - 00y;

4. v+ 0oy = 0oy +x for any v € K and y € C;

5. ifx € K,y € C,z € C and z = Azy for some positive A, then co, =
T - 00y = 00y -

6. 0-00, =00, -0=0 for any z € C.

We put K = KU {occ, : 2 € C} and Q = {00, : 2 € C}. There exists
an one-to-one mapping ¢ : K — B = {z € K :| z |< 1} such that ¢(0) =
0,p(c0,) = 2z for any z € C,p(x) =2 - (1+ | x |) for any x € K. On K we
consider the topology with respect to which ¢ is a homeomorphism. Then K

is a compactification of the space K and K is a partial algebra. If 2,y € C and

r = —y, then 0oz + 00y is not determined. We consider that —oo, = 0o(_p. If
R is the field of reals, then 400 = 001, —00 = 00(_1y and RU{—00, 400} C K.
We put R = RU {—00,+00} = [~00, +00]. Thus R is a compactification of

the reals and R is homeomorphic to the closed interval.

4. PARTIAL ALGEBRAS OF FUNCTIONS

Fix a topological space X. Denote by C(X, K) the set of all continuous
functions of X into K and C%(X,K) = {f € C(X,K) : f(X) is a bounded
subset of K}. If f € C°(X, K), then cli f(X) is a compact subset.

A function f € CY(X,K) possesses a compact support if there exists a
compact subset F' C X such that f~1(K\{0}) C F. In this case supp(f) =
clx f~1(K\{0}) is a compact subset. Let Co(X, K) = {f € C(X, K) : supp(f)
is a compact set}.

Definition 4.1. A subset A C C(X, K) is an algebra of functions on X if:

-0 € A, where 0(x) =0 for any = € X
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-if f is a constant function, then f € A;

-if f,g€ Aand f+ g€ C(X,K), then f+ g€ A

-if f,g€ Aand f-g€ O(X,K), then f-g € A;

-if fE A, then —f € A and f € A;

-if f €A, then \f € A for any X € K.

For every subset L C C'(X, K) there exists a minimal algebra a(L) generated
by the set L.

Definition 4.2. Let (Y,ey) be a g-compactification of a space X. Then
C(X,K,Y,ey) ={foey: f€C(X,K)} is called the algebra of functions on

X continuously extendable on Y.

Theorem 4.3. Let X be a topological space Xog = U{U : U is open in X
and clxU is a compact Hausdorff subspace} and L C C(X, K). Then there
exists a unique g-compactification (Y,ey) of the space X with the following
properties:

1. every function f € L is continuously extendable on Y, i.e. there exists a
unique continuous function ef € C(Y, K) such that f =ef oey.

2. if y1,y2 € Y\ey(Xo) and y1 # yo, then there exists f € L such that
ef(y1) # ef (y2)-

3. if the set U is open in X and clxU is a Hausdorff compact subset
of X, then e, (U) is an open subset of Y and ey | U : U — ey(U) is a

homeomorphism.

Proof. If X is a compact Hausdorff space, then Y = X. Suppose that the
space X is not a compact Hausdorff space. Let {(xq, Fy) : @ € A} be the set of
all pairs (x, F'), where x € X, F' is a closed subset of X and x ¢ F. For every
a € A fix a continuous function ¢, : X — [0,1] C K such that ¢, (zs) =0
and F, U (X\Xg) C ¢,1(1). Let X, be the closure of the set o, (X) in K.
Then (Xq,¢,) € GC(X).

For every f € L denote by Y the closure of the set f(X) in K. Then
(V). f) € GC(X).

If Xo UL =0, then (Y, ey) is the one-point g-compactification.

Suppose that XoU L # (.
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Denote by (Y, ey) the minimal g-compactification with the following prop-
erties:

- (Yiey) > (Xa, p,) for any a € A;

- (Yey) = (Yf, f) for any f € L.

By construction, the functions from L U {p, : @ € A} are continuously
extendable on (Y,ey). Hence, ey | Z : Z — ey(Z) is a homeomorphism.
If « € A and ep, is the extension of ¢, on Y, then z,a € ep,![0,1) and
ep;1[0,1) is an open subset of Y. Thus ey (Xp) is an open subset of Y.

Thus (Y, ey) satisfies all conditions of Theorem 4.3.

Fix (S,es) € GC(X) with the properties of the Theorem 4.3. Then the
functions from LU{¢p,, : @ € A} are continuously extendable on S and (S, eg) >
sup({(Yy, f) « f € L} U{(Xa,p,) : @ € A}) = (Y,ey) and there exists a
continuous mapping g : S — Y such that ey = goeg.

We affirm that g is a homeomorphism and the g-compactifications (Y, ey ),
(S,eg) are equivalent. Suppose that g is not a homeomorphism. Then there
exists two distinct points s, s € S such that g(s1) = g(s2).

If 1 € X\ Xo and 22 € X X, then ¢, (1) # ¢, (z2) provided z; = x3.
In this case ey (z1) = ey(x2). Therefore s1,s9 € S\es(Xp). Let ef be the
continuous extension of the function f € L on (S, eg). Thus ef(s1) = ef(s2)

for every f € L, a contradiction with the condition 2. The proof is complete.

Corollary 4.4 Let X be a locally compact Hausdorff space and L C C(X, K).
Then there exists a unique compactification Y of the space X such that:

1. every function f € L is continuously extendable on Y;

2. ify1,y2 € Y\ X and y1 # yo, then there exists f € L such that ef(y1) #
ef(y2);

3. X is an open and dense subspace of the space Y .

Theorem 4.5. Let X be a topological space, Xg = U{U : U is open in
X and clxU is a compact Hausdorff subspace}, L C C(X,K) and LU{f €

C(X,K) : supp(f) C Xo}. Then the maximal ideal space M (L) of the algebra
L is the g-compactification with the properties from Theorem 4.3.

Proof. Let (Y,es) be the g-compactification from Theorem 4.3. For every



66 Mitrofan M.Choban, Laurentiu I. Calmutchi

f € I denote by ef the continuous extension of f on (Y,ey). We consider
that ey(Z) = Z C Y. From the Stone-Weierstrass theorem ([3], Theorem
3.2.21) the algebra {ef : f € L} is dense in the Banach algebra C(Y, K) of
all continuous functions of Y into K. The maximal ideal spaces C(L) and
M(C(Y, K)) are homeomorphic to the space Y [4]. The proof is complete.

Remark 4.6 For the Riemanian surfaces X and functions L C C(X, R) the
Corollary 4.4 was proved by C. Constantinescu and A. Cornea in [2], while for
any locally compact X Hausdorff space, by M. Brelot [1].

Remark 4.7. The set L C C°(X, K) and the subalgebra I C C°(X, K)
generate the same g-compactification of the Brelot-Constantinescu-Cornea
type.

Let A(X,K) be the set of all closed subalgebras of the Banach algebra
CY(X, K) with the sup-norm ||f|| = sup{|f(x)| : « € X}. Then there exist
an one-to-one correspondence k : A(X,K) — GC(X) and a mapping c :
A(X, K) — GC(X) such that:

1. if A e A(X,K) and k(A) = (Y,ey), then A = {foey : f € C(Y,K)}
and Y is the maximal ideal space of the algebra A;

2. A, B € A(X,K), then A C B iff k(A) < k(B);

3.if A€ A(X,K) and ¢(A) = (Y, ey), then (Y, ey) is the g-compactification
of the Brelot-Constantinescu-Cornea type generated by the algebra A;

4. by construction, k(A) < ¢(A) for any algebra A € A(X, K);

5. ¢(A(X, K)) is the set of all g-compactifications of the Brelot-Constantinescu-
Cornea type;

6. if X is a locally compact Hausdorff space, then ¢(A(X, K)) is the set of
all compactifications of the space X;

7. if | X| <1, then ¢ = k.

Example 4.8. Let X be a locally compact non-compact Hausdorff space
and A be the algebra of constant functions. Then ¢(A) is the one-point Alexan-
droff compactification of X and k(A) is the one-point minimal g-compactification
of X.

Example 4.9. Let X be the space of reals and A = {f € C°(X,K) :
[—3,3] € £71(0). Then ¢(A) is the Stone-Cech compactification 3X of X and
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k(A) = (Y, ey) is a g-compactification. In this case ey ([—3,3]) is an one-point
subset of the space Y.

Example 4.10. Let X = [0,1) be endowed with the topology generated by
the open base {XN[z,z+¢€) : x € X,e > 0}, Y be the space [0, 1] in the natural
topology, ey (z) = z for any z € X and A = C°(Y,K) C C%X, K). Then
(Y, ey) is a g-compactification of the space X and ¢(A) = k(A) = (Y,ey). In

this case ¢ = k.
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