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Abstract  We first consider a time-inhomogeneous diffusion process that is a generaliza-
tion of the standard Brownian motion. We find that it has a Gaussian proba-
bility density function with the same mean as an Ornstein-Uhlenbeck process,
and variance that generalizes that of the standard Brownian motion. Next,
the problem of finding diffusion processes having a Gaussian N(0,t) probabil-

ity density function is treated.
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1. INTRODUCTION AND THEORETICAL
RESULTS

Arguably the two most important diffusion processes are the Wiener pro-
cess {W(t),t > 0} and the Ornstein-Uhlenbeck process {U(t),t > 0} defined

respectively by the stochastic differential equations
dW (t) = pdt + odB(t)
and
dU(t) = —aU(t)dt + odBa(t),

where {B;(t),t > 0}, i = 1,2, is a standard Brownian motion, and u € R
and ¢ > 0 are constants. As is well known, conditional on W(ty) = wy
and U (to) = uo, we may write that W (t) ~ N (wo + u(t — to),02(t — t9)) and
U(t) ~N (uoe_o‘(t_tf)), % [1- e_QO‘(t_tO)]) see Lefebvre (2007), pp. 184 and

203, for instance).
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In this note, we first consider the time-inhomogeneous diffusion process

{X(t),t > 0} that satisfies the stochastic differential equation

AX (1) = _gxu)dt F (14 kY2 dB(), (1)
where k is a non-negative constant and {B(¢),t > 0} is a standard Brownian
motion. Notice that it generalizes the standard Brownian motion, which cor-
responds to the case when k& = 0. That is, if k£ = 0, then {X(¢),t > 0} is a
Wiener process with infinitesimal parameters 4 =0 and o = 1.

In Section 2, we find the probability density function of the random variable
X(t). We see that if tg = 0 and z¢p = 0, then X (¢) has the same probability
density function as a standard Brownian motion, namely a Gaussian N(0, )
distribution. Then, in Section 3, we consider the problem of finding other dif-
fusion processes having a Gaussian N(0, t) distribution. Finally, a few remarks

conclude this work in Section 4.

2.  PROBABILITY DENSITY FUNCTION OF
X(T)

Let ®(t) be the function that satisfies the ordinary differential equation

d k
ﬁ(b(t) = —§®(t), for t > to,

subject to the initial condition ®(tp) = 1. Its solution is ®(¢) = exp {—% (t—to)},

for t > tg. We can state the following proposition.

Proposition 2.1. Conditional on X (tg) = xo, the distribution of the random

variable X (t) is given by
X(t)~N <a:0 e (k/2)(=t0) 4 ¢, e*’f(f*m)) for t > to.
Proof. This result is an application of Proposition 4.3.1, p. 211, in Lefebvre

(2007) [see Remark iii), p. 212]. Indeed, we deduce from this proposition that
X(t) | {X(to) = zo} has a Gaussian distribution with mean

t
m(t) = O(t) (300 +/ & (u) - 0du) = gge~(k/2)(t=to)

to
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and variance o2 (t) = ®%(t) fti) ®=2(u) (1 + ku)du. That is,

t
o (t) = e Flt—t0) / Pt (1 4 ku)du =t —tge ) for t > ty. M
to

Remarks. i) We can also obtain the probability density function of X (t) by

proceeding as follows: the function

f(x7t) (: f(ﬂf,t;ﬂfo,to)) — P[X(t) € (a:,:v ";;lx) | X(tﬂ) = $()] (2>

satisfies the Kolmogorov forward equation (also called Fokker-Planck equation;

see Cox and Miller (1965), for instance)

1 0? 0 k 0
302 0+ k0 10} = 22 {-Laren} = Drta
14kt

fea b S (e f) = fu

—
2

Taking the Fourier transform on both sides of this partial differential equation,

we obtain that F(w,t) := [ e™? f(z,t)dt, where w € R, is a solution of

k w?
Ft+§wa+?(1+k‘t)F:0 (3)

Moreover, the function F' is such that
F(0,t) =1 (4)

and

11&1 F(w,t) = ™20, (5)

This last condition follows from the fact that

grtrgl f(z,t) = d(xz — xp).

Next, the general solution of equation (3) can be written as F(w,t) =
e t2@ (w e~ ht/ 2), where GG is an arbitrary function. We then infer from

(4) and (5) that F(w,t) is of the form

2
F(w,t) =exp {iwxoe_k(t_to)/2 - % [t — 1o e_k(t_to)} } .
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Finally, the result in the proposition is obtained by remembering that if
X ~ N(p,0?), then the characteristic function of X is given by Cx(w) :=
B [ei‘“X] = exp {iw,u — %2w2} .

ii) When the initial time is tg = 0, the distribution of X (¢) reduces to

X() | {X(0) =20} ~N <moe’kt/2,t) .

Notice that the mean of X (¢) is the same as that of an Ornstein-Uhlenbeck
process with o = k/2, while its variance corresponds to that of a standard
Brownian motion. Furthermore, if the process starts at xg = 0, then X (¢) ~
N(0,¢). In the next section, the problem of finding diffusion processes having
the same probability density function as a standard Brownian motion starting

at the origin will be treated.

iii) From the previous remark, we can state that the diffusion process {X(t),
t > 0} defined by (1) is intermediate between the Wiener process with p =0
and o = 1, and the Ornstein-Uhlenbeck process with a = k/2. In applications
where the mean of X (¢) tends to 0 with increasing ¢, rather than remaining
constant, and the variance of X (t) is a linear function of ¢, this process would
be a model better than either the Wiener or the Ornstein-Uhlenbeck process.
In the case of the Ornstein-Uhlenbeck process, its variance is bounded (from
above) by 02/(2a) (= 0?/k).

3. DIFFUSION PROCESSES HAVING A
GAUSSIAN PROBABILITY DENSITY
FUNCTION

In the preceding section, we found that the diffusion process {X(¢),t > 0}
defined by (1) has the same probability density function as a standard Brow-
nian motion starting from the origin, if xg = 0 and ¢ty = 0. Now, we try
to find other diffusion processes having a Gaussian N(0,¢) probability density
function.

Let m(z,t) and v(x,t) > 0 be the infinitesimal parameters of { X (¢t),¢ > 0}.
These functions must be such that (see Lamberton and Lapeyre (1997, p. 58),
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in particular), for all s > 0,

/ |m(z,t)|dt < oo and / v(z,t)dt < oo. (6)
0 0
Then, the function f(x,t) defined in (2) satisfies the Kolmogorov forward
equation

102 0 0

5@ {U($7t>f($7t)} - % {m(:v,t)f(:r,t)} - af(x7t) (7)

When v(z,t) =1 and m(z,t) =0, we know that (if zo = 0 and tg = 0)

2
f(z,t) = V;imexp{—;t}

for z € R and t > 0. Substituting the function f(z,t) into (7), we obtain that

1 2 1 T T 1 x?

2 { (t2 B t> 20 (-7) +} Ameam(-3)} =5+ 5w
Since we have only one differential equation and two unknown functions, there
are many possible solutions for which X (¢) is a diffusion process.

First, notice that we cannot have m(x,t) = m(t) and v(z,t) = v(t) at the
same time, except when m(z,t) = 0 and v(x,t) = 1. That is, when X(¢) is
a standard Brownian motion. Assume that v(x,t) = v(t), but that m(z,t)

depends on z. We find that m satisfies the ordinary differential equation

o (o S (-5 -

whose general solution is

miz,t) = o1 exp{zi} . <”(t;t_1) |

Let us choose the constant ¢c; = 0. We see that the process considered in the
previous section corresponds to the infinitesimal variance v(t) = 1 + kt, with
k a non-negative constant. Indeed, we then have m(z,t) = —&z. Note that
the conditions in (6) are satisfied with this choice of infinitesimal parameters.
There are however other interesting possibilities. For example, we could take
v(z,t) =v(t) = 1+kt> and m(z,t) = —4t2. Furthermore, we can of course
consider the case when m(x,t) = m(t), but v(x,t) depends on z, as well as

the general case when both m(z,t) and v(z,t) depend on x (and t).
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4. CONCLUSION

In this note, we first considered the diffusion process {X(¢),t > 0} whose
infinitesimal parameters are m(z,t) = —kx/2 and v(z,t) = 1 + kt, where
the constant k is non-negative. Although this process is time-inhomogeneous,
we were able to calculate explicitly the probability density function of the
random variable X (¢). We saw that X (¢) is normally distributed and that
its parameters are related to those that correspond to the standard Brownian
motion and the Ornstein-Uhlenbeck process.

The diffusion process {X(t),t > 0} is a good compromise between the
Wiener and Ornstein-Uhlenbeck processes, in that it behaves partly like these
two very important diffusion processes. Moreover, if {X (¢),t > 0} starts from
the origin at time tg = 0, then X (t) ~ N(0,¢), exactly like a standard Brownian
motion.

In Section 3, we saw that there are other time-inhomogeneous diffusion
processes {X (t),t > 0} for which X (¢) has a Gaussian N(0,¢) distribution.
This is true when tp = 0 and X (0) = 0. Making use of the proposition in
Lefebvre (2007) mentioned above, we could calculate their probability density
function in the general case when the initial time is ¢y > 0 and X (¢9) = zo € R.

As a sequel to this work, we could, in particular, try to find diffusion
processes having a lognormal probability density function, like the geomet-
ric Brownian motion. This diffusion process is used extensively in financial
mathematics. Moreover, it would be nice to have some real-life data for which
the diffusion process {X(t),t > 0} introduced in Section 1 would be a good
model. Finally, we could also study first passage time problems involving
{X(t),t > 0}.
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