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Abstract We first consider a time-inhomogeneous diffusion process that is a generaliza-

tion of the standard Brownian motion. We find that it has a Gaussian proba-

bility density function with the same mean as an Ornstein-Uhlenbeck process,

and variance that generalizes that of the standard Brownian motion. Next,

the problem of finding diffusion processes having a Gaussian N(0, t) probabil-

ity density function is treated.
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1. INTRODUCTION AND THEORETICAL

RESULTS

Arguably the two most important diffusion processes are the Wiener pro-

cess {W (t), t ≥ 0} and the Ornstein-Uhlenbeck process {U(t), t ≥ 0} defined

respectively by the stochastic differential equations

dW (t) = µdt + σdB1(t)

and

dU(t) = −αU(t)dt + σdB2(t),

where {Bi(t), t ≥ 0}, i = 1, 2, is a standard Brownian motion, and µ ∈ R
and σ > 0 are constants. As is well known, conditional on W (t0) = w0

and U(t0) = u0, we may write that W (t) ∼ N
(
w0 + µ(t− t0), σ2(t− t0)

)
and

U(t) ∼ N
(
u0e−α(t−t0), σ2

2α

[
1− e−2α(t−t0)

])
see Lefebvre (2007), pp. 184 and

203, for instance).
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In this note, we first consider the time-inhomogeneous diffusion process

{X(t), t ≥ 0} that satisfies the stochastic differential equation

dX(t) = −k

2
X(t)dt + (1 + kt)1/2 dB(t), (1)

where k is a non-negative constant and {B(t), t ≥ 0} is a standard Brownian

motion. Notice that it generalizes the standard Brownian motion, which cor-

responds to the case when k = 0. That is, if k = 0, then {X(t), t ≥ 0} is a

Wiener process with infinitesimal parameters µ = 0 and σ = 1.

In Section 2, we find the probability density function of the random variable

X(t). We see that if t0 = 0 and x0 = 0, then X(t) has the same probability

density function as a standard Brownian motion, namely a Gaussian N(0, t)

distribution. Then, in Section 3, we consider the problem of finding other dif-

fusion processes having a Gaussian N(0, t) distribution. Finally, a few remarks

conclude this work in Section 4.

2. PROBABILITY DENSITY FUNCTION OF

X(T )

Let Φ(t) be the function that satisfies the ordinary differential equation

d

dt
Φ(t) = −k

2
Φ(t), for t > t0,

subject to the initial condition Φ(t0) = 1. Its solution is Φ(t) = exp
{−k

2 (t− t0)
}

,

for t ≥ t0. We can state the following proposition.

Proposition 2.1. Conditional on X(t0) = x0, the distribution of the random

variable X(t) is given by

X(t) ∼ N
(
x0e−(k/2)(t−t0), t− t0e−k(t−t0)

)
for t ≥ t0.

Proof. This result is an application of Proposition 4.3.1, p. 211, in Lefebvre

(2007) [see Remark iii), p. 212]. Indeed, we deduce from this proposition that

X(t) | {X(t0) = x0} has a Gaussian distribution with mean

m(t) = Φ(t)
(

x0 +
∫ t

t0

Φ−1(u) · 0du

)
= x0e−(k/2)(t−t0)
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and variance σ2(t) = Φ2(t)
∫ t
t0

Φ−2(u)(1 + ku)du. That is,

σ2(t) = e−k(t−t0)

∫ t

t0

ek(u−t0) (1 + ku)du = t− t0e−k(t−t0) for t ≥ t0.

Remarks. i) We can also obtain the probability density function of X(t) by

proceeding as follows: the function

f(x, t) (= f(x, t;x0, t0)) :=
P [X(t) ∈ (x, x + dx) | X(t0) = x0]

dx
(2)

satisfies the Kolmogorov forward equation (also called Fokker-Planck equation;

see Cox and Miller (1965), for instance)

1
2

∂2

∂x2
{(1 + kt)f(x, t)} − ∂

∂x

{
−k

2
xf(x, t)

}
=

∂

∂t
f(x, t)

⇐⇒ 1 + kt

2
fxx +

k

2
(f + xfx) = ft.

Taking the Fourier transform on both sides of this partial differential equation,

we obtain that F (ω, t) :=
∫∞
−∞ eiωxf(x, t)dt, where ω ∈ R, is a solution of

Ft +
k

2
ωFω +

ω2

2
(1 + kt)F = 0. (3)

Moreover, the function F is such that

F (0, t) = 1 (4)

and

lim
t↓t0

F (ω, t) = eiωx0 . (5)

This last condition follows from the fact that

lim
t↓t0

f(x, t) = δ(x− x0).

Next, the general solution of equation (3) can be written as F (ω, t) =

e−ω2t/2G
(
ωe−kt/2

)
, where G is an arbitrary function. We then infer from

(4) and (5) that F (ω, t) is of the form

F (ω, t) = exp
{

iωx0e−k(t−t0)/2 − ω2

2

[
t− t0e−k(t−t0)

]}
.
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Finally, the result in the proposition is obtained by remembering that if

X ∼ N(µ, σ2), then the characteristic function of X is given by CX(ω) :=

E
[
eiωX

]
= exp

{
iωµ− σ2

2 ω2
}

.

ii) When the initial time is t0 = 0, the distribution of X(t) reduces to

X(t) | {X(0) = x0} ∼ N
(
x0e−kt/2, t

)
.

Notice that the mean of X(t) is the same as that of an Ornstein-Uhlenbeck

process with α = k/2, while its variance corresponds to that of a standard

Brownian motion. Furthermore, if the process starts at x0 = 0, then X(t) ∼
N(0, t). In the next section, the problem of finding diffusion processes having

the same probability density function as a standard Brownian motion starting

at the origin will be treated.

iii) From the previous remark, we can state that the diffusion process {X(t),

t ≥ 0} defined by (1) is intermediate between the Wiener process with µ = 0

and σ = 1, and the Ornstein-Uhlenbeck process with α = k/2. In applications

where the mean of X(t) tends to 0 with increasing t, rather than remaining

constant, and the variance of X(t) is a linear function of t, this process would

be a model better than either the Wiener or the Ornstein-Uhlenbeck process.

In the case of the Ornstein-Uhlenbeck process, its variance is bounded (from

above) by σ2/(2α) (= σ2/k).

3. DIFFUSION PROCESSES HAVING A

GAUSSIAN PROBABILITY DENSITY

FUNCTION

In the preceding section, we found that the diffusion process {X(t), t ≥ 0}
defined by (1) has the same probability density function as a standard Brow-

nian motion starting from the origin, if x0 = 0 and t0 = 0. Now, we try

to find other diffusion processes having a Gaussian N(0, t) probability density

function.

Let m(x, t) and v(x, t) ≥ 0 be the infinitesimal parameters of {X(t), t ≥ 0}.
These functions must be such that (see Lamberton and Lapeyre (1997, p. 58),
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in particular), for all s ≥ 0,
∫ s

0
|m(x, t)| dt < ∞ and

∫ s

0
v(x, t) dt < ∞. (6)

Then, the function f(x, t) defined in (2) satisfies the Kolmogorov forward

equation

1
2

∂2

∂x2
{v(x, t)f(x, t)} − ∂

∂x
{m(x, t)f(x, t)} =

∂

∂t
f(x, t). (7)

When v(x, t) ≡ 1 and m(x, t) ≡ 0, we know that (if x0 = 0 and t0 = 0)

f(x, t) =
1√
2πt

exp
{
−x2

2t

}

for x ∈ R and t > 0. Substituting the function f(x, t) into (7), we obtain that

1
2

{
v

(
x2

t2
− 1

t

)
+ 2vx

(
−x

t

)
+ vxx

}
−

{
mx + m

(
−x

t

)}
= − 1

2t
+

x2

2t2
.

Since we have only one differential equation and two unknown functions, there

are many possible solutions for which X(t) is a diffusion process.

First, notice that we cannot have m(x, t) = m(t) and v(x, t) = v(t) at the

same time, except when m(x, t) ≡ 0 and v(x, t) ≡ 1. That is, when X(t) is

a standard Brownian motion. Assume that v(x, t) = v(t), but that m(x, t)

depends on x. We find that m satisfies the ordinary differential equation

mx −
(x

t

)
m +

v(t)− 1
2t

(
1− x2

t

)
= 0,

whose general solution is

m(x, t) = c1 exp
{

x2

2t

}
− x

(
v(t)− 1

2t

)
.

Let us choose the constant c1 = 0. We see that the process considered in the

previous section corresponds to the infinitesimal variance v(t) = 1 + kt, with

k a non-negative constant. Indeed, we then have m(x, t) = −k
2 x. Note that

the conditions in (6) are satisfied with this choice of infinitesimal parameters.

There are however other interesting possibilities. For example, we could take

v(x, t) = v(t) = 1+kt2 and m(x, t) = −k
2 tx. Furthermore, we can of course

consider the case when m(x, t) = m(t), but v(x, t) depends on x, as well as

the general case when both m(x, t) and v(x, t) depend on x (and t).
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4. CONCLUSION

In this note, we first considered the diffusion process {X(t), t ≥ 0} whose

infinitesimal parameters are m(x, t) = −kx/2 and v(x, t) = 1 + kt, where

the constant k is non-negative. Although this process is time-inhomogeneous,

we were able to calculate explicitly the probability density function of the

random variable X(t). We saw that X(t) is normally distributed and that

its parameters are related to those that correspond to the standard Brownian

motion and the Ornstein-Uhlenbeck process.

The diffusion process {X(t), t ≥ 0} is a good compromise between the

Wiener and Ornstein-Uhlenbeck processes, in that it behaves partly like these

two very important diffusion processes. Moreover, if {X(t), t ≥ 0} starts from

the origin at time t0 = 0, then X(t) ∼ N(0, t), exactly like a standard Brownian

motion.

In Section 3, we saw that there are other time-inhomogeneous diffusion

processes {X(t), t ≥ 0} for which X(t) has a Gaussian N(0, t) distribution.

This is true when t0 = 0 and X(0) = 0. Making use of the proposition in

Lefebvre (2007) mentioned above, we could calculate their probability density

function in the general case when the initial time is t0 ≥ 0 and X(t0) = x0 ∈ R.

As a sequel to this work, we could, in particular, try to find diffusion

processes having a lognormal probability density function, like the geomet-

ric Brownian motion. This diffusion process is used extensively in financial

mathematics. Moreover, it would be nice to have some real-life data for which

the diffusion process {X(t), t ≥ 0} introduced in Section 1 would be a good

model. Finally, we could also study first passage time problems involving

{X(t), t ≥ 0}.
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