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State University of Moldova, Chişinău, Republic of Moldova
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Abstract Some analytical results concerning busy period distributions for M2|G2|1 generalized
queueing systems with semi-Markov switching and so called “look ahead” strategy are
discussed in this paper. We show that the presented analytical results can be viewed as a
2- dimensional analog of the well-known in queueing theory Kendall-Takacs functional
equation. Numerical algorithms and modelling examples for busy periods are also pre-
sented.
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1. INTRODUCTION
By the Generalized Priority Models (GPM) we understand mathematical models

of queueing systems, in which the switching of the service process from a class of re-
quests (messages) to another is non-zero. Such switching between the priority classes
is considered to be a random variable with arbitrary distribution function. The GPM
can be defined by setting four identifiers: “priority type”, “strategy in free state”,
“discipline of service” and “discipline of switching”. As shown in [1] and in some
recent publications (see, for example [2] and [3]), GPM have a number of important
distinguished features, compared with classical priority models. One of these distin-
guished features consists in the fact that mathematical formalization of switchover
times leads to various new priority laws enabling one to consider more flexible real
time processes, such as, absolute, semi-absolute, relative, etc., priority disciplines.
Another import feature of GPM consists in the fact that they enable one to consider
the strategy of server in the free states.

There are several models of behaviour of the server when the system becomes
empty. One of the most studied models is “set to zero” – upon completion of service
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of the last request in the system the server immediately switches to the neutral state.
In the following we analyze a model which is less investigated, namely “look ahead”
– the server switches itself to the 1-requests line at the moment when the system
becomes empty.

2. DEFINITIONS AND NOTATIONS
Consider the case of “Look Ahead” strategy for priority queueing systems with

two priority classes M2|G2|1.
Consider a queueing system with a single station and 2 classes of incoming re-

quests, each having its own flow of arrival and waiting line. We call the requests
from the ith queueing line Li i-requests. i-Requests have a higher priority than j-
requests if 1 ≤ i < j ≤ r. The station gives preference in service to the requests of
the highest priority among those presented in the system.

Adopting and slightly extending the standard Kendall notation we write M2|G2|1|∞
to denote a priority queueing system with two Poisson incoming flows of requests and
random switchover times.

Suppose that the time periods between two consecutive arrivals of the requests of
the class i are independent and identically distributed with some common cumulative
distribution function (cdf) Ai(t) with mean E[Ai], i = 1, 2. Similarly, suppose that the
service time of a customer of the class i is a random variable Bi with a cumulative
distribution function Bi(t) with mean service time E[Bi], i = 1, 2.

However, some time is needed for server to proceed with the switching from one
line of requests to another. This time is considered to be a random variable, and we
say that Ci j is the time of switching from the service of i- requests to the service of
j-requests, if 1 ≤ i, j ≤ r, i , j.

We adopt classification and terminology introduced in [1]. We also explain some
additional notions and notations.

Definition 2.1. By a k-busy period we understand the period of time which starts
when an i-request enters the empty system, i ≤ k, and finishes when there are no
longer k-requests in the system. Denote the k-busy period by Πk.

Note, that a 2-busy period is nothing but the system’s busy period Π, i.e. Π ≡ Π2.

Definition 2.2. By a Πk – period we understand the period of time which starts from
the moment of arrival of a k-request when there are no i-requests (i < k) in the system
and ending when the system is free of k-requests.

Definition 2.3. By a k-cycle of service we understand the period of time which starts
when server begins the servicing of a k-request, and finishes when this request leaves
the system. Denote the k-cycle of service by Hk.

Definition 2.4. By a k-cycle of switching we understand the period of time which
starts when server begins to switch to the line of k-requests, and finishes when server
is ready to provide service to these requests. Denote the k-cycle of switching by Nk.
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Let Πk(t), Πk(t), Hk(t) and Nk(t) be the cumulative distribution functions of Πk-
busy periods, k-busy periods, k-cycle of service and k-cycle of switching, correspond-
ingly. Let also πk(s), πk(s), hk(s) and νk(s) be their Laplace–Stieltjes transform, i.e.

πk(s) =

∞∫

0

e−stdΠk(t), . . . , νk(s) =

∞∫

0

e−stdNk(t).

Finally, let βk(s) be the Laplace–Stieltjes transform of Bk(t), i.e.

βk(s) =

∞∫

0

e−stdBk(t).

Let C12(t) and C21(t) be the cumulative distribution functions of C12 and C21. Let
also c12 and c21 be their Laplace–Stieltjes transform, i.e.

c12(s) =

∞∫

0

e−stdC12(t),

c21(s) =

∞∫

0

e−stdC21(t).

In this paper we consider next situation for queueing system M2|M2|1:
for the orientation

ON – non-identical orientation again

when 1-request arrives in the system the orientation to 2-request is interrupted;
after the service of 1-request is finished, the interrupted orientation begins
again non-identical time of orientation, but this time has the same distribution.

OR – resume interrupted orientation

when 1-request arrives in the system the orientation to 2-request is interrupted;
after the service of 1-request is finished, the interrupted orientation is resumed.

OC – orientation is not interrupted, it continues

when 1-request arrives in the system the orientation to 2-request is not inter-
rupted.

on the service

S N – non-identical service again
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when 1-request arrives in the system the service of 2-request is interrupted,
after the service of 1-request is finished, the interrupted service begins again
non-identical time of service, but this time has the same distribution.

S R – resume interrupted service

when 1-request arrives in system the service to 2-request is interrupted, after
the service of 1-request is finished, the interrupted service is resumed.

S L – the request is lost

when 1-request arrives in system the service of 2-request is interrupted and
2-request is lost.

By combining possible regimes of orientation and service one can obtain 9 types
of station operation. Using the above notation, for example ON S R indicate non-
identical orientation again and resume interrupted service.

3. BUSY PERIOD AND ITS EVALUATION
As mentioned above the busy period is the period of time which starts when request

enters in the empty system, finishes when there are no requests in the system.
The Laplace–Stieltjes transform of busy period can be determined from following

system of functional equations [1]:

(a1 + a2)π2(s) = a1π21(s) + a2π22(s),

π21(s) = π1(s + a2) +
{
π1(s + a2

[
1 − π2(s)]) − π1(s + a2)

}
ν2

(
s + a2[1 − π2(s)]

)
ϕ1(s),

π22(s) = ν2
(
s + a2[1 − π2(s)]

)
ϕ1(s),

π2(s) = h2(s + a2[1 − π2(s)]), (1)

π1(s) = β1(s + a1[1 − π1(s)]), (2)

ϕ1(s) = c21(ξ(s + a2)){1 − [c21(ξ(η(s)) − c21(ξ(s + a2))]ν2(η(s))}−1,

ξ(s) = s + a1 − a1π1(s), η(s) = s + a2 − a2π2(s),

were for respective case:

“non-identical orientation again” – ON

ν2(s) = c12(s + a1)
{
1 − a1

s + a1
[1 − c12(s + a1)] c21

(
s + a1[1 − π1(s)]

)
π1(s)

}−1
;

“resume interrupted orientation” – OR

ν2(s) = c12

(
s + a1

[
1 − c21(s + a1[1 − π1(s)])π1(s)

])
;
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“orientation is not interrupted” – OC

ν2(s) = c12(s + a1)
{
1−

[
c12(s + a1[1− π1(s)])− c12(s + a1)

]
c21(s + a1[1− π1(s)])

}−1
;

“nonidentical repeat again” – SN

h2(s) = β2(s + a1)
{
1 − a1

s + a1

[
1 − β2(s + a1)

]
c21(s + a1[1 − π1(s)])π1(s)ν2(s)

}−1
;

“resume” – SR

h2(s) = β2

(
s + a1

[
1 − c21(s + a1[1 − π1(s)])π1(s)ν2(s)

])
;

“loss” – SL

h2(s) = β2(s + a1) +
a1

s + a1

[
1 − β2(s + a1)

]
c21(s + a1[1 − π1(s)])π1(s)ν2(s);

Remark 3.1. Assume that in the above equations the functions c12(s) and c21(s)
are null and the system has only one arrival flow then for this case we obtain next
equation:

a1π1(s) = a1π1(s) = a1β1(s + a1[1 − π1(s)]).

In this case π(s) = π1(s) and

π1(s) = β1(s + a1[1 − π1(s)])

This equation is known as the classical Kendall–Takacs equation.

3.1. ALGORITHMS FOR EVALUATION
LAPLACE-STIELTJES TRANSFORM OF
BUSY PERIOD.

As can be seen from equations (1) and (2) the function values π2(s) and π1(s) can
be determined using numerical methods only. Thus, to evaluate the Laplace–Stieltjes
transform of the busy period and the Laplace–Stieltjes transforms ν2(s) and h2(s) one
needs to use numerical algorithms. An efficient method for doing so elaborated in [4]
is used in the following algorithms. In the following two algorithms for two different
situations are presented. The other situation mentioned in the first section can be
treated in a similar way.

Algorithm 1 (M2|G2|1 ON S N)

Input: r, {ai}2i=1, {βi(s)}2i=1, c12(s), c21(s), ε;

Output: π2(s∗), h2(s∗), ν2(s∗);
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Description:
σ := a1 + a2;

π2(s∗) =
a1π21(s∗)

σ
+

a2π22(s∗)
σ

,

π21(s∗) = π1(s∗+a2)+
{
π1(s∗+a2

[
1−π2(s∗)])−π1(s∗+a2)

}
ν2

(
s∗+a2[1−π2(s∗)]

)
ϕ1(s∗),

π22(s) = ν2
(
s + a2[1 − π2(s)]

)
ϕ1(s),

ϕ1(s∗) = c21(ξ(s∗ + a2)){1 − [c21(ξ(η(s∗)) − c21(ξ(s∗ + a2))]ν2(η(s∗))}−1,

ξ(s∗) = s∗ + a1 − a1π1(s∗),

η(s∗) = s∗ + a2 − a2π2(s∗),

ν2(s∗) = c12(s∗ + a1)
{
1− a1

s∗ + a1

[
1 − c12(s∗ + a1)

]
c21

(
s∗ + a1[1− π1(s∗)]

)
π1(s∗)

}−1
;

h2(s∗) = β2(s∗+a1)
{
1− a1

s∗ + a1

[
1 − β2(s∗ + a1)

]
c21(s∗+a1[1−π1(s∗)])π1(s∗)ν2(s∗)

}−1
;

n := 1; π˜
(n)
1 (0) := 0; π̃

(n)
1 (0) = 1;

Repeat

π̃
(n)
1 (s∗) = β1(s∗ + a1[1 − π̃(n−1)

1 (s∗));
π˜

(n)
1 (s∗) = β1(s∗ + a1[1 − π˜

(n−1)
1 (s∗));

inc(n);

Until
π̃

(n)
1 (s∗) − π˜

(n−1)
1 (s∗)

2
< ε;

π1(s∗) :=
π̃

(n)
1 (s∗) + π˜

(n−1)
1 (s∗)

2
;

n := 1; π˜
(n)
2 (0) := 0; π̃

(n)
2 (0) = 1;

Repeat

π̃
(n)
2 (s∗) = h2(s∗ + a1[1 − π̃(n−1)

2 (s∗));
π˜

(n)
2 (s∗) = h2(s∗ + a1[1 − π˜

(n−1)
2 (s∗));

inc(n);

Until
π̃

(n)
2 (s∗) − π˜

(n−1)
2 (s∗)

2
< ε;

π2(s∗) :=
π̃

(n)
2 (s∗) + π˜

(n−1)
2 (s∗)

2
;

End of Algorithm 1
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Algorithm 2 (M2|G2|1 OC S L)

Input: r, {ai}2i=1, {βi(s)}2i=1, c12(s), c21(s), ε;

Output: π2(s∗), h2(s∗), ν2(s∗);
Description:
σ := a1 + a2;

π2(s∗) =
a1π21(s∗)

σ
+

a2π22(s∗)
σ

,

π21(s∗) = π1(s∗+a2)+
{
π1(s∗+a2

[
1−π2(s∗)])−π1(s∗+a2)

}
ν2

(
s∗+a2[1−π2(s∗)]

)
ϕ1(s∗),

π22(s) = ν2
(
s + a2[1 − π2(s)]

)
ϕ1(s),

ϕ1(s∗) = c21(ξ(s∗ + a2)){1 − [c21(ξ(η(s∗)) − c21(ξ(s∗ + a2))]ν2(η(s∗))}−1,

ξ(s∗) = s∗ + a1 − a1π1(s∗),

η(s∗) = s∗ + a2 − a2π2(s∗),

ν2(s) = c12(s∗+a1)
{
1−

[
c12(s∗+a1[1−π1(s∗)])−c12(s∗+a1)

]
c21(s∗+a1[1−π1(s∗)])

}−1
;

h2(s∗) = β2(s∗ + a1) +
a1

s∗ + a1

[
1 − β2(s∗ + a1)

]
c21(s∗ + a1[1 − π1(s∗)])π1(s∗)ν2(s∗);

n := 1; π˜
(n)
1 (0) := 0; π̃

(n)
1 (0) = 1;

Repeat

π̃
(n)
1 (s∗) = β1(s∗ + a1[1 − π̃(n−1)

1 (s∗));
π˜

(n)
1 (s∗) = β1(s∗ + a1[1 − π˜

(n−1)
1 (s∗));

inc(n);

Until
π̃

(n)
1 (s∗) − π˜

(n−1)
1 (s∗)

2
< ε;

π1(s∗) :=
π̃

(n)
1 (s∗) + π˜

(n−1)
1 (s∗)

2
;

n := 1; π˜
(n)
2 (0) := 0; π̃

(n)
2 (0) = 1;

Repeat

π̃
(n)
2 (s∗) = h2(s∗ + a1[1 − π̃(n−1)

2 (s∗));
π˜

(n)
2 (s∗) = h2(s∗ + a1[1 − π˜

(n−1)
2 (s∗));

inc(n);

Until
π̃

(n)
2 (s∗) − π˜

(n−1)
2 (s∗)

2
< ε;
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π2(s∗) :=
π̃

(n)
2 (s∗) + π˜

(n−1)
2 (s∗)

2
;

End of Algorithm 2

Remark 3.2. One can efficiently evaluate the Laplace–Stieltjes transform of busy
period using the algorithms described. In order to determine the value of the busy
period one needs to use inversion algorithms (for example see [4]).

3.2. EXAMPLES OF EVALUATIONS OF THE
BUSY PERIOD

Example 3.1. Consider the system M2|M2|1 (ON S N) with interarrival times being
distributed exponentially Exp(ak) k = 1, 2 and exponential service times Exp(bk),
bk = 100, k = 1, 2. The switchover times Ck are all distributed exponentially Exp(ω),
ω = ω12 = ω21 = 100. The quantity ε was taken to be 0.000001.

βk(s) =
bk

s + bk
, k = 1, 2

c12(s) =
ω12

ω12 + s
, c21(s) =

ω21

ω21 + s
.

ak π2(0) ν2(0) h2(0)

10 0.999999 1.000000 1.000000

50 0.545809 0.999999 0.999999

80 0.295837 0.999999 0.999998

Table 1 Calculation of the π2(0), ν2(0) and h2(0)

Example 3.2. Consider the system M2|M2|1 (ON S R) with interarrival times being
distributed exponentially Exp(ak), ak = 10, k = 1, 2 and service times being dis-
tributed according to Erlang law Er(3, bk), k = 1, 2. The switchover times Ck are all
distributed exponentially Exp(ω), ω = ω12 = ω21 = 200. The quantity ε was taken
to be 0.000001.

βk(s) =
( bk

s + bk

)3
, k = 1, 2; c12(s) =

ω12

ω12 + s
, c21(s) =

ω21

ω21 + s
.

Example 3.3. Consider the system M2|M2|1 (OR S N) with interarrival times being
distributed exponentially Exp(ak) k = 1, 2 and Erlang service times Er(2, bk), bk =
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bk π2(0) ν2(0) h2(0)

35 0.385793 1.000000 0.999999

50 0.689388 1.000000 1.000000

70 0.999996 1.000000 1.000000

Table 2 Calculation of the π2(0), ν2(0) and h2(0)

200, k = 1, 2. The switchover times Ck are all distributed exponentially Exp(ω),
ω = ω12 = ω21 = 100. The quantity ε was taken to be 0.000001.

βk(s) =
( bk

s + bk

)2
, k = 1, 2; c12(s) =

ω12

ω12 + s
, c21(s) =

ω21

ω21 + s
.

ak π2(0.5) ν2(0.5) h2(0.5)

1 0.989696 0.994926 0.994857

10 0.984776 0.993935 0.993169

50 0.469865 0.985422 0.975887

Table 3 Calculation of the π2(0.5), ν2(0.5) and h2(0.5)

Example 3.4. Consider the system M2|M2|1 (OC S L) with interarrival times being
distributed exponentially Exp(ak), a1 = 70, a1 = 1, k = 1, 2 and exponential service
times Exp(bk), bk = 100, k = 1, 2. The switchover times Ck are all distributed
according Gamma Ga(2.5;ω) law, ω = ω12 = ω21, ω = 200. The quantity ε was
taken to be 0.000001.

βk(s) =
bk

s + bk
, k = 1, 2;

c12(s) =
( ω

ω + s

)2.5
,

c21(s) =
( ω

ω + s

)2.5
.
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s π2(s) ν2(s) h2(s)

0 0.999999 0.999999 0.999999

0.5 0.980521 0.963790 0.968226

1.0 0.963587 0.932315 0.940896

5.0 0.870813 0.768586 0.803302

Table 4 Calculation of the π2(s), ν2(s) and h2(s)

References
[1] Gh. Mishkoy, Generalized priority systems, Academy of Sciences of Moldova, Ştiinţa, Chişinău,
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