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1Faculty of Mathematics and Computer Science, University of Bucharest, Romania
2University of Petroşani, Romania
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1. INTRODUCTION
The constitutive framework which describes the set of the constitutive and evo-

lution equation in the mechanical problem can be found in the references [1], [5],
and [11]. The initial and boundary value problem, which describes the dynamic be-
haviour of one-dimensional elasto-plastic material with isotropic and mixed harden-
ing has been solved by J.C. Simo and T. J. Hughes in [10]. In order to solve the one-
dimensional problem, the finite element method is applied together with the Newton
method and the Return Mapping Algorithm. From the continuum model which de-
scribes the constitutive equation in the elasto-plastic model, through an elastic type
constitutive equation together with the evolution equation for plastic strain and in-
ternal variables, the discrete algorithmic equations are obtained in [12] by applying
an Euler type difference scheme. The Return Mapping Algorithm proposed in [12]
involve the computation of the elastic trial stress together with the test for plastic
loading. To solve the one-dimensional, initial and boundary value problem, we start
from the quasi-static rate boundary value problem formulated at a generic moment
of time and associated with the equilibrium equation. In order to determine the weak
solution of the rate boundary value problem, which represents the time derivative of
the displacement field u, i.e. the velocity at time t in the one-dimensional body, we
apply the finite element method, those main results are resumed from [2], [8] and
[11]. The method proposed here works for loading elsto-plastic process only. To up-
date the current values of σ, εp, α, k, of the unknowns the Euler method and Newton
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method are applied in order to integrate the differential equation system. The numeri-
cal algorithms combine the finite element method with the numerical methods related
to the differential type equations, i.e. the Euler and Newton method, and the coupled
problems are simultaneously solved.

2. THE UNIDIMENSIONAL MATHEMATICAL
MODEL OF ELASTO-PLASTIC PROBLEM
WITH MIXED HARDENING

Let x ∈ Ω be a material point of the body Ω ⊂ R. Ω is an one dimensional body,
which deforms in time, say on the interval I = [0,T ). We denote by u : Ω × I →
R - the displacement field, by σ : Ω × I → R - the Cauchy stress field and with

ε : Ω × I → R, with ε(x, t) =
∂u
∂x

(x, t) ≡ ε(u)(x, t) -the strain. We introduce also
the hardening variables: α : Ω × I → R the kinematic hardening variable and
k : Ω× I → R the isotropic hardening variable, with k > 0, which play different roles
in describing the deformability of the surface of the plasticity in the stress space,
during the irreversible deformation process. Following Cleja-Tigoiu and Cristescu
[1985] (see also Chabauche [1989], Paraschiv-Munteanu and Cleja-Tigoiu [2004],
we introduce the basic assumptions within the constitutive framework of the elasto-
plastic model with mixed hardening. [see 2004]:
1. the rate of the strain tensor ε̇ can be decomposed into the rate of elastic part and
that of plastic part, denoted by ε̇e and ε̇p, respectively

ε̇ = ε̇e + ε̇p, (1)

2. the elastic type constitutive equation is given by

σ̇ = Eε̇e, (2)

3. the irreversible properties of the material are described in terms of the yield func-
tion F(σ, α, k), which dependent on the stress and hardening variables; the rate of the
plastic strain tensor is described by the associated flow rule through

ε̇p = λ
∂F(σ, α, k)

∂σ
, (3)

where λ, the so-called plastic factor is a function of the state of the material, and it is
defined through the Kuhn-Tucker and consistency conditions

λ ≥ 0, F ≤ 0, λF = 0 (4)

λḞ = 0. (5)

4. the variation of the kinematic hardening variable α is given by Armstrong and
Frederik [1996] law

α̇ = Cε̇p − γαk̇, (6)
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C and γ are material parameters, while the isotropic hardening variable k is given by

k̇ =

√
2
3
ε̇p · ε̇p (7)

5. we add the initial condition

σ(0) = 0, ε(0) = 0, εp(0) = 0, α(0) = 0, k(0) = 0 (8)

which correspond to a physical body undeformed and unstressed at time t = 0.

In the considered one-dimensional model the yield function is given by

F(σ, α, k) := |σ − α| − F(k) (9)

where F is a strictly increasing function, defined through

F(k) = R(k) + κ, R(0) = 0, R′(k) > 0, k > 0 (10)

κ = σY represents the initial yield condition in the uniaxial test. The isotropic chang-
ing in the dimension of the yield surface is represented by Chaboche [1989]

R(k) = Q(1 − e−bk), Q, b > 0 (11)

Q and b are material constants.
Taking into account the expression (10), the yield function is derived under the

form
F(σ, α, k) = |σ − α| −

[
Q(1 − e−bk) + σY

]
(12)

The plastic factor is calculated from (5)

λ =
〈β〉
h

H(F) (13)

where the complementary plastic factor β and the hardening variable h are defined
through

β =
Eε(u̇)(σ − α)

Q(1 − e−bk) + σY
(14)

h = E + C −
√

2
3
γα

σ − α
Q(1 − e−bk) + σY

+

√
2
3

Qbe−bk (15)

We introduce the supposition that h > 0 on F(σ, α, k) = 0. If h becomes zero in
the process, then the solution cannot be defined since ε̇p → ∞. We can say that the
material is damaged.
In relation (14)

ε(u̇(x, t)) =
∂u̇(x, t)
∂x

≡ du̇(x, t)
dx

, (15)
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with the last notation introduced for the sake of simplicity.
The Heaviside function, from the relationship (13) is

H(F) =

{
0, if F < 0
1, if F ≥ 0 (17)

By eliminating the elastic part of the strain we arrive at the following result.

Proposition 2.1. The one-dimensional elasto-plastic model with mixed hardening is
described by the following differential system

ε̇p =
〈β〉
h

σ − α
Q(1 − e−bk) + σY

H(F)

α̇ =
〈β〉
h

C
σ − α

Q(1 − e−bk) + σY
−

√
2
3
γα

H(F)

σ̇ = Eε(u̇) − E
〈β〉
h

σ − α
Q(1 − e−bk) + σY

H(F)

k̇ =

√
2
3
〈β〉
h

H(F)

(17)

where β as a function on u̇ and h are given by the relations (14) together with (16).

The equilibrium equation in terms of one-dimensional Cauchy stress σ(x, t) has
the form:

divσ(x, t) + b1(x, t) = 0 in Ω × I, with divσ :=
∂σ

∂x
(19)

where b1 ∈ R is the body force.
The boundary conditions are formulated on the boundary ∂Ω = Γ of the body

which is divided into two parts Γu and Γσ, such that Γu∪Γσ = Γ and Γu∩Γσ = ∅.
They are given by

σ11(x, t)n = f1(x, t) in Γσ × I ; u(x, t) = g1(x, t) in Γu × I. (19)

Here n is the outward unit normal field on ∂Ω and n = 1 in the one-dimensional
case. The functions f1(x, t) and g1(x, t) are given.

Problem P: Given the functions b1(x, t), f1(x, t) and g1(x, t), find the real valued
functions u, σ, ε, εp, α, k that are defined on Ω × [0,T ) and satisfy (19) together with
(20) and the differential type constitutive equations, listed in (18) together with (14)
and (16).

To solve it we start from the variational formulation of the equilibrium problem
for elasto-plastic one-dimensional bar.
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3. THE VARIATIONAL FORMULATION
In what follows, we recall the main ideas from Johnson [1987] and Hughes [1987],

which are appropriate to our description. Unlike Johnson and Hughes, which used a

local momentum equation of the form
∂

∂x
σ + ρb = ρ

∂v
∂t

in Ω × I where v =
∂u
∂t

, in
this paper the equilibrium equation is given by relation (19).

We determine the weak solutions of the rate quasi-static boundary value problem
associated at a generic moment t, which is derived by taking the time derivative of
the equilibrium equation (19) together with the boundary condition (20)

div
[
∂σ(x, t)
∂t

]
+
∂b1(x, t)

∂t
= 0 in Ω × I

∂σ(x, t)
∂t

=
∂ f1(x, t)
∂t

in Γσ × I

∂u(x, t)
∂t

=
∂g1(x, t)

∂t
in Γu × I

(20)

For the problem P, at a generic stage of the process the current values, i.e. at the
time t, the current plastic domain is the form:

Ω
p
t = { x ∈ Ω|F(σ(x, t), α(x, t), k(x, t)) = 0} . (22)

The set of kinematically admissible velocity field is denoted by:

Vad =

{
w |w : Ω→ R ;

∂w
∂x
∈ L2(Ω), w

/
Γu = ġ1

}
⊂ H1(Ω) (23)

where

L2(Ω) =


w

∣∣∣∣∣∣∣∣∣
w : Ω→ R;

∫

Ω

w2dx = ‖w‖2L2(Ω) < ∞


(24)

is the space of the square integrable functions on Ω, and

H1(Ω) =

{
w ∈ L2(Ω)

∣∣∣ ∂w
∂x
∈ L2(Ω)

}
(25)

is the Sobolev space.

Theorem 3.1. At every time t the rate of the displacement field, u̇, satisfy the follow-
ing relationships:

∫

Ω

Eep (x, t)
du̇(x, t)

dx
dw(x, t)

dx
dx =

∫

Ω

db1(x, t)
dt

w(x, t)dx+

+

[
d f1(x, t)

dt
w(x, t)

]∣∣∣∣∣∣
Γσ

+

[
dσ(x, t)

dt
dg1(x, t)

dt

]∣∣∣∣∣∣
Γu

(25)
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which hold for every admissible vector field w ∈ Vad.

Proof. By multiplying the first equation of equation (21) with an admissible displace-
ment w, integrating on a domain Ω and applying Green’s formula we get

∫

Ω

dσ(x, t)
dt

dw(x, t)
dx

dx =

[
dσ(x, t)

dt
w(x, t)

]
|Γ +

∫

Ω

db1(x, t)
dt

w(x, t)dx. (27)

Further, we perform some transformation in the left hand side of the relation (27)
by introducing the third relation from (18) and we have

∫
Ω

E du̇(x,t)
dx

dw(x,t)
dx dx −

∫

Ω

Eλ
σ(x, t) − α(x, t)

Q(1 − e−bk(x,t)) + σY

dw(x, t)
dx

HFdx =

=
∫
Ω

db1(x,t)
dt w(x, t)dx +

[
d f1(x,t)

dt w(x, t)
]∣∣∣∣

Γσ
+

[
dσ(x,t)

dt
dg1(x,t)

dt

]∣∣∣∣
Γu

(28)

where the rate of strain ε(u̇(x, t)) is replaced from (16).
The expression of β and h are replaced by the relations (14) and (16), but the

positive part of the expression of β enters (28).
We remark that only under the assumption that

Eε(u̇(x, t))(σ − α) > 0 (29)

along the process, i.e. when no unloading is produced, (28) becomes
∫
Ω

[
E

(
1 − E

h(x,t)

(
(σ(x,t)−α(x,t))

Q(1−e−bk(x,t))+σY

)2
H(F)

)]
du̇(x,t)

dx
dw(x,t)

dx dx =

∫
Ω

db1(x,t)
dt w(x, t)dx +

[
d f1(x,t)

dt w(x, t)
]∣∣∣∣

Γσ
+

[
dσ(x,t)

dt
dg1(x,t)

dt

]∣∣∣∣
Γu
.

(29)

In (30) following notation has been introduced, but only under the hypothesis for-
mulated in (29),

Eep(x, t) =


E if H(F) = 0,

E
(
1 − E

h(x,t)

(
σ(x,t)−α(x,t)

Q(1−e−bk(x,t))+σY

)2
)

if H(F) = 1, (31)

where Eep is the so-called elasto-plastic modulus.
We introduced the supposition that h > 0 on F(σ, α, k) = 0. Consequently the

equality (30) together with (31) becomes:
∫

Ω

Eep (x, t)
du̇(x, t)

dx
dw(x, t)

dx
dx =

∫

Ω

db1(x, t)
dt

w(x, t)dx+

+

[
d f1(x, t)

dt
w(x, t)

]∣∣∣∣∣∣
Γσ

+

[
dσ(x, t)

dt
dg1(x, t)

dt

]∣∣∣∣∣∣
Γu

.

(32)
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The relation (32) is in fact the variational representation of the solution.

Remark. In case when the displacement u(x, t) = 0 on the boundary Γu, i.e.
g1(x, t) = 0, the variational formulation given above becomes:

∫

Ω

Eep (x, t)
du̇(x, t)

dx
dw(x, t)

dx
dx =

∫

Ω

ḃ1(x, t)w(x, t)dx +
[
ḟ1(x, t)w(x, t)

]∣∣∣∣
Γσ
, (33)

written for all w ∈ Vad, which are vanishing on Γu.
As a consequence of the above theorem, the following statement holds.

Theorem 3.2. Find a displacement field u (·, t), solution of the variational formula-
tion

a(u̇,w) = 〈L,w〉 ∀u ∈ Vad,w ∈ Vad (34)

where a (·, ·) : Vad × Vad → R is the bilinear and symmetric form defined by

a(u̇,w) =

∫

Ω

Eep(x, t)ε(u̇(x, t))ε (w(x, t)) dx. (35)

Here L is a linear functional

〈L,w〉 =

∫

Ω

ḃ1(x, t)w(x, t)dx +
[
ḟ1(x, t)w(x, t)

]∣∣∣∣
Γσ

; ∀t ∈ [0,T ] (36)

where

Eep(x, t) =


E if H(F) = 0,

E
(
1 − E

h(x,t)

(
σ(x,t)−α(x,t)

Q(1−e−bk(x,t))+σY

)2
)

if H(F) = 1, (37)

but under the hypothesis written in (29).

Hypothesis. We assume that the material properties are given in such a way to
ensure that a(,̇)̇ be a bilinear, symmetric, continuous and coercive form.

Next,we replace the material particle x ∈ Ω with ξ ∈ Ω, to avoid misunderstand-
ings. The problem to be solved is presented below

Problem P1. Consider the following differential system

d
dt

x(t) = f (x(t), u̇ (ξ, t)) ; x(t0) = x0 (38)

where the vector x(t) has the components

x(t) = (x1(t) x2(t) x3(t) x4(t))T (39)

x1 = εp, x2 = α, x3 = σ, x4 = k (40)
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while the vector valued function which defines the system (38) has the form:

f (x(t), u̇ (ξ, t)) = ( f1 (x, u̇) f2 (x, u̇) f3 (x, u̇) f4 (x, u̇))T (41)


f1 (x, u̇) = λ (x, u̇)
x3 − x2

Q(1 − e−bx4) + σY

f2 (x, u̇) = λ (x, u̇)

C
x3 − x2

Q(1 − e−bx4) + σY
−

√
2
3
γx2



f3 (x, u̇) = E (ε (u̇) − f1 (x, u̇))

f4 (x, u̇) =

√
2
3
λ (x, u̇)

(42)

λ (x(t), u̇ (ξ, t)) =
〈β (x(t), u̇ (ξ, t))〉

h(x(t))
H (F (x(t))) (43)

β (x(t), u̇ (ξ, t)) =
Eε (u̇ (ξ, t)) (x3(t) − x2(t))

Q(1 − e−bx4(t)) + σY
(44)

h(x(t)) = E + C −
√

2
3
γx2(t)

x3(t) − x2(t)
Q(1 − e−bx4(t)) + σY

+

√
2
3

Qbe−bx4(t) (45)

H(F(x(t))) =

{
0, if F(x(t)) < 0
1, if F(x(t)) ≥ 0 (46)

F(x(t)) = |x3(t) − x2(t)| −
[
Q(1 − e−bx4(t)) + σY

]
. (47)

Determine the displacement u ∈ Vad field, such that u̇(·, t) ∈ Vad, the plastic defor-
mation εp, the internal variables α, k and the stress σ which satisfy at every time t the
variational formulation

∫ L

0
Eep (x(t)) ε(u̇(ξ, t))ε(w(ξ, t))dξ =

=

∫ L

0
ḃ1(ξ, t)w(ξ, t)dξ +

[
ḟ1(ξ, t)w(ξ, t)

]∣∣∣∣
ξ=L

(48)

Eep (x(t)) =


E if H(F) = 0

E
(
1 − E

h(x(t))

(
x3(t)−x2(t)

Q(1−e−bx4(t))+σY

)2
)

if H(F) = 1 (49)

and having the time evolution for any fixed particle given by the above differential
system.
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4. DISCRETIZATION BY FINITE ELEMENT
METHOD

Finite element method is generally used to solve a variational problem, or the
discretization form of certain variational formulation of the problem. Here we use
the finite element method to find the weak solutions of the problem, which satisfy the
variational equation (48) coupled with the system of the differential equations (38).

The problem P1 is solved using the finite element method, and hence we briefly
presents this method, following the papers and books given by Ferreira [8], Fish [9],
Johnson [10].

We consider one-dimensional body, which is identified with an interval of the real

axis, i.e. Ω = [0, L]. The time interval [0, T ] is discretized by [0,T ] =
N⋃

n=1
[tn, tn+1].

[0,L] is at its turn discretized in ne network elements, where a network element has
the form Ωe =

[
ξe

1, ξ
e
2, ξ

e
3

]
, e = 1, ne. Let nN the total number of nodes used in the

discretization.
We apply the finite element method to the elasto-plastic problem formulated for

the one-dimensional bar. Thus, we divide the bar into ne elements with nN nodes,
each element having three nodes.

Since we consider the one-dimensional case, the number of degrees of freedom
ngl is equal to one for each node in the network.

Concerning the boundary conditions: ξ = 0 (Γu) is considered to be the fixed end
of the bar thus the displacement is zero, while at a traction boundary condition is
applied at ξ = L (Γσ).

Further we proceed to the effective implementation of finite element method pro-
posed by Fish [9], Johnson [10]. The global approximation of the trial solution u(ξ, t)
is

u(ξ, t) =

ne∑

e=1

Ne(ξ)ue(t) ≡ N(ξ)u(t). (50)

The vectors N(ξ) and u(t) which enter the relation (50) have the form

N(ξ) =
[
N1(ξ) N2(ξ) N3(ξ) ... NnN (ξ)

]
(51)

u(t) =
[
u1(t) u2(t) u3(t) ... unN (t)

]T . (52)

In the same way, the weight function w(ξ, t) is calculated using the relationship

w(ξ, t) =

ne∑

e=1

Ne(ξ)we(t) ≡ N(ξ)w(t) (53)

where the vector w(t) is given under the form

w(t) =
[
w1(t) w2(t) w3(t) ... wnN (t)

]T . (54)
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Also, the displacements ue(ξ, t) and the weight function we(ξ, t) of the three nodes
of each element can be calculated using the following relations:

ue(ξ, t) = Ne(ξ)ue(t) ≡ (
Ne(ξ)Le) u(t) (55)

we(ξ, t) = Ne(ξ)we(t) ≡ (
Ne(ξ)Le) w(t) (56)

where the vectors ue(t) and we(t) are calculated using the relationships:

ue(t) = Leu(t) (57)

we(t) = Lew(t) (58)

Here Le, called the selection matrix, is composed by a number of lines equal to
the number of degrees of freedom per element and a number of columns equal to the
total number of degrees of freedom in the network and is build with the help of the
relationships

Le
i j = δIne(i,e), j =

{
1, Ine(i, e) = j
0, Ine(i, e) , j. (59)

In the relation (59), Ine is the matrix of connection, that is a matrix that has a line
for each item. The line e of the matrix Ine contains the nodes that make up the item.

In the relations (55) and (56), the vector of the interpolation function of an element
e, if this element has three nodes, is of the form

Ne
i (ξ) =

[
Ne

1(ξ) Ne
2(ξ) Ne

3(ξ)
]

(60)

and the displacements vector for an element in the three nodes are

ue(t) =
[
ue

1(t) ue
2(t) ue

3(t)
]

(61)

we(t) =
[
we

1(t) we
2(t) we

3(t)
]
. (62)

For the unidimensional case when the network element contains three nodes, the
shape functions Ne

i (ξ) given by the relation (60) are built as is follows:

Ne
1(ξ) =

(
ξ − ξe

2

) (
ξ − ξe

3

)
(
ξe

1 − ξe
2

) (
ξe

1 − ξe
3

) (63)

Ne
2(ξ) =

(
ξ − ξe

1

) (
ξ − ξe

3

)
(
ξe

2 − ξe
1

) (
ξe

2 − ξe
3

) (64)

Ne
3(ξ) =

(
ξ − ξe

1

) (
ξ − ξe

2

)
(
ξe

3 − ξe
1

) (
ξe

3 − ξe
2

) . (65)
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When we take the time derivate of the displacement written in (55), we have:

due(ξ, t)
dt

≡ u̇e(ξ, t) =
(
Ne(ξ)Le) u̇(t) (66)

Thus the rate of the strain tensor is calculated using the following relationship:

ε(u̇e(ξ, t)) =
du̇e(ξ, t)

dξ
=

dNe(ξ)
dξ

Leu̇(t) ≡ (
Be(ξ)Le) u̇(t) (67)

where Be(ξ) =
dNe(ξ)

dξ
, and Be(ξ) =

[
Be

1(ξ) Be
2(ξ) Be

3(ξ)
]
.

On the other hand, the represented of the strain measure is:

ε
(
we(ξ, t)

)
=

(
Be(ξ)Le) w(t). (68)

In the weak form (48), the integral over (0, L) is viewed as a sum of integrals over
individual element domain, Ωe. Using the notations (67) and (68) in the variational
formulation (48) we have:

ne∑
e=1

∫
Ωe

[
Be(ξ)Lew(t)

]T (Eep)e (x(t))
[
Be(ξ)Leu̇(t)

]
dξ =

ne∑
e=1

∫
Ωe

[
Ne(ξ)Lew(t)

]T ḃ1(ξ, t)dξ +
ne∑

e=1

[[
Ne(ξ)Lew(t)

]T ḟ1(ξ, t)
]∣∣∣∣

Γe
σ

.
(69)

Moreover (69) can be written under the form

w(t)T


ne∑

e=1
LeT


∫

Ωe

Be(ξ)T (Eep)e (x(t)) (Be(ξ)) dΩe

 Le

 u̇(t) =

= w(t)T


ne∑

e=1
LeT

∫
Ωe

Ne(ξ)T ḃ1(ξ, t)dΩe +
ne∑

e=1
LeT

[
Ne(ξ)T ḟ1(ξ, t)

]
Γe
σ

 .
(70)

We introduce the following notation relations


Ke(x(t)) =
∫

Ωe

Be(ξ)T (Eep (x(t)))e (Be(ξ)) dΩe

Re
b(t) =

∫
Ωe

Ne(ξ)T ḃ1(ξ, t)dΩe

Re
f (t) =

[
Ne(ξ)T ḟ1(ξ, t)

]
Γe
σ

(71)

which allow us to rewrite (70) in the form:

w(t)T




ne∑

e=1

LeT KeLe

 u̇(t) −


ne∑

e=1

LeT Rb
e +

ne∑

e=1

LeT R f
e


 = 0. (72)
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The matrices introduced in (71) have the meaning, Ke is the element stiffness
matrix, Rb

e is the matrix of the external forces and Re
f is the matrix of the internal

forces. If

K(x(t)) =

ne∑

e=1

LeT Ke(x(t))Le (73)

R(t) = Rb(t) + R f (t)→



Rb(t) =
ne∑

e=1
LeT Re

b(t)

R f (t) =
ne∑

e=1
LeT Re

f (t)
(74)

then the relation (72) can be written in a shorter form

w(t)T [K(x(t))u̇(t) − R(t)] = 0 ; ∀ w(t) (75)

As w(t) is arbitrarily given, relationship (75) becomes

K(x(t))u̇(t) = R(t). (76)

Thus, in view of the above, in the following we apply the Gauss quadrature formula
to the integral from relationship (70), i.e.:

Ke
mn

(x(t)) = h2

n−1∑

i=0

AiBe
m(h1 + h2τi)T (

Eep (x(t))
)e Be

n(h1 + h2τi) (77)

where the matrix Ke is symmetric, and m = 1, nN and n = 1, nN .
The integral Re

b(t) given by the relation from (71) can be similarly computed by
using the Gauss quadrature formula, as follows:

(
Re

b

)
m

(t) =

h2

n−1∑

i=0

Ne
m
(h1 + h2τi)T ḃ(h1 + h2τi, t)

 , m = 1, nN (78)

where we used the notations h1 =
b + a

2
, h2 =

b − a
2

. We obtain the components

Fm(x(t), u̇(t)) =

nN∑

n=1

[Kmn(x(t))u̇n(t)] − Rm(t) (79)

of the relation (76), that can be written in following form

F(x(t), u̇(t)) := K(x(t))u̇(t) − R(t) = 0. (80)

To solve the system of equations (80) relative to the unknown u̇(t), we apply New-
ton’s method. Thus we have:

u̇ (tn+1) = u̇ (tn) −
[
∂F (x(tn), u̇ (tn))

∂u̇(tn)

]−1

F (x(tn), u̇ (tn)) , n = 0, 1, ... . (81)
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Simultaneously we apply the Euler method to the non-linear system of differential
equations given by (38). The iterative formulae can be derived under the form:

x (tn+1) = x (tn) + ∆t f (x (tn) ,N(ξ)u̇(tn)) , x (t0) = 0, n = 0, 1, 2, ... (82)

as a consequence of (50), where ∆t = tn+1 − tn is the step of the method.
We present now the main steps of the algorithm applied to the formulated problem:

u̇(t0) = 0; x (t0) = 0∣∣∣∣∣∣∣∣∣∣∣∣∣∣

For n = 0 to N∣∣∣∣∣∣∣∣∣

x (tn+1) = x (tn) + ∆t f (x (tn) ,N(ξ)u̇(tn))

u̇ (tn+1) = u̇ (tn) −
[
∂F (x(tn), u̇ (tn))

∂u̇(tn)

]−1

F (x(tn), u̇ (tn))

end

(83)

To solve the problem P1, the algorithm presented in the relationship (83) is run in
every point of the network.

5. NUMERICAL APPLICATION
Numerical application presented here, aims to highlight the numerical algorithm

of solving the problem P1.

Fig. 1. The graph of the stress depending on the strain in the point 30
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In this sense, the material chosen is steel DP 600, whose parameters are given
below (Broggiato [2008]):

{
E = 182.000 [MPa] ;σY = 349, 4 [MPa] ; Q = 50, 1 [MPa]
C = 17.400 [MPa] ; b = 27, 5 [−] ; γ = 125, 9 [−]

}
. (84)

As an example we consider an uni-dimensional bar, whit Ω = [0, 30]. The bar
has length L = 30 [cm]. The bar is fixed in the node ξ = 0, and the traction force
f1(ξ, t) = 450 sin t is located in the node ξ = 6. The body force is considered by
form b1 = 0, 5 t2. We specify also that for the meshing, the bar was divided into
ten elements, each element having three nodes, total number of nodes in the network
being 21. Since, the bar is fixed in the node ξ = 0, the displacement in this node is
zero. In the network, the elements have been divided into equal intervals. In these
conditions, after running the program, which implements the numerical algorithm of
the problem P1, we obtain the following information presented in the figure 1.
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