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Abstract Let {X(t), t ≥ 0} be a one-dimensional controlled diffusion process evolving in the in-
terval [c, d]. We consider the problem of finding the control that minimizes the math-
ematical expectation of a cost function with quadratic control costs on the way and a
terminal cost function that is infinite if the process hits c before d. The optimal control
is obtained explicitly and particular cases are presented.

Keywords: optimal stochastic control, LQG homing, Brownian motion, first exit time, Kolmogorov
backward equation.
2000 MSC: 93E20.

1. INTRODUCTION
Let {X(t), t ≥ 0} be a one-dimensional controlled diffusion process defined by the

stochastic differential equation

dX(t) = m[X(t)] dt + b[X(t)] u(t) dt + {v[X(t)]}1/2 dB(t), (1)

where {B(t), t ≥ 0} is a standard Brownian motion, u(t) is the control variable and
b(·) , 0.

We define the random variable T (x) by

T (x) = inf{t > 0 : X(t) = c or d | X(0) = x}.
Our aim is to determine the value of the control u∗(t) that minimizes the expected
value of the cost function

J(x) =

∫ T (x)

0

1
2 q(x) u2(t) dt + K[X(T ), T ],

where q is a positive function and K is the termination cost function.
Next, let {x(t), t ≥ 0} be the uncontrolled process obtained by setting u(t) ≡ 0 in

(1), and let τ be the same as T , but for {x(t), t ≥ 0}. If the condition

P[τ(x) < ∞] = 1 (2)
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holds, and if the functions b, v and q are such that

b2(x)
q(x) v(x)

≡ α > 0, (3)

then making use of a result proved by Whittle (see [2], p. 289), we can state that the
optimal control u∗ [= u∗(0)] is given by

u∗ =
v(x)
b(x)

G′(x)
G(x)

, (4)

where
G(x) := E

[
exp {−αK[x(τ), τ]} | x(0) = x

]
.

In Lefebvre [1], the author solved the problem of forcing the controlled process
{X(t), t ≥ 0} to stay in the continuation region C := (−∞, d) until a fixed time t0 by
giving an infinite penalty if T1 < t0, where

T1(x) = inf{t > 0 : X(t) = d | X(0) = x < d}.

In the present paper, we consider the controlled process {X(t), t ≥ 0} in the interval
[c, d]. We want the process to leave the continuation region through its right end. We
will take

K[X(T ),T ] = K[X(T )],

where the function K is such that K(c) = ∞ and K(d) ∈ R. That is, we give an infinite
penalty if X(t) reaches c (before d). The constant d can be chosen as large as we want.
The larger it is, the longer it will take X(t) to attain this value.

By giving an infinite penalty if the final value of X(t) is equal to c, we force the
process to avoid this boundary. We assume that there are no constraints on the control
variable u(t). In the next section, we will obtain an explicit formula for the optimal
control u∗, and we will present some particular cases.

2. OPTIMAL CONTROL
Let

πd(x) := P[x(τ) = d | x(0) = x].

The function πd satisfies the Kolmogorov backward equation

v(x)
2

π′′d (x) + m(x) π′d(x) = 0,

and is subject to the boundary conditions

πd(c) = 0 and πd(d) = 1.



Forcing a controlled diffusion process to leave through the right end of an interval 183

We easily find that

πd(x) =

∫ x
c exp

{∫ u
c −

2 m(s)
v(s) ds

}
du

∫ d
c exp

{∫ u
c −

2 m(s)
v(s) ds

}
du
. (5)

We will prove the following proposition.

Proposition 2.1. Assume that the conditions (2) and (3) are satisfied, and that the
termination cost function is K[X(T ),T ] = K[X(T )], with K(c) = ∞ and K(d) ∈ R.
Then, the optimal control is given by

u∗ =
v(x)
b(x)

exp
{∫ x

c −
2 m(u)
v(u) du

}
∫ x

c exp
{∫ u

c −
2 m(s)
v(s) ds

}
du

for c < x < d. (6)

Proof. We can write that P[x(τ) = c | x(0) = x] = 1 − πd(x). Hence, we deduce from
Whittle’s result that u∗ is given by (4), with

G(x) = E
[
exp{−αK[x(τ)]} | x(0) = x

]

= e−αK(c) [1 − πd(x)] + e−αK(d) πd(x).

Since K(c) = ∞, we obtain that

G(x) = e−αK(d) πd(x),

so that
G′(x) = e−αK(d) π′d(x).

Hence, the optimal solution (6) follows at once from (5).

Remarks. i) Because the interval [c, d] is bounded, the condition (2) is not restrictive.
Furthermore, when b, q and v are all constant functions, then the condition (3) is
automatically fulfilled.
ii) We see that the optimal control does not depend on the value of K(d).
iii) In many applications, we would like to take c = 0. If the uncontrolled process
{x(t), t ≥ 0} can attain the boundary at the origin, then we can indeed replace c by 0
in (6).
Particular cases.
I) First, if m(x) ≡ 0, then

πd(x) =
x − c
d − c

and
u∗ =

v(x)
b(x)

1
x − c

for c < x < d.

Notice that this case includes the (controlled) standard Brownian motion, for which
m(x) ≡ 0 and v(x) ≡ 1.
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II) Next, assume that q(x) ∝ b2(x). With m(x) ≡ m0 , 0 and v(x) ≡ v0 > 0, so that
the uncontrolled process {x(t), t ≥ 0} is a Wiener process with drift coefficient m0 and
diffusion coefficient v0, we find that

u∗ =
2 m0

b(x)
1

exp
{

2 m0
v0

(x − c)
}
− 1

for c < x < d.

III) Finally, if {x(t), t ≥ 0} is a geometric Brownian motion defined by x(t) = eB(t),
then m(x) = x/2 and v(x) = x2. The origin being a natural boundary for the geometric
Brownian motion, we must take c > 0. The optimal control takes the form

u∗ =
x

b(x)
1

ln(x/c)
for 0 < c < x < d.

Here, q(x) must be proportional to b2(x)/x2.

3. CONCLUSION
Based on the work presented in Lefebvre [1], we have solved the problem of opti-

mally controlling a general diffusion process so that it leaves the continuation region
(c, d) through the right-hand side of the interval. The objective could have been to
leave through the left-hand side instead. Moreover, we could assume that d = ∞. In
that case, we could try to maximize the time spent by the controlled process in the
interval (c,∞).

Finally, the same type of problem as the one solved here could be considered in
two dimensions. For example, (X1(t), X2(t)) could be a controlled two-dimensional
Brownian motion, and T be the first time that X1(t) hits the boundary x1 = c. If the
termination cost is a function of X2(T ), then we would have to determine the distri-
bution of this variable, which is a continuous rather than discrete random variable.
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