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Abstract It is proved that a commutative Moufang loop satisfies one of the following properties:
is finite; is finitely generated; has a finite (special) rank; maximum condition for its
subloops; minimum condition for its subloops if and only if this property is satisfied by
the centralizer of one of its finitely generated subloops.
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1. INTRODUCTION
It is known that, in some classes of groups or loops, the different finiteness con-

ditions on their centers are transferred to these groups, loops, respectively. For ex-
ample, in [1] it was proved that if the centre of finitely generated nilpotent group is
finite then the group itself is finite. Further, let Ω denote one of the following classes
of loops: the class of finite loops; the class of finitely generated loops; the class of
loops of finite rank; the class of loops with maximum conditions for its subloops; the
class of loops with minimum conditions for its subloops. In [2 – 4] it is proved that a
commutative Moufang ZA-loop belongs to a class Ω if and only if its centre belongs
to the same class Ω.

There exists a commutative Moufang loop (CML) with trivial centre [5]. Then
for the described CML with finiteness conditions it is reasonable to use the notion
of centralizer, more general that the notion of centre. This paper generalizes the
aforementioned result for ZA-loops. It is proved that a CML belongs to a class Ω if
and only if the centralizer of one of its finitely generated subloops belongs to Ω.

2. THEORETICAL BACKGROUND
Let us recall some notions and results of the theory of the commutative Moufang

loops (abbreviated CMLs) from [5], which are the commutative loops characterized
by the identity x2 · yz = xy · xz.
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The associator (a, b, c) of the elements a, b, c of the CML L is defined by the
equality ab · c = (a · bc)(a, b, c). The identities:

(xy, u, v) = (x, u, v)((x, u, v), x, y)(y, u, v)((y, u, v), y, x), (1)

(x, y, z) = (y−1, x, z) = (y, x, z)−1 = (y, z, x) (2)

hold in the CML L.
The centre Z(L) of the CML L is a normal subloop

Z(L) = {x ∈ L|(x, y, z) = 1, ∀y, z ∈ L}
. The upper central series of the CML L is the series

1 = Z0 ⊆ Z1 ⊆ Z2 ⊆ . . . ⊆ Zα ⊆ . . .
of the normal subloops of the CML L, satisfying the conditions:

1) Zα =
∑
β<α Zβ for the limit ordinal;

2) Zα+1/Zα = Z(L/Zα) for any α.
If the CML possesses a central series, then this loop is called ZA-loop.
If the upper central series of the ZA-loop have a finite length, then the loop is called

centrally nilpotent.
The least of such a length is called the class of the central nilpotentcy.

Lemma 2.1. (Bruck-Slaby Theorem). Let n be a positive integer, n ≥ 3. Then every
commutative Moufang loop L, which can be generated by n elements, is centrally
nilpotent of class at most n − 1.

Lemma 2.2. For any CML, L, with centre Z(L), the quotient loop L/Z(L) is locally
finite 3-loop of exponent 3 and it is finite if L is finitely generated [5].

3. MAIN RESULTS
The following concept is the natural generalization of the concept of centre.
Let M be a subset and H be a subloop of the CML L. The set ZH(M) = {x ∈

H|x · yz = xy · z, ∀y, z ∈ M} is called centralizer of the subset M into subloop H.
ZH(M) is a subloop of L [6].

The (special) rank of loop L is called the least positive number rL with the follow-
ing feature: any finitely generated subloop of loop L can be generated by rL elements;
if there are not such numbers, then we suppose that rL = ∞.

Lemma 3.1. A centrally nilpotent CML L belongs to class Ω if and only if the cen-
tralizer of some of its finitely generated subloop H also belongs to class Ω.

Proof. The necessity of lemma is obvious. To prove the sufficiency, it is enough to
proceed by induction on the class of central nilpotence of CML L. The sufficiency
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may be proved by using the well known facts from [2-4]: if the center of commutative
Moufang ZA-loop belongs to class Ω, then the CML itself belongs to Ω. In [2-4] this
result is proved in different way for various classes. We prove the sufficiency only for
the case of rank finiteness as the proof of other cases of class Ω are identical to this
case.

Let the subloop H be generated by the set A = {a1, a2, . . . , an} and let the central-
izer ZL(H) have a finite rank. We will suppose that the CML L is non-associative, as
for abelian groups (centrally nilpotent CML of class k = 1) the statement holds.

Let Z be the centre of the CML L and let k be the class of the central nilpotence.
Obviously, Z ⊆ ZL(H), hence the rank of Z is finite. As the quotient loop L/Z is
centrally nilpotent of class k − 1, then by inductive supposition, the rank of L/Z will
be finite if the centralizer D/Z of image HZ/Z of subloop H into the quotient loop
L/Z has a finite rank. We will prove this below.

Indeed, let x, y ∈ D, and let Ai = {ai1 , ai2}, i = 1, 2, . . . , t, be an arbitrary fixed pair
of elements ai1 , ai2 ∈ A. We have (x, ai1 , ai2) ∈ Z, then by (1), it follows (xy, ai1 , ai2) =

(x, ai1 , ai2)(y, ai1 , ai2). This equality shows that the mapping x → (x, ai1 , ai2) is a
homomorphism of D into Z.

For each Ai we consider the homomorphisms ϕi(x) = (x, ai1 , ai2), x ∈ D. Obvi-
ously, kerϕi = ZD(Ai). We mentioned above that the centre Z has a finite rank. Hence
the quotient loops D/ZD(Ai) are abelian groups of finite ranks. In particular they are
finitely generated. Since t is a finite integer, then the direct product

∏t
i=1 D/ZD(Ai)

is a finitely generated abelian group. It is known that: if an arbitrary Abelian group
has m generators then any of its subgroup have at most m generators. Then from
definition of special rank it follows that the direct product

∏t
i=1 D/ZD(Ai) has a finite

rank. Further, by (1) and (2), it is easy to see that
⋂t

i=1 ZD(Ai) = ZD(H).
Analogously to Remak Theorem for groups [7], it may be proved that the quotient

loop D/
⋂t

i=1 ZD(Ai) = D/ZD(H) is isomorphic to a subloop of the direct product∏t
i=1 D/ZD(Ai). Then D/ZD(H) has a finite rank r(D/ZD(H). As ZD(H) ⊆ ZL(H),

then ZD(H) also has a finite rank r(ZD(H). Thus, from the definition of special rank
it follows that and CML D have a finite rank ≤ r(D/ZD(H))r(ZD(H)).

Consequently, L/Z is a CML of finite rank r(L/Z). The centre Z has a finite rank
r(Z). Then the CML L also has a finite rank r(L/Z)r(Z).

Lemma 3.2. Let H be a finitely generated subloop of the CML L. If the centralizer
ZL(H) belongs to class Ω then the centralizer ZL/Z(L)(Z(L)H/Z(L)) belongs to class
Ω.

Proof. In [9, 10] it is proved that for a CML the condition of finite generation and
maximum condition for subloops are equivalent, and, in [3], it was proved that this
conditions are equivalent with the maximum condition for associative subloops. Fur-
ther, in [2], it was proved that, for a CML, the minimum condition for subloops and
the minimum condition for associative subloops are equivalent, and for p-loops, these
conditions are equivalent with the condition of finiteness of rank [4].
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Now, let Z(L) be the centre of the CML L, L = L/Z(L) and H =

Z(L)H/Z(L). Let us suppose that the centralizer ZL(H) does not belong to class S .
By Lemma 2.2, the quotient loop L/Z(L) satisfies the identity x3 = 1. Then by
the aforementioned, ZL(H) contains an infinite elementary abelian 3-group B, which
decomposes into a direct product of cyclic groups of order 3. Let A/Z(L) = A =

A1 × A2 × . . . × Ai × . . . be the maximal subgroup of B regarding to property Ai * H,
and let Ai =< ai >. We denote by M(ai) a maximal subloop of the CML R =< A,H >
such that ai < M(ai). As the element ai has order 3 then Ai ∩ M(ai) = 1. Every max-
imal subloop of a CML is normal in this CML [9]. Let I(R) be the inner mapping
group of the CML R. Every inner mapping of the CML is an automorphism of this
CML [5]. Then I(R)Ai = Ai. Hence the subloop Ai is normal in R. In [10] it was
proved that, if an element of order 3 of CML generates a normal subloop then this
element belongs to the centre of this CML. Hence Ai ⊆ Z(R). A ⊆ Z(R). From here
it follows that R = AH. But A ∩ H = 1. Then from I(R)A = A it follows that
I(R)H = H, i.e. the subloop H is normal in R. Consequently, R = A × H.

The subloop H is finitely generated. Then, by Lemma 2.1, it is centrally nilpo-
tent. The subloop H is also centrally nilpotent. Then the subloop R is also centrally
nilpotent. As B ⊆ R and B do not belong to the class S then R does not belong to
class S , too. The inverse image of R, under the homomorphism L → L/Z(L), is AH.
This CML is centrally nilpotent and does not belong to class S . Then, by Lemma
3.1, the centralizer ZAH(H) does not belong to class S . We get a contradiction, as
ZAH(H) ⊆ ZL(H) and ZL(H) belong to class S . Consequently, the centralizer ZL(H)
belongs to class S .

Lemma 3.3. Let H be a finitely generated subloop of a CML L. If the centrali-
zer ZL(H) belongs to a class Ω, then the centre Z(L) belongs to Ω if the CML L is
different from unity loop.

Proof. If a ∈ L is an element of infinite order, then by Lemma 2.2, 1 , a3 ∈ Z(L).
Let us suppose that L is a periodic CML. In these cases, L decomposes into a direct
product of its maximal p-subloops Lp, and, in addition, Lp belongs to the centre Z(L)
under p , 3. Hence, in order to prove Lemma 3.1, it is sufficient to suppose that L
is a 3-loop. By Lemma 2.1, every finitely generated CML is centrally nilpotent, and
consequently we will suppose that CML L is infinite.

By analogy with the group theory [7], we say that the system {Gα} (α ∈ I) of
subloops of loop G is a local system if the union

⋃
α∈I Gα coincides with G and every

two members of this system are contained in a certain third member of this system.
Using the definition of the local system, it is easy to prove the statement: if {Gα}
(α ∈ I) is some local system of loop G and I = I1

⋃
I2

⋃
. . .

⋃
Ik is a certain partition

of the set of indices I into a finite number of subsets, I j, j = 1, 2, . . . , k, then at least
one subset I j corresponds to the set of subloops {Gβ}, β ∈ I j, which will also be a
local system for loop G.
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Let now {Lα}, α ∈ I, be the local system of all finitely generated subloops of CML
L, which contain the subloop H. By Lemma 2.1, Z(Lα) , {1}. For each α ∈ I, we
fixed an arbitrary non-unitary element aα in the centre Z(Lα) and let K be the subloop
of L generated by all chosen aα, α ∈ I. From K ⊆ ZL(H) it follows that K belongs to
class Ω. We suppose that the 3-subloop K has a finite rank. Then by [4], K satisfies
the minimum condition for its subloops and, by [2], K = R × T , where R ⊆ Z(L) and
T is a finite subloop. Further, any periodic CML is locally finite [5]. Hence, to prove
Lemma 3.1, it is sufficient to consider that K is a finite subloop.

Further, let us decompose the set of indices I into a finite number of subsets
I = I1

⋃
I2

⋃
. . .

⋃
Ik by rule: β, γ ∈ I j if and only if aβ = aγ. According to the

aforementioned statement we have received that at least one of the subsets I j (e.g. I1)
corresponds to the subset of subloops Lα, α ∈ I1, which will be a local system for
the CML L. Next, let us fix index α ∈ I1, and consider the set of indices S ⊆ I1,
such that Lα ⊆ Lβ, β ∈ S . We notice that the set S corresponds to the set of subloops
{Lβ}, β ∈ S , which will give a local system for CML L. Let us denote the value of the
corresponding members by b, b = aα = aβ = . . .. Then b ∈ Z(Lβ) for all β ∈ S and,
consequently, b ∈ Z(L).

Theorem 3.1. A CML L belongs to class Ω if and only if the centralizer of some of
its finitely generated subloop H also belongs to class Ω.

Proof. The “necessity” is obvious. Conversely, let the centralizer ZL(H) belong to
class Ω. We denote L = L/Z(L), H = HZ(L)/Z(L). Any periodic CML is locally
finite [5]. Then from Lemma 2.2 it follows that the subloop H is finite. From Lemmas
3.1, 3.2, it follows that the upper central series of CML L has the form 1 ⊂ Z1(L) ⊂
. . . ⊂ Zk(L) ⊂ . . ., and, for a natural number n, Zn(L) , Zn+1(L) if Zn(L) , L. As
H is finite, then, for some k, H * Zk−1(L) but H ⊆ Zk(L). Hence ZL̃(H̃) = L̃, where
L̃ = L/Zk, H̃ = HZk/Zk.

By Lemma 2.2, L̃ is a 3-loop and, by Lemma 3.2, L̃ belongs to the class Ω. In [4] it
was proved that the minimum condition for subloops and the condition of finiteness
rank are equivalent for the CML L̃. In this case L̃ = R̃ × T̃ , where R̃ ⊆ Z(L̃),
and T̃ is a finite CML which, by Lemma 2.1, is centrally nilpotent. Then CML
L̃ = L/Zk = (L/Z)/(Zk/Z) � L/Zk is also centrally nilpotent. From central nilpotence
of L/Zk it follows the central nilpotence of L, and by Lemma 3.1, L belongs to class
Ω.
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Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, 2(51), 53 – 61.



48 Aliona Gurdish

[4] A. Babiy, N. Sandu, About commutative Moufang loops of finite special rank, Buletinul
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Academiei de Ştiinţe a Republicii Moldova, Matematica, 2004, 2(45), p. 33–48.


