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Abstract As the prolongation of the article [1] on the base of the relevant stationary [2;3] and non-
stationary [1] bifurcation results the conditions are established for Lyapunov-Schmidt
branching equations and branching equations in the root-subspaces at Poincaré-Andronov-
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1. INTRODUCTION

Since this article is the direct prolongation of the previous one [1], the contained
there short presentation of the articles [2,3] basic results are omitted here. In many
applications of bifurcation theory [4-6] often the following situation arises when
the original nonlinear problem has not the variational structure, while the relevant
Lyapunov-Schmidt branching equation (BEq) and BEq in the root-subspaces (BEqR)
turn out to be potential. In the articles [2,3] for such situation in stationary problems
of branching theory sufficient conditions for the potentiality of the equivalent to bifur-
cation problem BEq and also in [7] for the potential type BEq are established. In the
article [1] such conditions are obtained for BEqRs of dynamic branching (Poincaré-
Andronov-Hopf (P-A-H) bifurcation). Here sufficient conditions are established for
the corresponding Lyapunov-Schmidt BEq and BEqR in dynamic branching theory
to be systems of potential type. Everywhere below the terminology and notations of
the works [1-7] are used.
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2. BEQ AND BEQR CONSTRUCTION

As in the article [1], in real Banach spaces E; and E», for differential equation with
sufficiently smooth by & operators

A(s)% = B(e)x — R(x, €), R(0,&) =0, Rx(0,) =0, Ap = A(0), Bo = B(0), (1)

P-A-H bifurcation is considered under assumption that Agp-spectrum o4,(By) of densely
defined closed Fredholmian operator By is decomposed on two parts: O'ZO(B()) ly-

ing strictly in the left half-plane and O'SO(BO) consisting of the eigenvalues +ia of

the multiplicity n with eigenelements ui.l) = uj = uyj * iupj, and eigenelements

v}l) = v; = vy + ivy; of the conjugate operator A} : DAS — EY, B} : DBS — E¥,
i.e. (B —iaAo)uj = 0, (Bo + iaAo)u; = 0, (B} + iaAj)v; = 0, (B] —iaA[)v; = 0,
j=1,n.

H. Poincaré substitution ¢ = ﬁ, x(t) = y(1), u = p(e) reduces the problem of
jT”ﬂ—periodic solutions construction to the determination of 27 -periodic solutions of
the equation

d d
By=w«@3§+MA@yn%5£—«ma—Bwy+ans
= uCle)y + R(y, &), Ry(0,e) =0,

2

d d
By = (By)(1) = Boy(7) - aAOd_i’ Cle)y = (Cla)(7) = A(e)ﬁ,

where the supposed Fredholmian operator B and the operators in (2) are mapping the
space Y of 2x-periodic continuously differentiable functions 7 with values in £; =
E| + iE; in the space &, = E; + iE, with duality between Y, Y* (Z, Z*) determined
by the functionals

2
1
<<xf»=§;jbmmﬂﬂMnyexerﬂyerezv, 3)
0

(in (3) (-, -) represents the duality between &, 8’1", (&, 8; )). Then the zero-subspaces
of the operators B and B* are 2n-dimensional:

. _\n
N(B) = span{p = ¢;, ¢;(1) = uje™; 3},
. — \n
N(B*) = span{y' =y, i) = vie™s .
Introduce the systems {yg)}’f € Y* and {zﬂ”}ﬁ’ € Z* biorthogonal in the sense (3) to

{gol(cl)}’f € N(B) and {w](cl)}'l’ € N(B*) respectively. As such systems can be chosen
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the A~ and Ao- images of the last elements of the complete Ajj- and Ap-Jordan sets

of the elements {z// } and {Lp } respectively which are always existed (i are the
isolated elgenvalues) and are determmed by the formulae for the generalized Jordan
chains [8,9]

(By - iaAo)ug@ = Aouy‘“), (By + iaAo)ﬁg,“ = —Aoﬁj?‘“);

(B} + iaAf W = A3V (B —ia AV = ATV,

Z(.k) = AQM(.p'iH_k), 1.9(.k) = Aav(.pjﬂ_k), k
J J J
with the biorthogonality conditions

= 1,pj,j= l,l’l

<M§'k), 90y = 8 56u, <Z§‘k)’ W) = 600
and respectively
B = At ™", BEY = —Agg Y,
‘B*lpy{) (B* +a,A )w(k) Aglp;k_])a

—(k=1)

—(k) * * ()
zﬁj (B + aA; )wl lpj ,

where

k — _
‘pi_k) _ u(k)e”,tp(k) _ u(k)e l‘r’lp(_k) _ v(k)elr l//E) (k) it

J
Zi'k) _ Z(k)en"ygl) ﬂ(l) it k(D) =1, pJ(Ps) j.s I’_n
with the biorthogonality conditions

< @09 >= 600, < 20y >= 6,00, k() = Lpj(po) s =T,n (@)

K = p1 + p2 + ... + p, is the root-number.

Introduce the following notations, available further for the writing of the projec-
tors: ® = (<p(1) . ,go(lp D oD, ..., o). The vectors vy, ¥ and Z are defined analo-
gously.

Lemma 2.1. [10, 11] Biorthogonality conditions (4) allow to introduce the projectors

n_ pi
k k > — >
P=ZI;<<-,y§.)>><p§.)=<<-,y>>CD, P=<x.,y>0, P=P+P,
]: =

n_ Di
_ GG o WA _ a
Q_ZZ KLY >» =< Wz, Q=<¢y>»7 Q=Q+Q,

j=1 k=1
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generating expansions of the spaces Y and Z in direct sums Y = Y*K1y>-2K 7 =

Zok+Z o2k, Y?K = span{goy{),goi.k)}j_—l k=T is the root-subspace of A-adjoint ele-
=LILk=1,pDj
ments of the operator B,Zrx = span{z]]‘.,zlf}j_f1 k=T The operators B and Ay are
p =LA.k=1,p;

intertwined by the projectors P and Q, P and Q , BPu = QBu on Dy, BO = ApZ,
B*Y = Wy, A = diag{By, ..., B,} is cell-diagonal matrix, B; is p;X p;-matrix with units
along secondary subdiagonal and zeros on other places; AgP = QAg, CoP = QCp
on Dy, Co = C(0), Ag® = W Z, ATY = Wyy, Ay = diag{B', ..., B"} is cell-diagonal
matrix, B' is p; X p;-matrix with units along secondary diagonal and zeros on other
places. Operators Ay and B act in invariant pairs of subspaces Y*X, Zyx and Y® 72K,
Zeong and B : Y 2K N D = Zew_2k, Ap : YK 5 7,k are isomorphisms.

Remark 2.1. [9,10,4]. Because of the invariance property of the root-number K
under perturbation we can work with Ag-adjoint elements of the operator B, the
more so parameter u enters linearly in the equation (2).

Consider now the Lyapunov-Schmidt BEqR construction [4,11]. The usage of the
E.Schmidt regularizator [4]

n
B=B+ Z[<< -,yEl) > z§1)+ < -,751) > ZE”], Bl=r
s=1

allows to rewrite the equation (2) in the form of the system

@y = uCle)y + R(y, &) + ;1(51‘1151) + Eilzgl))’

b =<y V) >, E,=<y 37> o=Tp.s=1n

&)

the unique solution of the first equation of which is sought in the form

YEutE O+E-O=ut vl Ep e = Eule), ). = Eue) o). (6)
Then the first equation of the system (5) gives

n pi
w=—(-plCo)™ > 3 (€ + E8) + ull - uTCo) ' TC(¢ -  + - D)+
i=1 j=1
+u(I = uTCo)'T(C(e) — Co)u + u(I — uT'Co) ' T(Ce) — Co)(é -  + & - D)+
+u(l — ulCy) 'TR(u + v, &) =
n Di - n
- Z Z(é‘hij‘ﬁgj) + fij‘PEJ)) + ulCo(I — uI'C)™! Z(&ME” + fm_ogl))+
i=1 j=2 i=1

+ul(I = uCoI) ™ (C(e) — Colu + ul' (I — uCoI) ™! (C(e) — Co)(E€ - @ + € - D)+
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+ul(I — uCol) ' R(u + v, €).

Taking into account the relations ul” Gogogl) = i,ugogz 2(F(i’0)2 M — (zu)2 @
P TP e = (PP, wh )P = (P 5), and generally,

(+1-[%11py) .
/11(1“(?0)19051) = (i,u)lt,ol. """ according to the formulae F*y(sl) = wﬁl), r *y(s‘r) =

(Sp i+270) [10,11] from the second equalities of the system (5) E. Schmidt BEqR fol-
lows

(& Epe) = — <y >= -1 0g | —u < (I - puCo)T) ! (C(e)-

—Co)u + ), 0\ > — < (I - uCD) ' R(u + v, &),y =0,

- o—1
ol Ep8) = — <1, yﬁ") >= £y, - b — < (- pCD) ! (Ce)-  (7)
—Co)u+ ), P >« (T = pCD) 1 R(u + v, 8), y 77 >= 0,
o=2,ps,s=1,n.

For the BEq construction, write the equation (2) in the form of the system

By = ﬂe<s>y + R(y, &) + Z(fllz“) + &2,

®)
& =xy, ys >, g—‘s =<y, y§1>
The unique solution of the first equation (8)
y = TWCEy) +TRO.&) + R e+ £9)) 9)
J:
find in the form
y= L, + &%) + u(€. €, 1, 8) (10)
J:

Then the second equalities (8) by using the relations Fzy) = <p§.1), FZE.I) = 9—05,1),
Py = g D7D = G Y = V2 Y2 = 23, 4 Zag g ¥ = N(B), 2y, =

— 1
span{Zs,Zs};l:]v - (P +Pl’l)Y P Y Pl’l - le < ’)/j > ‘)0]7 n — ]Z <- 9)/( ) >

2. Zoy = (Qn + Q) = QuZ, Oy = _zl <y >0, = _zl <y =7
J= J=
give E. Schmidt BEq

(€ ) =~ < u ) >= —UE, — u < (- uCol) ™ (Cle)-

—Co)u+v), YV >— < (- p@ol") LRw+v,8),plV >=0, (11)
ts(fg,u,s)——<<uy§1)>> 0,s=1,n.
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3. CONDITIONS OF BEQ AND BEQR
POTENTIALITY TYPES A(B)

Definition 3.1. [7] BEq t(£,€,,8) = 0, & = (¢1,&,,....&,) (BEGR t(¢,&,11,€) =
0.6 = (§115&12:&1pys o Ents Enas s Enp,y» ) Jor dynamic branching problem of branch-
ing theory is called BEq of potential type A or BEq of potential type B if (¢, & 1u,6) =
d.gra 7U(§fﬂ’8)~(t]’;]’---’tn’;ﬂ)T:
ou oU (9U ou -
=d- o or (¢, &, u, ) = grad, zU (¢, &, pi,€) - d ~
(agl 98" GE, ﬁfn) &
L . 1) (6U U oU dU
~ U eslnn) = | ——= s 0 oo T= s A
~ 0, 951 0, 9&,
tively €&, &, p1,€) = d - grad, zU (£, &, 1, ) ~

)-d with an invertible matrix d (respec-

~ (tllazll,- . tlpp;lpp- . -’tnl,;nl,- .. ,tnpn’;np,,)T =
—d(aU oy . ?U, aU,...,a_U,aU,..., ?U, oy ]0rt(§,§,y,s)=
(9§11 aé:ll aé‘:lpl aé:lpl 6§n1 agnl agnpn aé‘n[)n

ngl ‘f,é-‘U(gyg’ﬂas) dN

~ (tll’ill’ e ’tlplailpl’ e ’tnl’;nla e ’tnp,p;np,,) =
~ ( U U U 9U U dU U U ] 9
ag11 ’ 01 ’ ’ 8EIP1 ’ aglm ’ ’ aErzl ’ 01 ’ ’ agﬂpn ’ ag"p”

Remark 3.1. Note here that potentiality conditions for BEq and BEgR of potentiality
type A(B) in stationary branching are obtained and proved in [7] and respectively in
our communication to Int.Conf. [12].

In the development of the article [1] results here similarly to n.2 and n.4 of [1]
sufficient potentiality conditions are established for BEq (11) and BEqR (7) would
be of potential type A(B). Since the notions of the operators symmetrizability [2,
3] here are introduced for the equation (2) in the spaces Y, Z, elements of which are
complex-valued functions in the definition 3.1 and analogs of n.2 , 4 assertions of
[1] in the notion of matrices symmetricity the complex conjugation must be used as
this is accepted in [1]. As there it is used for the proofs of operators B, C(¢) and R,
symmetrizability. The finite-dimensional symmetrizators

n
J, = Z(<< N S I D)
=

for BEq and
n Pj

-

k) (k)]

[« - w(k) > y(
j=1 k=1

+ K- lﬁj >>‘y

for BEqR are used.
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A.

Lemma 3.1. . For the BEq (11) would be of potential type A(B) it is sufficient the

-1, 1
symmetricity of the matrices [a(d _I) , ou-d7) Jl.e.
050¢ 0£0E

n Ot Ot n Ot Ot
Sgl(d2p 125— 18§q +dap- 12v6§ )= SZl(dzq 1.25— 16§p + dyy- 12?65,,)’
n Ot ot n Ot
2 (deZS 1= +d2p23 = ) )y [quZS 1 — + dagos— ], (12)
s=1 qu s=1 f 661,
n ot n ot ot
Z(dz 125-1—= +dap-12 _] Z drg2s-1 S+d2,2~—s),
s=1 P= aé“ P= g s§= = fp 1 Sagp
for the type A and
n (Ot ot Ot ot
2 ( —das—12p-1 + 7 das —1) Z ( drs-12g-1 + 7—das2 —1),
s=1\0¢, e, s=1\0¢, o eg,
Ot Ot Ot Ot
Z [ d2s 12p + TdZs,Zp) Z ( d2s 12¢ T TdZs,2q]a (13)
=1 02, =1\ g, o2,
n atY 62} n 6t€ (9_
2 ( dys—10p-1 + —=das2 ] 2 ( —das10g + 7o )
Joue é:q pP— 8é,‘:q P o} aé;p q aé;p q
for the type B.

The proof follows from the definition 3.1 at the usage of designation

4! = ( dop-125-1 dog-12s )
doas-1 dwps ) 1o

The finding of solutions to (9) in the form (10) with the subsequent differentiation
leads to relations

ay (9
(9_& = [uI'C(e) + T'R,] afg + @, =[I -T(uC(e) + R)]™ gos,

8§S
Q _ 8u ou 3 ~ »
afx aé_vv =@t afg =@+ F(,UG(S) + :Ry)[l F(,u@(b‘) + jQy)] Yy =
ats - - ou >S= - K e( )+ R )[[ -T e( )+ R )]—1 >
o, agq’” = = < HC(E) + Ry = TWCE) + Ry)T™ 0y ¥

and analogously 6_‘; = — < pCE) + R -~ T(CE) + R @, th; >
Sq

= — < uCe) + R - T(C(e) + R @, v >,
q
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3& = = < pC(e) + Ry = T(UCe) + R~ Byt > .

q

Corolar 3.1. When d = I the usual potentiality conditions for BEq from [1] follow:
o _ O O _ Oty o _ 0ty =1.n
% T @ and el k,s=1,n.
Lemma 3.2. Let the operator B : Y > Dy — Z be J-symmetrizable on D = Dy and
the operator J : Z — Y* satisfies the requirements:

1. VyeY = J*yezr , ={feZ* <z, [>=0,<Z,[>=0,
s = 1,_n},' -

2°.The matrix < (@, 9), J(2,2) > is symmetric, i.e. < ¢, Jzx >= <K @, Jz5 >,
K QLI =< 9, JZs >, K @, Jy >=< ¢y, JT5 >.

Then the operator T' = B~ is J* -symmetrizable on Z.

Now the following analog of the Theorem 4.1 [1] is true.
Theorem 3.1. Ler there exists a linear operator J: Z — Y*, such that
no_ — _ o on _ — —
J*(pp = Zl (de—l,Zs—l'vl’s + d2p—1,23¢5)’ J*(Pp = Zl (d2p,2s—ll//s + d2p,25'70s)
5= =

n _ — - n _ —_ —_
(resp.J*p, = Zl(dlvfllpfllﬁs +dasop¥y), J*p, = Zl(dzsfl,zplﬂs + daspp¥ ) and the
S§= sS=

following requirements are realized:

1°. Operator B is J-symmetrizable on D;

2°. Operator C(g) and operators B(g) — By), R(y, €) for any (y, €) in some neigh-
borhood of the point (0,0) are J-symmetrizable on D;

3°. For anyy € Y™\ D follows that J*y € VAR

Then the BEq (10) is the system of potential type A (resp. B).

The proof follows from the analogs of assertions n.3 [1] and lemmas 3.1, 3.2.
Corollary 3.1. When d = I, Theorem 3.1 coincides with Theorem 4.1 of [1].
Remark 3.2. In applications the matrix d often turns out to be diagonal.

B. For the simplicity of presentation further potential BEqRs are considered.
Lemma 3.3. For the BEqR (7) potentiality it is sufficient the symmetricity of the
matrix
t,t _ D(t11, 1115+ - tipys Fipy - s tnls nl - -« s tupys npy)

EE DEwEL s ErppEipse s Eats oo bupy o Enp))

i.e. the equalities relations

D=D

Oty _ Oty aikz _ 6;” Oty _ (ﬁ‘m—

_ O Ot _Oo O _ O (14)
6§SO' aé:kl aé: so 8§ ki aé:m' agkl
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Remark 3.3. From (14) the reality of diagonal elements D follows (when k = s,
=1).

For the shortenlng of computation in (6) the following designation will be used

= - 5 S + Bl + ureot - ureoy S + i)+
l J—

+T(I = uCoD) 'R + v, €), i.e.

R(y, i, &) = u(C(e) — Co)y + R(y,e), v=&-O+&- .

0
For the verification (14) the computation of the derivatives —u, TM is required:
afsk afsk
0
= ureo(I - uICo) e + T = @) 1Ry( +oi) =
aé:sl é:sl
ou _
= gz = U= TU=kCD) "Ry — puCol) Ry O+ T = uCo)) ™" uCopl} =
s1
= T(I = pCoD) ™[I = T - pCo)I) ' Ry]” (R + 1ol
Ou o0 | ®
T = + T = €)' R ( +o5),
aé:sk Y aé‘:sk '
0
whence it follows a; = (k) when k > 1. Now (7) and (14) give the relations of
k
the following type ’

< (I — puCy)” [1 T - uCoD) 'Ry (R, + uCo)el, gl >=

15
e (1~ oDy T~ T - pCol R R, + )y >, 1

< (I = D)™ I = T - uCD) 'Ry Ry + pC)p, ¢ P> »= 0,  (16)

. ot
for o > 2, since —© = — < gp(scr),yg) >= —0y40y1.
0y

Corolar 3.2. Formulae (15) and (16) mean that BEqR potentiality is equivalent to
BEq potentiality.

4. SYMMETRY IN P-A-H BIFURCATION
PROBLEM WITH POTENTIAL BRANCHING
EQUATIONS

SH(2) — symmetry. As the prolongation of the article [1] results, return now to
model example of P-A-H bifurcation with S H(2)-symmetry generated by the follow-
ing zero-subspace of the linearized operator with relevant pure imaginary eigenvalues

N = N(B) = span{p, = (chx + ishx)ei’,ﬁ, @y = (chx - ishx)ei’,go_z},
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with the following matrix representation in the definition of group invariance Bg#(¢, &) =
H(Agé, Ayé) correspondingly to the basis N

B(ap, @) = Alap, @) =

eé%cha 0 —ie'sha O

10 e'cha 0 ie”"" sha
ie'sha 0 echa 0
0 —ie7"sha 0 e 'Ycha

Here the branching equation potentiality of the types A and B take place simultane-
ously. In the articles [13,14] at the usage of group analysis methods [15] the general
form of C'-BEq was constructed on allowed group symmetry (see also [1]).

1 — _
t = 55 [EF1(L(O). (@) + EF2 (0. L)

& +&

I = \Hf@l &&= \/lﬁgz + &6y,

1 — —
b = 5 |&F2(1(€), b(©) - &£F (1), 1r(©)]
1

&1 +&

A7

where the functions F';,F> are real-valued.

The definition 3.1 of potential type BEq (here simultaneously A and B) with d =
diag(1,1,-1,—1) means the symmetricity of the matrix D, i.e. the realization of the
equalities (12) or (13).

onon o on o _ G Oy _dh

I G 06 o, o o 08 0

g an o an o on | on _dh dn _Ob

06, 9E 08 0g, 0F, 06 0f, 0% (18)
_% _% _% _% o 6_1‘2 62‘1 622

T T R B T A A
_% _% _% _% ot (9_;2 ot 3_1‘2

9 9E, 05 0E, a_grz =% " —a—gl = d)

Here a) is the reality of diagonal elements, b) the partial potentiality, c) the sym-
metry along secondary subdiagonals, d) symmetry along secondary diagonal. Con-
ditions (18) lead to the following relations, where the symbols Fy 1 , Fy, mean the
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derivatives of F; on the relevant invariants 1, I»:

0 1 £ £ £

3;1 = ﬁ §1F112§h +§1F122§ +§217212f +§2F222§IZ]

i 1T &2 (19)
ot 1 & & &1 &

5, 52 8 [§1F112] +§1F122 +§2F212 +§2F222]]

the second equality of a) and also the equalities b) are verified analogously,

0 oty 0, —— 5

a—; - —6—2 = (—FL)IEEE +B) + EEE + )DL + Falé,6F + B+

G §2>]11 +F B E+ 8- fz(fl + B+

FP[EE + ) - B + ) = "
(20)

ot 8 _ __ o
£ - —ﬁ = (—FL)IEEE + ) + EEE + QD + Falé & F + B+
2 1

HEEAE] + B + FLlElE) + B) ~ B} + )+
+F[E(E+E) —EE +EL =0 -
D

ot Fa
—1=——2$ F]]I +F221 11+F2,112112+F1,21?=0, (22)

652 851
on o oh  on
Tl = ——2, Z1 = _TZ = _Fl,llg + Fz,zlgll + Fz,llzllz + Fl,zlf =0. 23)
852 851 8§2 (961
However the relations (20) and (21) are differed from (22) only by the cofactor |£; 1+
l&,]>. Consequently the following assertion is proved

Theorem 4.1. C'-BEq of potential type for P-A-H bifurcation with the symmetry
S H(2) on spatial variables has the form (17), where the functions F| and F, satisfy
the differential equation (22).
Corollary 4.1. The potential is determined by the following formula [16]
a 1
Z[ffk(Tfl’beﬂvg)fde“' ffk(Tfl’T§27ﬂ,8)§de] = U, &, 8).
k=19 0
In the case of analytic BEq as invariants I| = &£, — &&, and [, = £,&, + &£,

are chosen. As before the conditions a) and b) (18) are verified directly, while the
conditions ¢) and d) (18) give

[_Fl,l + F2,2] (6152 + 5152) + [F1,2 + F2,1](§1€_:1 - 5232) = (24)
=[-Fi1+ Fopplh +[Fip+ Fo1lli =0
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Theorem 4.2. Analytic BEq of potential type for P-A-H bifurcation allowing the sym-
metry SH(2) has the form (17), where the functions Fy(11(€), [2(£)) and Fa(11(§), I(£))
satisfy the differential equation (24) with invariants I,(§) = §,£) — §,&, and [(§) =

&16 + 616

Remark 4.1. Accepted in [12,13] potentiality conditions of BEq mean the symmetry

_ D(t1,11,~1r,—12) : o :
of the matrix , where only its coincidence with transposed one was

D(.£1,6,.6)

taken into account. Therefore in [1] we could not construct the finite dimensional
symmetrizator (symmetryzing operator) and could not prove Theorem 4.1 for C'-
BEq. However, for analytic case (in [12] and [13] and correspondingly in [1]), it is
said erroneously that C'-BEq is considered) the results of [12,13] about the general
form of analytic BEq and its potential turn out to be valid.

Remark 4.2. As in the previous our article, we assume in the future to investigate
dynamic bifurcation problems with symmetries S O(2) and S H(2) at high order de-
generation of the linearized operator.

5. EXISTENCE OF BIFURCATION POINT

Similarly to the articles [1,3], by using the approach of Section 3, the existence
theorem of P-A-H bifurcation can be proved.

Lemma 5.1. Let be A(e) = Ag and uCoy + (B(e) — By)y + R(y, &) = uCoy + R(y, &),
R(0, &) = 0. Then at the realization of the Th.3.1 conditions, potential U(€,&, u, €) of
the potential type A(B) BEq is generated by the symmetric matrices

d™' < p(0, u(e), £)(; @), (s ) > for the case A and < p(0, (&), £)(¢; @), W ¥) >
-d~" for the case B with relevant square form on &, & and residual term w(&, €, u(g), €),

llwll = o(+/ €% + IEIZ) as & — 0. Components of the symmetric matrices are contin-

uous functions in some neighborhood of the point u = 0, € = 0, the function w is
continuous in the same neighborhood together with partial derivatives on &, & up to
second order. The symmetricity of the matrix in the main part of potential is under-
standing in the sense of (12) for the case A ((13) for the case B), i.e. (here the symbol
[...1* means the complex conjugation to the expression |...])

n
—()
D ldop1261 < p(O,pu(e), 0, Y > +dop-125 < (O, p(e), )9 Uy > =

s=1

n
—(1)
= D [drg120-1 < PO, (@), &)Ul > +dog 125 < p(O, (o), 2)p 0y >,
s=1
n _—
d 0 —(1) (1) d 0 @ 1) —
[ 2p2s-1 K P( ,ﬂ(g), &) q Wyl >+ 2p2s K ,0( uu(g), 5)‘;0(1 W >] =

s=1
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= Z [d2g.25-1 << (0, (o), 8)90(” "> g < p(0, ue), 8)90(” 1,
s=1
n
D ldrp121 < p(O, (@), 86 Y > +dap1 25 < p(O, pu(e), £)p,
s=1

oy 51 =

1
= S st < 00,0, X, A 3 g2, < 0,16, N, B T

s=1

for the case A and

n
——(D
D 1< 0O ute). 0l UL > dasr gt < plO. o). )y

s=1

> dZS 2p— 11 =

= Z[<< 000, u(e), 8)90(1) D s dhy 12g-1+ < p(0, u(e), 8)<p(l) l//v > dagog-117%,
=1

N

[< (0. (e, ),y o)

> dhs1 2t <K P(O /1(5) 8)‘10 > d2s,2p] =

s=1

=

(1) (1)

1
[< p(0,1e), ) " > 12+ < p(O.p(e). D B > oy, 1",

s=1

=

o) Lﬁ(l) o) lﬁ(l)
N

[<< p(0, u(e), )¢, > das-12p-1+ < p(0, u(e), &), > dogop-1] =

n

Z[« PO, 1(8). 6w > 1ot < pO.u(e), )P D > dogag ],
s=1

for the case B.

Here p(0, u(e), &) = (uC(e) + R)[I —T'(uC(e) + Ry)]‘l, in accordance with [1] and
sections 2,3. The proof follows from the definition 3.1 and Lemma 3.1.

Similarly to the article [3] introduce the condition suitable also for £ belonging to
some normed space A: @) let in some neighborhood of € = 0 there exists the set S,

containing the point & = 0, which is continuum presented in the form S = S, JS _,
0€0S,.(dS-. Letbe

det[d™' < p(0, u(&), &), (0, B), W, >)ees . Us_ # 0,

(resp. det[< p(0, (&), £), (¢, 9), (Y, ¥ >) -d " 'ees, ys_ # 0) and the matrix [d~"-

p(0, u(s) &), (¢, @), (b, ¥ >)] in case A (resp.the matrix [« p(0, u(€), &), (¢, @), (¥, ¢f >
) - d~'] for the case B) hasats € S_ (e € §) precisely v| negative eigenvalues (v
negative eigenvalues).
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Lemma 5.2. [3]. Let the condition @) with vi # v, be realized. Then for any 6 > 0
there exists €* in a neighborhood || < § such that the function U(&, &, u(e*), €*) has
in it a stationary point £* # 0.

The proof follows from homotopic invariance of Conley-Morse index [17,Th.1.4,p.67].

Theorem 5.1. Let the branching equation of the problem (1), under Lemma 5.1 con-
ditions, be potential type A(or B) and the condition @) be fulfilled with v # v, . Then
e =0 €S is the bifurcation point.

Remark 5.1. The results [2,3] can be found in the more available collective mono-
graph [6].
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