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Abstract After applying the Finite Element Method (FEM) to the one-dimensional diffusion-type
and wave-type Partial Differential Equations (PDEs) with boundary conditions and ini-
tial conditions, a first order and a second order ODE systems are obtained respectively.
The latter can be reduced to a first order ODE system. These first order ODE systems
usually present high stiffness, so numerical methods with good stability properties are
required in their resolution. In this paper, we have studied the stiffness of the result-
ing first order ODE systems as function of the number of elements considered in the
discretization, the length of the domain in which the PDE is applied and the thermal
diffusivity (in the case of the diffusion-type PDE) and the wave speed propagation (in
the case of the wave-type PDE).
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1. INTRODUCTION

We will consider the diffusion equation (or heat equation) and the wave equation
given in terms of Partial Differential Equations (PDEs). In the case of the diffusion
equation, we will consider a thin rod of length L. We will assume that the ends of the
rod are kept at the same fixed temperature. Let u(x, t) represent the temperature at
the point x along the rod at time t, and assume that an initial temperature distribution
u(x, 0) = f (x) is given. The following PDE is used to model the one-dimensional
linear temperature evolution:

� Diffusion equation:


ut = α

2uxx, 0 < x < L, t > 0
BC : u(0, t) = 0 = u(L, t), t > 0
IC : u(x, 0) = f (x), 0 ≤ x ≤ L

(1)

where α2 = k
cρ is the thermal diffusivity, k the thermal conductivity, c the thermal

capacity and ρ the density, ut is the rate of change in temperature with respect to
time, uxx is the concavity of the temperature profile which compares the temperature
of one point to the temperature at neighbouring points. BC and IC are the boundary
conditions and the initial conditions respectively.
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In the case of the wave equation, a string of length L will be considered, where its
two ends held fixed at height zero. Assume that its initial position and speed are given,
f (x) and g(x) respectively. Let u(x, t) denote the vertical displacement of the string
from the x axis in time t. It is assumed that the string is undergoing small amplitude
transverse vibrations so that u(x, t) obeys the wave equation. The one-dimensional
linear wave equation with boundary conditions (BC) and initial conditions (IC) is
given by:

� Wave equation:


utt = α

2uxx, 0 < x < L, t > 0
BC : u(0, t) = 0 = u(L, t), t > 0
IC : u(x, 0) = f (x), ut(x, 0) = g(x), 0 ≤ x ≤ L

(2)

where α =
√

T
ρ is the speed propagation of the wave, T is the applied tension in the

string and ρ the linear mass density.
The continuous solution of both equations, (1) and (2), can be found using the

method of separation of variables [6]. The solution of the diffusion equation (1) is
given by:

u(x, t) =
∞∑

k=1

Ak sin
(
kπx
L

)
e−(kπα)2t (3)

where Ak =
2
L

∫ L
0 f (x) sin

(
kπx
L

)
dx.

And the solution of the wave equation (2) is given by:

u(x, t) =
∞∑

k=1

sin
(
kπx
L

) [
Ak sin

(
kπαt

L

)
+ Bk cos

(
kπαt

L

)]
(4)

where Ak and Bk are given by:

Ak =
2

kπα

∫ L
0 g(x) sin

(
kπx
L

)
dx

Bk =
2
L

∫ L
0 f (x) sin

(
kπx
L

)
dx

It is also possible to find the approximate solutions of equations (1) and (2) nu-
merically using the Finite Element Method (FEM), in which the process of finding
the solution u(x, t) consists of discretizing the domain L in elements and nodes. The
solution approach is based on the elimination of the spatial derivatives of the PDE
and this leads to a system of Ordinary Differential Equations (ODEs). The result-
ing system of ODEs can be solved using standard numerical methods [2], such as
Runge-Kutta methods [3], Backward Differentiation Formulae [8], or using the ode
solvers implemented in MATLAB [1]. The ode45, based on an embedded Runge-
Kutta method DOPRI(5,4) [5], and the ode15s, based on BDFs [8], are two of the
ode solvers offered by MATLAB.

The ODE system that results after the FEM discretization presents high stiffness
usually. Stiffness is a delicate as well as important concept when solving ODEs. Var-
ious authors [12, 14, 15] agree saying that there is no a rigorous definition of stiffness.
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It depends on the ODE, on its initial conditions, on the numerical method used for
its resolution and on the time interval in which the ODE is solved. In this article we
will use the definition of stiffness given in [10, 13], which says that stiffness occurs
when different magnitude eigenvalues exist in the solution, where this difference in
the magnitude could happen in the real part or in the imaginary part of the eigenval-
ues. The aim of this article is to study the stiffness of the ODE system which results
after the FEM discretization of the one-dimensional diffusion and wave PDEs.

The article is organized as follows: in Section (2) the formulation of the Finite
Element Method is given which enables us to obtain an ODE system from a PDE;
in Sections (3) and (4) the study of the stiffness of the resulting ODE system is done
and in Section (5) some conclusions are given.

2. THE FINITE ELEMENT METHOD

The Finite Element Method consists of finding solutions in a finite dimensional
space. Having chosen a basis of functions and having defined finite dimensional
subspaces, the PDE solution is written as linear combination of the functions of the
basis. To do this it is necessary to check that the scalar product of the differential
operator with all the functions of the subspace is zero. This requires a variational
formulation of the problem, which is obtained by integrating by parts.

2.1. APPLICATION OF THE FEM METHOD TO
THE DIFFUSION EQUATION

We will show the application of the Finite Element Method to the diffusion PDE
(1). A step size h > 0 of the spatial mesh will be considered, being h = L/(n + 1)
where n ∈ N. In this way the partition defined by the nodes:

x j = jh, j = 0, 1, ..., (n + 1) (5)

breaks up the spatial interval [0, L] in (n + 1) subintervals of length h: I j =
[
x j, x j+1

]
,

j = 0, ..., n. Observe that the first and the last nodes correspond to the end of the
interval [0, L]: x0 = 0, xn+1 = L.

Each internal node x j, j = 1, ..., n, is associated a piecewise continuous and linear
basis function N j(x), that verifies N j(xi) = δ ji for j = 1, ..., n and i = 0, ..., (n + 1),
being δ the Kronecker delta. Next, we introduce the vectorial subspace of dimension
n spanned by the functions

{
N j

}
j=1,...,n

:

Vh = span
{
N j : j = 1, ..., n

}
(6)

Approximate solutions of the diffusion PDE (1) in the subspace C([0,∞),Vh) are
found so that:

u(x, t) ≈ uh(x, t) =
n∑

j=1

d j(t)N j(x) (7)
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Observe that function (7) depends on the spatial variable x as well as on the tem-
porary variable t. The function (7) will be univocally defined if its coefficients d j(t)
are defined precisely. It has to be taken into account that because of the election of
the basis functions

{
N j

}
j=1,...,n

, d j(t) is the value of the function uh(x, t) in the point
x = x j.

The weak formulation to calculate the approximate solution uh is given by [11]:

find uh ∈ C1 ([0,∞) ; Vh) that verifies:∫ L

0
uh,t(x, t)wh(x)dx = −

∫ L

0
α2uh,x(x, t)w′h(x)dx, t > 0, ∀wh ∈ Vh (8)

and the initial condition:

uh(x, 0) = fh(x), 0 ≤ x ≤ L. (9)

In (9) an initial value uh,0 has been taken. This value can be taken in different
ways in order to approximate the initial value u0 of the diffusion equation. One of the
simplest ways to chose fh is as the orthogonal projection of u0 in Vh.

By substituting the expression (7) of uh(x, t) and its derivative u′h(x, t) in (8), and
applying this equality for all the functions Ni of the basis, the following system of n
first order Ordinary Differential Equations is obtained:

n∑
j=1


∫ L

0
Ni(x)N j(x)dx︸                ︷︷                ︸

mi j

 d′j(t) = −
n∑

j=1


∫ L

0
α2N′i (x)N′j(x)dx︸                    ︷︷                    ︸

ki j

 d j(t),

i = 1, 2, ..., n (10)

which in matricial form can be written as:Md′(t) = −Kd(t)
d(0) = ( f (x1), ..., f (xn))T (11)

where M = (mi j) and K = (ki j) are the mass and stiffness matrices of the FEM
discretization, and d j(t), j = 1, ..., n, are the unknowns.

2.2. APPLICATION OF THE FEM METHOD TO
THE WAVE EQUATION

The same partition
{
x j

}
j=1,...,n

as in the previous section, being x j = jh the nodes
of the interval [0, L] will be considered, where h = L/(n + 1), and I j = [x j, x j+1],
j = 0, ..., n, the elements in which the whole interval [0, L] has been partitioned. In
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this case the variational formulation to calculate the approximate solution uh is given
by:

find uh ∈ C2 ([0,∞) ; Vh) that verifies:∫ L

0
uh,tt(x, t)wh(x)dx = −

∫ L

0
α2uh,x(x, t)w′h(x)dx, t > 0, ∀wh ∈ Vh (12)

and the initial conditions:

uh(x, 0) = fh(x), u′h(x, 0) = gh(x), 0 ≤ x ≤ L (13)

where fh and gh are approximations of the initial conditions ( f , g) in Vh.
Proceeding as before, a second order ODE system is obtained:

n∑
j=1


∫ L

0
Ni(x)N j(x)dx︸                ︷︷                ︸

mi j

 d′′j (t) = −
n∑

j=1


∫ L

0
α2N′i (x)N′j(x)dx︸                    ︷︷                    ︸

ki j

 d j(t),

i = 1, 2, ..., n (14)

which in matricial form can be written using the mass M = (mi j) and stiffness matri-
ces K = (ki j) of the FEM:Md′′(t) = −Kd(t)

d(0) = ( f (x1), ..., f (xn))T , d′(0) = (g(x1), ..., g(xn))T (15)

and d j(t), j = 1, ..., n are the unknowns. Equation (15) can be reduced to a first order
ODE system with the form y′ = f (t, y):(

y′1(t)
y′2(t)

)
=

(
0 I

−M−1K 0

) (
y1(t)
y2(t)

)
, (16)

where:

y1(t) = d(t), y2(t) = d′(t)
y1(0) = d(0), y2(0) = d′(0)

.

3. STIFFNESS OF THE DIFFUSION PDE

We will consider the one-dimensional heat equation given by (1). In the previous
section we have seen that the FEM discretization of this equation with (n + 2) nodes
and (n+1) elements leads to a system of ODEs which in the form y′ = f (t, y) is given
by (11):

d′(t) = −M−1Kd(t), d(0) = d0 = ( f (x1), ..., f (xn))T

In this section the stiffness of the system (11) is studied, which means that the
eigenvalues of the jacobian matrix ∂f

∂d = −M−1K are studied depending on three
variables: the number of elements of the discretization, the length of the rod L and
the thermal diffusivity α2.
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3.1. STIFFNESS AS FUNCTION OF THE
ELEMENTS OF THE DISCRETIZATION

Two different materials have been considered: an epoxy called Araldite and an
epoxy/alumina (100/188), being their experimental thermal diffusivities α2 = 0.129 ·
10−2 cm2/s and α2 = 0.449 · 10−2 cm2/s respectively; they coincide with the theoret-
ical values given in [9] and [16] respectively. Having fixed α2 and the length of the
rod (L = 20 cm), we change the number of elements of the FEM discretization and
we analyse the values of the greatest and smallest eigenvalues in module, see Table
(1). The greatest eigenvalues in module of each case are represented in Figure (1).

Number of |λmax| |λmin| |λmax| |λmin|
elements epoxy epoxy epoxy/alum. epoxy/alum.

5 7.3478 · 10−4 3.2890 · 10−5 2.5575 · 10−3 1.1448 · 10−4

10 3.5991 · 10−3 3.2092 · 10−5 1.2527 · 10−2 1.1170 · 10−4

20 1.5198 · 10−2 3.1895 · 10−5 5.2897 · 10−2 1.1101 · 10−4

40 6.1635 · 10−2 3.1846 · 10−5 2.1453 · 10−1 1.1084 · 10−4

80 2.4739 · 10−1 3.1834 · 10−5 8.6108 · 10−1 1.1080 · 10−4

160 9.9043 · 10−1 3.1830 · 10−5 3.4473 · 100 1.1079 · 10−4

320 3.9626 · 100 3.1830 · 10−5 1.3792 · 101 1.1079 · 10−4

640 1.5851 · 101 3.1830 · 10−5 5.5172 · 101 1.1079 · 10−4

1280 6.3406 · 101 3.1829 · 10−5 2.2069 · 102 1.1079 · 10−4

Table 1: Eigenvalues of the ODE system (11) vs. number of elements.

Conclusions:

When the number of elements of the discretization is increased, the great-
est eigenvalue of the ODE system (11) grows and the smallest one does not
change.

If an initial discretization of m elements is multiplied by n, obtaining a new dis-
cretization of n · m elements, the greatest eigenvalue of the ODE system (11)
which corresponds to the second discretization is equal to the greatest eigen-
value of the first discretization’s ODE system multiplied by the coefficient n2.
For instance, in the material epoxy with 10 elements, the greatest eigenvalue
is given by |λmax| = 3.5991 · 10−3. If the number of elements is multiplied by
2, having in this way a discretization of 20 elements, the greatest eigenvalue is
multiplied by 22: |λmax| = 4 · 3.5991 · 10−3 = 1.4396 · 10−2 ≈ 1.5198 · 10−2.
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Fig. 1.: The greatest eigenvalue in module of the ODE system (11) vs. number of
elements.

3.2. STIFFNESS AS FUNCTION OF THE
LENGTH OF THE ROD

Having fixed α2 and the number of elements of the discretization, the length of
the rod has been changed and the values of the greatest and smallest eigenvalues in
module have been analysed. A discretization of 20 elements and the materials epoxy
(Araldite) and epoxy/alumina have been considered in this analysis. The greatest and
smallest eigenvalues of each case have been computed in Table (2).

Length of |λmax| |λmin| |λmax| |λmin|
the rod (cm) epoxy epoxy epoxy/alum. epoxy/alum.

2 1.5198 · 100 3.1895 · 10−3 5.2897 · 100 1.1101 · 10−2

20 1.5198 · 10−2 3.1895 · 10−5 5.2897 · 10−2 1.1101 · 10−4

200 1.5198 · 10−4 3.1895 · 10−7 5.2897 · 10−4 1.1101 · 10−6

2000 1.5198 · 10−6 3.1895 · 10−9 5.2897 · 10−6 1.1101 · 10−8

20000 1.5198 · 10−8 3.1895 · 10−11 5.2897 · 10−8 1.1101 · 10−10

Table 2: Eigenvalues of the ODE system (11) vs. length of the rod.
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Conclusions:

The shorter the length of the rod, the greater all the eigenvalues of the ODE
system (11).

Given a rod of length l, if this is multiplied by x obtaining a new rod of length
l · x, the eigenvalues of the resulting new ODE system are multiplied by 1

x2 .

3.3. STIFFNESS AS FUNCTION OF THE
THERMAL DIFFUSIVITY

The number of elements of the discretization and the length of the rod are fixed,
and two materials with thermal diffusivities α2

1 and α2
2 are considered, which verify

α2
1 = k ·α2

2. Making use of (10) it is easy to verify that the resulting matrices −M−1
1 K1

and −M−1
2 K2 of the system (11) verify the same relation as the thermal diffusivities

−M−1
1 K1 = k ·

(
−M−1

2 K2
)
. (17)

Given two proportional matrices A and B, we will see which is the connection of
their characteristic polynomials. Given a matrix A, the notation that we will use to
denote its characteristic polynomial will be χA(λ) = det(λI − A).

Theorem 3.1. Given A a square matrix of dimension n and the matrix B = k · A,
which is obtained by multiplying A by an scalar k , 0, the characteristic polynomials
of both matrices verify:

χB(λ) = knχA

(
λ

k

)
(18)

As a consequence, the eigenvalues of B are the eigenvalues of A multiplied by the
scalar k.

Proof. Taking into account the definition of the characteristic polynomial:

χB(λ) = det(λI − B) =

∣∣∣∣∣∣∣∣∣∣∣∣
λ − b11 −b12 · · · −b1n
−b21 λ − b22 · · · −b2n
...

...
. . .

...
−bn1 −bn2 · · · λ − bnn

∣∣∣∣∣∣∣∣∣∣∣∣ (19)

where: bi j = k · ai j.
Dividing each of the rows of the determinant (19) by the constant k, the value of

the determinant is divided by kn:

χB(λ) = kn

∣∣∣∣∣∣∣∣∣∣∣∣∣
λ−b11

k
−b12

k · · · −b1n
k−b21

k
λ−b22

k · · · −b2n
k

...
...

...
...

−bn1
k

−bn2
k · · · λ−bnn

k

∣∣∣∣∣∣∣∣∣∣∣∣∣
= kn

∣∣∣∣∣∣∣∣∣∣∣∣
λ
k − a11 −a12 · · · −a1n
−a21

λ
k − a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · λ
k − ann

∣∣∣∣∣∣∣∣∣∣∣∣
(20)
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From (20) we have that:

χB(λ) = kndet
(
λ

k
I − A

)
= knχA

(
λ

k

)
⇒ χB(λ) = knχA

(
λ

k

)
(21)

So the relation (18) has been proved. Once proved (18), the next chain of equiva-
lences is obtained:

λ eigenvalue of B⇔ χB(λ) = 0⇔ χA

(
λ

k

)
= 0⇔ λ

k
eigenvalue of A (22)

Thus, if λ j is eigenvalue of A with multiplicity p, λ j · k is eigenvalue of B with
multiplicity p.

We have experimentally proved that the equality (18) is verified. The analysis
has been done using a rod of copper of length L = 20cm and another rod of the
same length but made of epoxy/alumina (100/188). The thermal diffusivities of both
rods are α2

ep.al. = 0.449 · 10−2 cm2/s and α2
copper = 1.0745 cm2/s. Both values

are experimental but they agree with the values given in [16] and [4]. The relation
between these diffusivities is given by:

k = α2
copper/α

2
ep.al. = 2.39 · 102 (23)

The eigenvalues of the resulting ODE systems have been obtained, see Table (3).
When the eigenvalues obtained for the material epoxy/alumina are multiplied by the
constant k (23), the eigenvalues of the copper are obtained.

Number of |λmax| |λmin| |λmax| |λmin|
elements epoxy/alum. epoxy/alum. copper copper

5 2.5575 · 10−3 1.1448 · 10−4 6.1203 · 10−1 2.7395 · 10−2

10 1.2527 · 10−2 1.1170 · 10−4 2.9979 · 100 2.6731 · 10−2

20 5.2897 · 10−2 1.1101 · 10−4 1.2659 · 10 2.6567 · 10−2

40 2.1453 · 10−1 1.1084 · 10−4 5.1338 · 10 2.6526 · 10−2

80 8.6108 · 10−1 1.1080 · 10−4 2.0607 · 102 2.6516 · 10−2

160 3.4473 · 100 1.1079 · 10−4 8.2498 · 102 2.6513 · 10−2

320 1.3792 · 101 1.1079 · 10−4 3.3006 · 103 2.6512 · 10−2

640 5.5172 · 101 1.1079 · 10−4 1.3203 · 104 2.6512 · 10−2

1280 2.2069 · 102 1.1079 · 10−4 5.2814 · 104 2.6512 · 10−2

Table 3: Eigenvalues of the ODE system (11) vs. number of elements.
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Conclusions:

The greater the thermal diffusivity, the greater the eigenvalues of the resulting
ODE system (11).

Given a value of a thermal diffusivity α2, if this value is multiplied by a con-
stant k, all the eigenvalues of the new ODE system are multiplied by the same
constant k. As the relation between the thermal diffusivities of the materials
epoxy/alumina and copper is given by (23), the connection that exists among
the eigenvalues of the jacobian matrices is exactly the same:

∣∣∣λmax,copper
∣∣∣ = 2.3931 · 102 ·

∣∣∣λmax,ep.al.
∣∣∣∣∣∣λmin,copper

∣∣∣ = 2.3931 · 102 ·
∣∣∣λmin,ep.al.

∣∣∣ (24)

4. STIFFNESS OF THE WAVE PDE

In Section (2) we have already seen that the FEM discretization of the wave PDE
(2) with (n + 2) nodes and (n + 1) elements leads to the ODE system (16). In this
section the eigenvalues of the jacobian matrix of the ODE system (16) have been
studied.

First of all, the relation between the eigenvalues of the ODE systems derived by the
diffusion and wave-type PDEs is proved. The previous relation between the eigen-
values of the jacobian matrices of these problems and the conclusions achieved in
the case of the diffusion PDE have been used in order to conclude the stiffness of the
problem (16) as function of the number of elements of the discretization, the length
of the string and the speed of propagation of the wave.

4.1. RELATION BETWEEN THE EIGENVALUES
OF THE ODE SYSTEMS DERIVED FROM
THE DIFFUSION AND WAVE-TYPE PDES

The jacobian matrices of the diffusion and wave-type PDEs are given by:

∂f
∂d
= A,

∂f
∂d
=

(
0 I
A 0

)
(25)

where A = −M−1K. In the following theorem the relation between the eigenvalues
of the matrices that verify (25) is proved.

Theorem 4.1. Let be A a square matrix of dimension n and B =
(
0 I
A 0

)
. Then, the

characteristic polynomials of both matrices verify:

χB(λ) = χA(λ2) (26)
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As a consequence of this result, the eigenvalues of the matrix B are the square root of
the eigenvalues of the matrix A.

Proof. The characteristic polynomial of B is given by:

χB(λ) = det
(
λI −I
−A λI

)
(27)

As A is a square matrix of dimension n, the matrix B has dimension 2n × 2n. If
in the determinant (27) the (n + i) column multiplied by λ is added to column i, and
this operation is repeated for the indexes i = 1, 2, 3, ..., n, obtaining the following
determinant:

χB(λ) = det
(
0 −I
C λI

)
(28)

where:

C =


−a11 + λ

2 −a12 · · · −a1n
−a21 −a22 + λ

2 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · −ann + λ

2

 = λ2I − A (29)

Taking into account (29), expression (28) results:

χB(λ) = det
(

0 −I
λ2I − A λI

)
(30)

We will develope the determinant (30) starting from the first row. All the elements
of this row except from the element of position (n + 1) are zero. Observe that the
element of this position is −1. Then, we will continue developing the resulting deter-
minant from row 2, until we reach the row n and we develope from this row. After
these developments we obtain:

χB(λ) = (−1)1+(n+1)(−1)(−1)2+(n+2)(−1)...(−1)n+2n(−1)det(λ2I − A)

= (−1)n(−1)(−1)n(−1)...(−1)n(−1)det(λ2I − A)

= (−1)n2+ndet(λ2I − A) = det(λ2I − A) = χA(λ2)

(31)

During the proof (31), it has to be taken into account that n2 + n = n(n + 1) is even.
Once the equality (26) is proved, the following chain of equivalences is obtained:

λ eigenvalue of B⇔ χB(λ) = 0⇔ χA(λ2) = 0⇔ λ2 eigenvalue of A (32)

Thus, if λ j is eigenvalue of A with multiplicity p, then, ±
√
λ j is eigenvalue of B with

multiplicity p.

In the Table (4) the greatest and smallest eigenvalues of the ODE systems derived
from the diffusion and the wave-type PDEs when α2 = 1 and L = 8, are tabulated.
We hereby confirm that the eigenvalues of the ODE system (16) resulted from the
wave-type PDE are the square root of the eigenvalues of the ODE system obtained
from the diffusion PDE (11).
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Number of λmax λmin λmax λmin

elements diffusion diffusion wave wave

50 −4.6737 · 102 −1.5426 · 10−1 ±2.1619 · 101i ±3.9270 · 10−1i
200 −7.4986 · 103 −1.5422 · 10−1 ±8.6595 · 101i ±3.9270 · 10−1i
800 −1.2000 · 105 −1.5421 · 10−1 ±3.4641 · 102i ±3.9270 · 10−1i

Table 4: Eigenvalues of the ODE systems derived from the diffusion and wave-type
PDEs, being α2 = 1 and L = 8.

4.2. STIFFNESS AS FUNCTION OF THE
NUMBER OF ELEMENTS OF THE
DISCRETIZATION

Having fixed α2 and the length of the string, we change the number of elements
of the discretization. We are interested in analysing the greatest and the smallest
eigenvalues in module. Real data of a string of a guitar made of carbon fiber wire is
considered [7]: length L = 0.648m, diameter d = 0.254 · 10−3m, area of the section
S = 0, 25 · π · d2, frequency f = 329.60Hz and tension T = 4 · ρ · L2 · f 2, being
ρ = 1750 · S the mass per unit length and 1750kg/m3 the mass per unit volume of the
carbon fiber. It is considered as if the string movement was linear.

Number of |λmax| |λmin|
elements

50 1.1366 · 105 2.0649 · 103

100 2.2757 · 105 2.0647 · 103

200 4.5526 · 105 2.0646 · 103

400 9.1062 · 105 2.0646 · 103

800 1.8212 · 106 2.0646 · 103

Table 5: Eigenvalues of the problem (16) for the cited string of a guitar.

The eigenvalues of the resulting first ODE system have been computed in Table
(5), and these are the conclusions:

The greatest eigenvalue of the ODE system (16) increases as the number of
elements of the discretization increases.

Given a discretization of m elements, if this quantity is multiplied by n obtain-
ing in this way a discretization of n ·m elements, the greatest eigenvalue of the
ODE system (16) is multiplied by n.
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Fig. 2.: The greatest eigenvalue of the problem (16) for a string of a guitar.

4.3. STIFFNESS AS FUNCTION OF THE
LENGTH OF THE STRING

Having fixed α2 and the number of elements of the discretization, strings of dif-
ferent lengths are considered and the greatest and smallest eigenvalues in module are
analysed. Taking into account the relation between the jacobian matrices of the ODE
systems (11) and (16) obtained after having discretized the corresponding PDEs, and
considering the conclusions achieved in Section (3.2), it can be concluded that:

The smaller the length of the string, the greater the eigenvalues of the ODE
system (16).

Given a string of length l, if this length is multiplied by x obtaining in this
way a new string of length l · x, the eigenvalues of the ODE system (16) are
multiplied by 1

x .

4.4. STIFFNESS AS FUNCTION OF THE WAVE
SPEED OF PROPAGATION

Having fixed the length of the string and the number of elements of the discretiza-
tion, the parameter α2 is changed. Taking into account the relation (26) and the
conclusions achieved in Section (3.3), we have:

The greater α2, the greater the eigenvalues of the ODE system (16).

Given a value of α2, if this value is multiplied by k, all the eigenvalues of the
ODE system (16) are multiplied by

√
k.
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5. CONCLUSIONS

In this paper the one-dimensional diffusion-type and wave-type linear Partial Dif-
ferential Equations (PDEs) with boundary conditions and initial conditions have been
considered. After applying the FEM discretization to these equations, in the case of
the diffusion-type PDE a first order ODE system is obtained and a second order ODE
system in the case of the wave-type PDE, which can be reduced to a first order ODE
system doubling the number of unknowns and equations.

The stiffness of the resulting ODE systems has been studied. It has been numeri-
cally proved that the ODE system that results after having discretized the diffusion-
type PDE presents more stiffness when the number of elements of the discretization is
increased or when the length of the rod is shortened. For the same system, it has been
proved analytically that the stiffness of the ODE system increases with the increase
of the thermal diffusivity.

It has also been proved the relation between the eigenvalues of the ODE systems
obtained from the diffusion-type and the wave-type PDEs, the eigenvalues of the lat-
ter ODE system being the square root of the eigenvalues of the first one. Taking into
account this result and the conclusions achieved for the ODE system that results from
the diffusion PDE, it is concluded that the ODE system that results after discretizing
the wave-type PDE presents more stiffness as the number of elements or the speed of
propagation are increased, or when the length of the string is shortened.
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