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1. INTRODUCTION

Recently, a large number of applications emphasize the role of anisotropic geo-
metric structures in modeling real-life phenomena (e.g., [2, 9, 5]). By applying a
statistical technique similar to the one used in [2], we shall construct three locally-
Minkowski Finslerian structures suitable for the Garner dynamical system of cancer
cell population. The structures of Randers, Euclidean and 4-root type, which are built
on the system data, provide information on the evolution of the cancer cell population
([6]). All the three metric tensor fields related to the fit structures are elements of the
Hilbert space of bounded and continuous (0, 2)-type d-tensors [9, 14]. The canonic
Euclidean metric δ is used to compare Finsler metrics within the Hilbert space and
to evaluate their norms. The comparison between the Randers and Euclidean type
norms was performed in [6, 7]. The goal of this work is to investigate the relevance
of the grid density towards the resulting Finsler-type structures.

2. THE GARNER DYNAMICAL SYSTEM

The subpopulations of abnormal cells responsible for the cancer disease contain
the so called cancer stem cells (CSCs), [15]. In this context, it is very important to de-
scribe changes in the cancer population, which contains three types of cells, [11, 13]:
proliferating, quiescent (resting) and dead ones, their abundance being determinant
in the prognostic of the cancerous disease.
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Fig. 1.: Transitions between the cell classes in the Solyanik and Garner cancer
evolution models

The evolution of the cancer cells population was firstly modeled in 1995 by means
of Solyanik’s dynamical system [16], and further improved by Garner et al. in [12].
The Garner dynamical system describes the evolution of the amounts of the quiescent
and proliferating cells: 

ẋ = x − x(x + y) +
hxy

1 + kx2

ẏ = −ry + ax(x + y) − hxy
1 + kx2 ,

(1)

where:

x = c
b x̃ and y = ca

b ỹ are scaled amounts of the population cells, and x̃ and ỹ are numbers of
proliferating and quiescent cells respectively;

a measures the relative nutrient uptake by resting vs. proliferating cancerous cells;

c gives the magnitude of the rate of cell transition from the proliferating to the resting state;

Ā is the initial rate of the increase at small x̃ of the intensity of cell transition from quiescent to
proliferating state;

Ā/B̄ is the rate of the decrease for large x̃ of of the intensity of cell transition from quiescent to
proliferating state;

r = d/b is the ratio between the death rate of quiescent cells and the birth rate of proliferating
cells;

h = Ā/(ac) represents a growth factor that preferentially shifts cells from quiescent to prolifer-
ating state;

k = B̄ · (b/c)2 represents a mild moderating effect.

Figure 1 shows the influence of the parameters on the change in the nature of cancer
cells in the population of a cancerous tissue.

The associated nullclines, equilibrium points, the appropriate versal deformation
and the static bifurcation diagram of the Garner system were studied in [3, 4].

When in the original GS system (1) the constant h = Ā/(ac) is negligible (0 <
|h| << 1) or vanishes, one obtains the reduced dynamical system (further denoted as
RS ) {

ẋ = x − x(x + y)
ẏ = −ry + ax(x + y). (2)
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In the original system GS , for significant values of h, one notices a malignant evo-
lution of the illness, which happens when the parameter a becomes negligible (this
might happen due to a small ratio of nutrient uptake of resting vs. proliferating cells,
which shows that the resources are absorbed mostly by the proliferating cells in the
detriment of quiescent cells), due to the fact that the parameter c might be negligible
(in such a case, the rate of cell transition from cancerous to the resting state is negli-
gible, and hence the evolution of the disease is either stationary, or worsening), or in
the case when the parameter Ā significantly increases (then the rate of increase of Q
is abruptly big at small x, i.e., the cell transition from the quiescent to cancerous cells
is intense).

We conclude that when these conditions are far from being achieved, i.e., when
the evolution of the disease is controlled (for 0 ≤ |h| << 1), then GS (1) can be
approximated by RS (2).

3. FINSLERIAN STRUCTURES

A Finsler space is a differential manifold M endowed with the fundamental func-
tion F (Finslerian norm), defined as follows ([8, 10, 9])

Definition 3.1. A real scalar function F : T M → [0,∞) is called a Finsler funda-
mental function if it satisfies the following properties:

1 F is smooth on the slit tangent space T M \ {0} = {(x, y)|x ∈ M, y ∈ TxM, y ,
0} and is continuous on the image of the null section of the tangent bundle
(T M, π, M);

2 F is positively 1-homogeneous in the directional argument, i.e.,
F(x, λy) = λF(x, y), ∀λ > 0;

3 the smooth maps gi j : T M \ {0} → R, i, j ∈ 1, n given by

gi j =
1
2
∂2F2

∂yi∂y j , (3)

form the symmetric positive definite matrix, [g] = (gi j)i, j∈1,n, and are the com-
ponents of the Finsler metric tensor field g = gi jdxi ⊗ dx j.

Also, in the case when [g] is not positive definite, but non-degenerate, and with con-
stant signature, then (M, F) is called pseudo-Finsler structure [5].

The fundamental metric g = gi j(x, y)dxi ⊗ dx j of a Finsler manifold is a d-tensor
on the tangent space [8, 10].

We shall consider extensions of this definition, by assuming that the domain of
F is a strict subset of T M, and that the operations within the fibres are feasible. A
significant geometric object derived from the Finsler structure is the Cartan tensor
[8, 9, 10],

Ci jk =
1
2
∂gi j

∂yk =
1
4

∂3F2

∂yi∂y j∂yk . (4)
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This is a (0, 3)-type, totally symmetric d-tensor on the tangent space and it is posi-
tively homogeneous of order −1. It reflects the non-Riemannian nature of the struc-
ture, since the Finsler metric tensor field reduces to a Riemannian one if and only if
the Cartan tensor vanishes.

Both the Finsler metric gi j and the Cartan tensor field Ci jk, depend on the tangent
space coordinates (x, y), and belong to Hilbert spaces of (bounded and continuous)
d-tensor fields of the corresponding type, (0, 2) and (0, 3), respectively [9, 14]. Gen-
erally, the scalar product which provides the Hilbert structure generally acts on a pair
of two (0,m)-tensors A and B by means of the formula:

⟨A,B⟩h = Ai1 ...im hi1 j1 . . . him jmBi1 ...im ,

for a given regular metric (0, 2)-tensor with components hi j. In this work we use the
canonical Euclidean metric h = δ, which naturally allows to evaluate the norm of the
Finsler metrics,

||g|| =
√
⟨g, g⟩δ =

√
Trace(gi jg jk). (5)

In order to compare the corresponding Cartan tensors, we use the Frobenius norm

||C||g =
√

Ci jkgirg jsgktCrst. (6)

The Finsler fundamental functions considered in [6, 7] and in this work are chosen
to be of locally Minkowski type. This infers that the numerous related to them ge-
ometric objects considerably simplify: the geodesics are (pieces of) straight lines,
the KCC invariants vanish, the Berwald linear connection is trivial [1, 9]. In fact,
the Finsler structures will provide point-independent norms, Finsler norms of the
Minkowski type. We shall determine by statistical fitting three such norms, having
the following prescribed forms:

FR(y) =
√
δi jyiy j + biyi =

√
(y1)2 + (y2)2 + b1y1 + b2y2, (7)

FE(y) =
√

c1 · (y1)2 + c2 · y1y2 + c3 · (y2)2, (8)

FQ(y) = 4
√

q1 · (y1)4 + q2 · (y1)3y2 + q3 · (y1)2(y2)2 + q4 · y1(y2)3 + q5 · (y2)4, (9)

where the real constants b1,2, c1,2,3 and q1,2,3,4,5 are parameters of the three Finsler
structures.

4. SAMPLING AND STATISTICAL FITTING

The basic assumption in this work is that both systems, the Garner and the reduced
ones, have grossly resembling field lines. The main idea of the fitting is determine by
least-squares fitting the coefficients of prescribed-type Finslerian norms, numerically
given by the Euclidean norm of the slightly shifted velocity vector. The constructing
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process of the measuring Finslerian tool is presented in the following scheme:
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The configuration space of the Garner dynamical system (and of the reduced system,
as well) is a bounded subset of K ⊂ K+ = {p = (x, y) | x > 0, y > 0} ⊂ R2, containing
a large class of possible states. The field lines of the reduced system (2), which is
considered for the parameter values a = 1.998958904 and r = 0.03 (see [12]), yield
a vector subset D of the tangent space T K+, containing related feasible directions
ṗ = (ẋ, ẏ) ∈ TpK+. By using the theorem of inverse function, the polynomial form of
the reduced system enables a reverse association ṗ = (ẋ, ẏ)  p = (x, y), given by
the second of the possible reverse mappings σ1 and σ2. Precisely, the second degree
of the polynomials yields two p-domains, the subsets K1,2 ⊂ K+, of which we choose
just one in the statistical fitting. Further, by using the Garner vector field XG with
the parameter values h = 1.236 and k = 0.236 ([3, 12]), we associate to the detected
point p = (x, y) (and hence, to the initial vector ṗ ∈ D, the corresponding shifted
vector ṗe ∈ V .

The super-determined linear system which gives the coefficients of the Finsler
norm is

||ṗ||F = ||ṗe||E . (10)

The discretization is achieved by a grid spanned over the coordinates of the feasible
directions over the p-domain K2 and V:

Gr(D)

π2

����

|| · ||F // R

Gr(K2) σ
// Gr(V)

|| · ||E

OO

The grid defines a discrete sample volume N, and leads to the approximation problem
(10), which produces the system of linear equations in the unknown parameters of
the Finsler structure. The three Finsler structures of Randers, Euclidean and 4-root
type, which are related to the Garner oncologic framework live on the 2-dimensional
configuration space, and depend on parameter-coefficients, as follows:

FR(ẋ, ẏ) =
√

ẋ2 + ẏ2 + b1 ẋ + b2ẏ, (11)

FE(ẋ, ẏ) =
√

c1 ẋ2 + c2 ẋẏ + c3ẏ2, (12)
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FQ(ẋ, ẏ) = 4
√

a(ẋ)4 + b(ẋ)3(ẏ) + c(ẋ)2(ẏ)2 + d(ẋ)(ẏ)3 + e(ẏ)4. (13)

The corresponding over-determined linear systems (k ∈ 1,N, N >> 5) are

b1 ẋk + b2ẏk =

√
(ẋe)2

k + (ẏe)2
k −

√
ẋ2

k + ẏ2
k , (14)

c1 ẋ2
k + c2 ẋkẏk + c3ẏ2

k = (ẋe)2
k + (ẏe)2

k , (15)

a(ẋ)4
k + b(ẋ)3

k(ẏ)k + c(ẋ)2
k(ẏ)2

k + d(ẋ)k(ẏ)3
k + e(ẏ)4

k =
(
(ẋe)2

k + (ẏe)2
k

)2
, (16)

and allow to statistically fit the values b1,2, c1,2,3 and a, b, c, d, e by the method of least
squares.

We note that the uniform grid over the domain of the feasible directions provides
the needed inputs for the fitting process. Maple computation produces the corre-
sponding polar (ρ, θ)-domain of the field lines of the Garner system,

Iρ × Iθ = [0.329915, 0.888939] × [1.0988, 1.51452],

a grid with N = (nρ + 1)(nθ + 1) knots

(ρi, θ j) ∈ Iρ × Iθ, (i, j) ∈ 0, nρ × 0, nθ.

The Cartesian domain of the feasible directions is
φ(Iρ × Iθ) = I1 × I2 = [0.05, 0.1596] × [0.293844, 0.887532],

and the used grid consists of scaled spherical harmonics regarded as tangent vectors
ṗk = (ẋk, ẏk) = (ρi cos θ j, ρi cos θ j) ∈ D = I1 × I2, k ∈ 1,N

where k = (i − 1)nρ + j ∈ 1,N.

5. THE GARNER MODEL GEOMETRIC
STRUCTURES

5.1. THE RANDERS STRUCTURE

By considering first nρ = nθ = 5, the grid produces N = 62 samples and the least
square method yields the structure

FR6 (ẋ, ẏ) =
√

ẋ2 + ẏ2 + b1 ẋ + b2ẏ,
{

b1 = 0.628481987778205518
b2 = −0.269476980932055964 . (17)

A denser grid, with N = 112 samples (nρ = nθ = 10), leads to

FR11 (ẋ, ẏ) =
√

ẋ2 + ẏ2 + b1 ẋ + b2ẏ,
{

b1 = 0.629387435652307036
b2 = −0.269842591353006478 . (18)

The difference between the two output Randers norms is linear. The metrics are pos-
itively definite in both cases and their corresponding quadratic forms for the flagpole
(0.1, 1) differ by a smooth function, see Fig. 2.
By the use of (5) and (6), we compare the main geometric objects. Namely, the
norm shift of the two metric tensors is presented in Fig. 3; as well, the shift in the
corresponding Cartan tensors may be visualized by means of the Frobenius norm
difference.
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Fig. 2.: Plot of the differences between the Randers type norms and the quadratic
forms for the flagpole (0.1,1).

Fig. 3.: Plot of the differences between the norms of the metric and of the Cartan
tensors.

5.2. THE EUCLIDEAN STRUCTURE

While considering the same grids as in the Randers cases, by means of Maple
computation were produced the corresponding Euclidean structures,

FE6 (ẋ, ẏ) =
√

c1 ẋ2 + c2 ẋẏ + c3ẏ2,


c1 = 0.940805414623426476
c2 = 1.1618981099466366898
c3 = 0.49606955256298342684 ;

FE11 (ẋ, ẏ) =
√

c1 ẋ2 + c2 ẋẏ + c3ẏ2,


c1 = 0.9410833252243357681
c2 = 1.1625673640632761441
c3 = 0.49532779047950288618 .

The differences between the fundamental functions and the quadratic forms are pre-
sented in Fig. 4.
The norms of the metric tensors differ by the constant

||gE6 || − ||gE11 || = 0.0000790171747404138 ,

and the Cartan tensors of both structures identically vanish.
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Fig. 4.: Plots of the differences between the Euclidean type norms
and the quadratic forms for the flagpole (0.1, 1).

5.3. THE 4-TH ROOT STRUCTURE

Similar to the previous two cases, one may consider for the two sample grids the
corresponding two 4-th root structures

FQ6(ẋ, ẏ) = 4√r6, FQ11(ẋ, ẏ) = 4√r11,

where

r6 = aẋ4 + bẋ3ẏ + cẋ2ẏ2 + dẋẏ3 + eẏ4,


a = −0.320013354328217758
b = 2.69642032805366582
c = 2.42492765757201711
d = 1.07381846633249766
e = 0.254991915496320776 ,

r11 = aẋ4 + bẋ3ẏ + cẋ2ẏ2 + dẋẏ3 + eẏ4,


a = −0.289482051414178930
b = 2.66511548305001610
c = 2.43544697363887463
d = 1.07031294832363754
e = 0.254462441585350418 .

The differences between the fundamental functions and between the quadratic forms
for the flag (0.1, 1) can be seen in Fig. 5.

Fig. 5.: Plot of the differences between the 4−th root type norms
and the quadratic forms for the flagpole (0.1, 1).

The Frobenius norms of the two Cartan tensors related to the two 4-th root struc-
tures significantly differ, but have the same form (Fig. 6). All the three statistically
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Fig. 6.: Plot of the differences between the norms of Cartan tensors

built Finslerian structures were constructed on the tangent bundle of the configu-
ration space of the Garner dynamical system. Among them, the Randers structure
explains the anisotropy of the changes of the disease progress. The Euclidean struc-
ture emphasizes the difference of the type of changes of proliferating vs. quiescent
cells. The 4-th root norm FQ(y) = 4

√
P4(y) has its (0, 4) tensor induced by halving the

4-homogeneous quadratic polynomial P4(y), important for PCA spectral data. The
norms of the related Cartan tensors give information on the degree of anisotropic
character of the geometric structures. As well, the comparison of the three pairs of
the same type structures (provided by grid density - variation) shows that the density
increase has a significant impact especially in the case of 4-type structure, while for
Euclidean type structures, the difference is very slight.

We finally note that the comparison of the rough vs. refined Finsler structures
constructed for the Garner model was enabled by the standard Hilbert structure on the
space of (0,2) and (0,3) Finsler-type tensors, which respectively contain the metric
tensor fields (Randers, Euclidean and m-th root) and the Cartan tensor fields. The
Hilbert structure allows, as well, to determine and investigate the relevance of the
norms, the conformal projective factor to the standard Euclidean structure, and the
deviation angle from the projection.
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