THE GEOMETRY OF LAGRANGE AND HAMILTON SPACES

Radu Miron
Faculty of Mathematics, Alexandru Ioan Cuza University of Iaşi, Romania,
Member of the Romanian Academy
radu.g.miron@gmail.com

Abstract
This paper is an overview of the main properties of Lagrange and Hamilton spaces.
Work presented as invited lecture at CAIM 2014, September 19-22,
"Vasile Alecsandri" University of Bacău, Romania.

Keywords: Lagrange spaces, Hamilton spaces.
2010 MSC: 53C60, 53D06.

1. INTRODUCTION

The geometry of Lagrange spaces, introduced and studied by R. Miron and his collaborators was extensively examined in the last 25 years by geometers and physicists from: Canada, Germany, Hungary, Italy, Japan, Romania, Russia, Yugoslavia, India, Egypt and USA. Many international conferences were devoted to debate this subject, proceedings and monographs were published, especially by Kluwer Academic Publishers. A large area of applicability of this geometry is suggested by the connection to Biology, Mechanics and Physics and also by its general setting as a generalization of Finsler and Riemannian geometries.

The concept of Hamilton space, introduced by R. Miron in 1987, was intensively studied in Romania, Japan and Canada as a geometric theory of the Hamiltonian function, a fundamental entity in Mechanics and Physics. The classical Legendre’s duality makes possible a natural connection between Lagrange and Hamilton spaces. It reveals new concepts and geometrical objects of Hamilton spaces that are dual to those which are similar in Lagrange spaces. Following this duality it has been introduced the Cartan spaces, as dual of Finsler spaces.

In Lagrange geometry, the following sequence is fundamental

\{R^n\} \subset \{F^n\} \subset \{L^n\} \subset \{GL^n\}

where \{R^n\} - Riemann spaces, \{F^n\} - Finsler spaces, \{L^n\} - Lagrange spaces, \{GL^n\} - generalized Lagrange spaces.

In Hamilton geometry, we have

\{\mathcal{R}^n\} \subset \{\mathcal{C}^n\} \subset \{\mathcal{H}^n\} \subset \{GH^n\}
where \(\{\mathcal{R}^n\}\) - Riemann spaces (given by \(g^{ij}\)), \(\{\mathcal{C}^n\}\) - Cartan spaces, \(\{H^n\}\) - Hamilton spaces, \(\{GH^n\}\) - generalized Hamilton spaces.

These sequences are related by Legendre diffeomorphism.

The geometry of Lagrange and Hamilton spaces is the geometrical theory of these two sequences. The applications in Mechanics, Relativity, Relativistic Optics, Variational Calculus, Optimal Control or Biology use the previous sequences.

There is a natural extension of this geometry given to the higher-order Lagrange and Hamilton geometry. Considering the higher-order acceleration bundle \((T^kM, \pi^k, M)\) we introduced the notion of Lagrange space of order \(k\), as a pair \(L^{(k)n} = (M, L)\), \(M\) being a real \(n\)-dimensional manifold and \(L : T^kM \to \mathbb{R}\) being a regular Lagrangian of order \(k\).

Remark. In the first my visit at the University of Alberta in Edmonton (1995), P. L. Antonelli questioned me: "Have you examples of the regular Lagrangians of order \(k \geq 3\)?" I was surprised to constat that at that time there were no such kind of examples. This difficulty came from the fact that the old problem, formulated by Bianchi and Bompiani, of the prolongation of the Riemannian structure \(g\), defined on the base manifold \(M\) to the bundle \(T^kM\) has not been solved yet.

So I was forced to solve this problem in order to apply it in the construction of the geometry of the spaces \(L^{(k)n}\), obtaining the following sequence

\[
\{\mathcal{R}^{(k)n}\} \subset \{\mathcal{F}^{(k)n}\} \subset \{L^{(k)n}\} \subset \{GL^{(k)n}\}
\]

where \(\{\mathcal{R}^{(k)n}\}\) - Riemann spaces of order \(k\), \(\{\mathcal{F}^{(k)n}\}\) - Finsler spaces of order \(k\), \(\{L^{(k)n}\}\) - Lagrange spaces of order \(k\), \(\{GL^{(k)n}\}\) - generalized Lagrange spaces of order \(k\).

Kluwer Academic Publishers published this geometry in FTPH, 1997, nr.82.

The dual notion of the bundle \((T^kM, \pi^k, M)\) is defined by \((T^{*k}M, \pi^{*k}, M)\) where \(T^{*k}M = T^{k-1}M \times_M T^*M\), \(\pi^{*k} = \pi^{k-1} \times \pi^*\), \((T^*M, \pi^{*}, M)\) being the cotangent bundle of the manifold \(M\).

A Hamiltonian space of order \(k\) is a pair \(H^{(k)n} = (M, H)\) where \(H : T^{*k}M \to \mathbb{R}\) is a regular Hamiltonian. One obtains a sequence similar with the previous and an extension of the Legendre transformation.

The geometry of the spaces \(H^{(k)n}\) will be published in a book, this year, by Kluwer Academic Publishers FTPH.

Geometry of \(TM\) (few notions and notations):

The change of coordinates on tangent bundle \(TM\)

\[
\begin{align*}
\tilde{x}^i &= \tilde{x}^i(x^j), & \text{rank} \left\| \frac{\partial \tilde{x}^i}{\partial x^j} \right\| &= n \\
\tilde{y}^i &= \frac{\partial \tilde{x}^i}{\partial x^j} y^j
\end{align*}
\]

(1)

where \(\tilde{x}^i = \tilde{x}^i(x^j)\) is a change of coordinate on \(M\).
The geometry of Lagrange and Hamilton spaces

V - vertical distribution \(\left(\frac{\partial}{\partial y^i} \right)_{|T_\pi^*} \)

\(\Gamma \)- Liouville vector field

Tangent structure \(J \left(\frac{\partial}{\partial x^i} \right) = \frac{\partial}{\partial y^i}, \quad J \left(\frac{\partial}{\partial y^i} \right) = 0 \)

Semispray \(S \in \chi(TM), \quad JS = \Gamma \)

\[S = y^j \partial x^i - 2G^i(x,y) \partial y^j. \]

Integral curves

\[y^j = \frac{dx^j}{dt}, \quad \frac{dy^i}{dt} + 2G(x,y) = 0 \]

\(G^i \)- coefficients, \(\widetilde{T}M = TM \setminus \{0\} \).

2. LAGRANGE SPACES

Let \(M \) be a differentiable manifold and \((TM, \pi, M)\) its tangent bundle. A differentiable Lagrangian is a mapping \(L : TM \to \mathbb{R} \) which is smooth on \(\widetilde{T}M \) and continuous on the null section \(0 : M \to TM \) of the projection \(\pi : TM \to M \).

Definition 2.1. A Lagrange space is a pair \(L^n = (M, L) \) satisfying the axioms:

1) \(L : TM \to \mathbb{R} \) is differentiable of class \(C^\infty \) on \(\widetilde{T}M \) and continuous on the null section of projection \(\pi : TM \to M \),

2) the Hessian of \(L \) is nonsingular,

a) \(g_{ij} = \frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j} \),

b) \(\text{rank} \| g_{ij} \| = n \),

3) the tensor field \(g_{ij} \) has a constant signature on \(\widetilde{T}M \).

Let \(c : t \in [0,1] \to (x^i(t)) \in U \subset M \) be a curve. The action integral of the Lagrangian \(L \) on \(c \) is given by

\[I(c) = \int_0^1 L(x(t), \frac{dx}{dt}) \, dt. \]

Then, the Euler-Lagrange Equation is

\[E_i(L) := \frac{\partial L}{\partial x^i} - \frac{d}{dt} \frac{\partial L}{\partial y^i} = 0, \quad y^i = \frac{dx^i}{dt} \]

while the energy of \(L \) is

\[E_L = y^j \frac{\partial L}{\partial y^j} - L. \]

Law of conservation: For any differentiable Lagrangian \(L(x,y) \) the energy \(E_L \) is conserved along every solution curve \(c \) of the Euler-Lagrange equations

\[E_i(L) = 0, \quad \frac{dx^i}{dt} = y^i. \]
Nöther theorem: For any infinitesimal symmetry on $M \times \mathbb{R}$ of the Lagrangian $L(x,y)$ and for any smooth function $\Phi(x)$ the following function

$$F(L, \Phi) = V^i \frac{\partial L}{\partial y^i} - \tau E_L - \Phi(x)$$

is conserved on every solution curve c of the Euler-Lagrange equations $E_i(L) = 0$, $\frac{dx^i}{dt} = y^i$.

For a Lagrange space L^n the Euler-Lagrange equation has the form

$$\frac{d^2 x^i}{dt^2} + 2G^i(x, \frac{dx}{dt}) = 0, \quad y^i = \frac{dx^i}{dt}$$

where

$$2G^i(x, y) = \frac{1}{2} g^{ij} \left(\frac{\partial^2 L}{\partial y^j \partial y^h} y^h - \frac{\partial L}{\partial x^i} \right)$$

are the coefficients of the canonical semispray S.

The geometry of L^n can be constructed only by means of geometric objects L, g^{ij}, S.

The nonlinear connection N:

$$T_u = N_u \oplus V_u, \quad \forall u \in TM$$

has the adapted basis $\{ \frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^j} \}$:

$$\frac{\partial}{\partial x^i} = \frac{\partial}{\partial x^i} - N^j_i \frac{\partial}{\partial y^j}$$

It is canonical determined by S because:

$$N^j_i = \frac{\partial G^i_j}{\partial y^j}.$$

If D is an N-linear connection with the coefficients $D \Gamma(N) = (L^i_{jk}, C^i_{jk})$ the h- and v- covariant derivation of the fundamental tensor are:

$$g_{ij}k = \frac{\delta g_{ij}}{\delta x^k} - g_{sj}L^s_{jk} - g_{is}L^i_{jk}$$

$$g_{ij}l = \frac{\delta g_{ij}}{\delta y^k} - g_{sj}C^s_{lk} - g_{is}C^i_{lk}.$$

The coefficients $D \Gamma(N) = (L^i_{jk}, C^i_{jk})$ of D are expressed by the following generalized Christoffel symbols:

$$L^i_{jk} = \frac{1}{2} g^{ij} \left(\frac{\delta g_{ik}}{\delta x^j} + \frac{\delta g_{jk}}{\delta x^i} - \frac{\delta g_{ij}}{\delta x^k} \right)$$

$$C^i_{jk} = \frac{1}{2} g^{ij} \left(\frac{\delta g_{ik}}{\delta y^j} + \frac{\delta g_{jk}}{\delta y^i} - \frac{\delta g_{ij}}{\delta y^k} \right).$$
An N-connection $D\Gamma(N)$ is metrical if
\[g_{ij} = 0, \quad g_{ij} | k = 0. \]

Dual adapted basis is $(dx^i, \delta y^i)$ with $\delta y^i = dy^i + N^j_i dx^j$.

Then, the 1-forms connection of $D\Gamma(N)$ are
\[\omega^i_j = L^i_{jk} dx^k + C^i_{jk} \delta y^k \]
while the structure equations are:
\[
\begin{align*}
 d(dx^i) - dx^k \wedge \omega^i_k &= (0)^i_j \\
 d(\delta y^i) - \delta y^k \wedge \omega^i_k &= (1)^i_j \\
 d\omega^i_j - \omega^i_k \wedge \omega^i_k &= -\Omega^i_j.
\end{align*}
\]
Here the 2-forms of torsion Ω and Ω^1 are:
\[
(0)^i_j = C^i_{jk} dx^j \wedge \delta y^k \\
(1)^i_j = \frac{1}{2} R^i_{jkl} dx^j \wedge dx^l + P^i_{jkl} dx^j \wedge \delta y^k
\]
where
\[
R^h_{ij} = \frac{\delta N^h_i}{\delta x^j} - \frac{\delta N^h_j}{\delta x^i}, \quad P^i_{jk} = \frac{\partial N^i_j}{\partial y^k} - L^i_{jk}.
\]

The 2-forms of curvature Ω^1_j are given by
\[
\Omega^1_j = \frac{1}{2} R^1_{jkl} dx^k \wedge dx^l + P^1_{jkl} dx^k \wedge \delta y^l + \frac{1}{2} S^1_{jkl} \delta y^k \wedge \delta y^l
\]
where
\[
R^1_{i}^{jk} = \frac{\delta L^1_{i}}{\delta x^j} - \frac{\delta L^1_{i}}{\delta x^k} + L^s_{i1} L^1_{sj} - L^s_{i1} L^1_{sj} + C^i_{jk} R^s_{ij} \\
P^1_{i}^{jk} = \frac{\partial C^1_{i}}{\partial y^j} - C_{hkl} + C_{hls} P^1_{ij} \\
S^1_{i}^{jk} = \frac{\delta C^1_{i}}{\delta x^j} - \frac{\delta C^1_{i}}{\delta x^k} + C_{ij} C^1_{sk} - C_{ik} C^1_{sj}.
\]
Ricci tensors are defined by:
\[
R_{ij} = R^k_{ijk}, \quad P_{ij} = P^k_{ijk}, \quad \frac{1}{2} P_{ij} = P^k_{ijk}, \quad S_{ij} = S^k_{ijk}.
\]
Theorem 2.1. In the adapted frame the Einstein equations are:

\[
\begin{align*}
R_{ij} - \frac{1}{2} R g_{ij} &= \kappa T_{ij} \\
S_{ij} - \frac{1}{2} S g_{ij} &= \frac{2}{3} \kappa T_{ij} \\
P_{ij} &= \kappa T_{ij} \\
\end{align*}
\]

The law of conservation is:

\[
\left\{ R^i_j - \frac{1}{2} R^k_l \right\}_{ji} + \frac{1}{2} P^i_j = 0.
\]

Electromagnetic field

Let us consider a Lagrange space \(L^n = (M, L) \) endowed with the canonical nonlinear connection \(N \) and with the canonical metrical N-connection \(CT(N) = (L^i_{jk}, C^i_{jk}) \). The covariant deflection tensors \(D_{ij} \) and \(d_{ij} \) are given by \(D_{ij} = g_{is} D_{sj} \), \(d_{ij} = g_{is} d_{sj} \). The d-tensor fields

\[
F_{ij} = \frac{1}{2}(D_{ij} - D_{ji}), \quad f_{ij} = \frac{1}{2}(d_{ij} - d_{ji})
\]

are the h- and v-electromagnetic tensor of the Lagrange space \(L^n = (M, L) \). The following generalized Maxwell equations hold:

\[
\begin{align*}
F_{ijk} + F_{jki} + F_{kij} &= -\sum_{(ijk)} C_{\partial^s} R^s_{jk} \\
F_{ijl} + F_{jil} + F_{ilk} &= 0
\end{align*}
\]

where \(C_{\partial^s} = C_{ijk} y^j \) and \(\sum_{(ijk)} \) means cyclic sum.

Almost Kählerian model of space \(L^n \)

A Lagrange space \(L^n = (M, L) \) can be thought as an almost Kähler space on the manifold \(\overline{T M} = M \setminus \{0\} \). The canonical nonlinear connection \(N \) determines an almost complex structure \(F(\overline{T M}) \) where

\[
F = \frac{\delta}{\delta x^i} \otimes \delta y^j - \frac{\partial}{\partial y^i} \otimes dx^i.
\]

The lift of the fundamental tensor \(g_{ij} \) of \(L^n \) with respect to \(N \) is defined by:

\[
G = g_{ij} dx^i \otimes dx^j + g_{ij} \delta y^j \otimes \delta y^i.
\]

Then \((G, F) \) is an almost Kählerian space with the almost symplectic structure associated to \((G, F) \) given by

\[
\theta = g_{ij} \delta y^j \wedge d^i.
\]
Theorem 2.2. The canonical connection D with coefficients $CT(N) = (L^i_{jk}, C^i_{jk})$ of the Lagrange space L^n is an almost Kählerian connection, i.e.

$$DG = 0, \ DF = 0.$$

Finsler Spaces

Theorem 2.3. A Finsler space is a pair $F^n = (M, F(x,y))$, where M is a real n-dimensional differentiable manifold and $F : TM \to \mathbb{R}$ is a mapping which satisfies the following axioms:

1) F is a differentiable function on TM and is only continuous on the null section of the projection $\pi : TM \to M$,
2) F is a positive function,
3) F is positively 1-homogeneous with respect to the variables y^i,
4) the Hessian of F^2 with the elements

$$g_{ij}(x,y) = \frac{1}{2} \frac{\partial F^2}{\partial y^i \partial y^j}$$

is positively defined on TM.

Any Finsler space $F^n = (M, F(x,y))$ is a Lagrange space $L^n_F = (M, F^2(x,y))$. Then

$$S = y^i \frac{\partial}{\partial x^i} - 2G^i(x,y) \frac{\partial}{\partial y^i}$$

is a spray which allows to define a Cartan nonlinear connection. This Cartan connection helps to get canonical Cartan metrical connection.

An example of a special Lagrange space derived from a Finsler $F^n = (M, F(x,y))$ is defined by means of function $L(x,y) = F^2(x,y) + b_i(x)y^i$; this Lagrange space is called the almost Finsler Lagrange Space (shortly AFL-space). These spaces generalize the Lagrange space from Electrodynamics.

Generalized Lagrange spaces

Definition 2.2. A generalized Lagrange space is a pair $GL^n = (M, g_{ij}(x,y))$, where $g_{ij}(x,y)$ is a d-tensor field on the manifold TM, of type $(0,2)$, symmetric, of rank n and having a constant signature on TM.

This notion was introduced by author.

For a generalized Lagrange space GL^n an important problem is to determine a nonlinear connection obtained from the fundamental tensor $g_{ij}(x,y)$. To this end we consider the absolute energy $\varepsilon(x,y) = g_{ij}(x,y)y^iy^j$. In certain conditions $\varepsilon(x,y)$ is a Lagrangian for which we get easily its Euler-Lagrange equations. These equations
Radu Miron
determine a semispray which allows to get the nonlinear connection N and to study the geometry of pair (GL^n, N) by the methods of the geometry of Lagrange space L^n. The model of GL^n is not almost Kählerian space.

Applications in Theoretical Physics
The pair $GL^n = (M, g_{ij}(x, y))$
$g_{ij}(x, y) = mc\gamma_{ij}(x) + \left(1 - \frac{1}{n^2(x, y)}\right)y_i y_j$
where $\gamma_{ij}(x)$ is a pseudo-Riemannian metric and $n(x, y) > 1$ is a smooth function, give us a generalized Lagrange space GL^n which is not reducible to a Lagrange space. This metric has been called by R.Beil the Miron metric from Relativistic Optics.

Hamilton Spaces
Definition 2.3. A Hamilton space is a pair $H^n = (M, H(x, p))$, where $H(x, p)$ is a real function on the momentum space $T^*(M)$ having the following properties:

1) $H : T^* M \rightarrow \mathbb{R}$ is differentiable on $T^*M = T^* M \setminus \{0\}$ and only continuous on the null section of projection π.

2) the Hessian of H, with the elements

$$g^{ij} = \frac{1}{2} \partial^i \partial^j H$$

is nonsingular, i.e. $\det(g^{ij}) \neq 0$ on $T^* M$

3) the 2-form $g^{ij}(x, p)\eta_i \eta_j$ has a constant signature on $T^* M$.

Recall that on $T^*(M)$ there exists a globally defined the Liouville 1-form

$$\omega = p_i dx^i$$

and a natural symplectic structure $\theta = d\omega = dp_i \wedge dx^i$.

There exists a unique vector field X_H on $T^* M$ such that $i_{X_H}\theta = -dH$.

The integral curve of X_H are given by the Hamilton-Jacobi equations

$$\frac{dx^i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial x_i}.$$

The variational problem applied to the action integral of H^n

If

$$c : t \in [0, 1] \rightarrow (x^i(t), p_i(t)) \in T^* M$$

then the action integral:

$$I(c) = \int_0^1 [p_i \frac{dx^i}{dt} - \frac{1}{2} H(x(t), p(t))] dt$$
The geometry of Lagrange and Hamilton spaces gives us the Hamilton-Jacobi equations.

There is a canonical nonlinear connection and a N-linear connection which depend on the Hamiltonian H only.

The geometry of H^n can be lifted to the total space of cotangent bundle. One obtains an almost Kählerian space.

Application of Hamilton space to electrodynamics

A Hamiltonian mechanical system is a triple $\Sigma_H = (M, H(x, p), F_e(x, p))$ where $H^n = (M, H(x, p))$ is a Hamilton space and $F_e(x, p) = F_i(x, p)\dot{y}$ is a given vertical vector field on the momenta space T^*M. F_e is called the external forces field.

The evolution equations of the Hamiltonian mechanical system Σ_H are the following Hamilton equations:

$$\frac{dx^i}{dt} - \dot{\partial}\zeta = 0, \quad \frac{dp^i}{dt} + \partial\zeta = \frac{1}{2} F_i(x, p), \quad \zeta = \frac{1}{2} H.$$

Consider $H^n = (M, H(x, p))$ the Hamilton space of electrodynamics

$$H(x, p) = \frac{1}{mc}y^j(x)p_jp_j - \frac{2e}{m^2c}A^i(x)p_i + \frac{e^2}{m^2c}A^i(x)A_i(x)$$

and $F_e(x, p) = F_i(x, p)\dot{y}$. Then Σ_H is a Hamiltonian mechanical system determined only by H^n.

Proposition 2.1. The fundamental function $H(x, p)$ of the Hamiltonian mechanical system Σ_H is decreasing on the evolution curves of Σ_H, if and only if the external forces F_e are dissipative.

Legendre differentiation is a mapping locally defined by:

$$\mathcal{L} : L^n = (M, L(x, y)) \to H^n = (M, H(x, p)), \quad x^i = x^i, \quad p_i = \frac{1}{2} \frac{\partial L}{\partial \dot{x}^i}$$

$$\phi(x, y) = (x^i, \dot{\partial}_j \mathcal{L}(x, y));$$

it transforms fundamental object fields of L^n into fundamental object fields of H^n.

Cartan spaces

Definition 2.4. A Cartan space is a pair $C^n = (M, K(x, p))$ where M is a real n-dimensional smooth manifold and $K : T^*M \to \mathbb{R}$ is a scalar function which satisfies the following axioms:

1) K is a differentiable function on T^*M and only continuous on the null section of the projection $\pi^* : T^*M \to M$.
2) K is a positive function on the manifold T^*M.
3) K is positive 1-homogeneous with respect to the momenta p_i.

4) the Hessian of K^2 with the elements

$$g^{ij}(x, p) = \frac{1}{2} \frac{\partial^2}{\partial x^i \partial x^j} K^2$$

is positively defined on T^*M.

A particular class of Hamilton spaces is furnished by Cartan spaces. Any Cartan space is a pair $H^n = (M, H(x, p))$ for which the fundamental function H is 2-homogeneous with respect to momenta p_i.

The Cartan spaces are dual of Finsler spaces, via Legendre transformation. This is the reason why the geometry of Cartan spaces has the same importance, symmetry and beauty as Finsler spaces.

Concluding: The geometry of Lagrange and Hamilton spaces can be based and developed on the mechanical principles.

References

