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1. INTRODUCTION

The class of P4-sparse graphs was introduced by Hoàng ([6]) as the class of graphs
for which every set of five vertices induces at most one P4 and Hoàng also gave a
number of characterizations for these graphs. The class of P4-sparse graphs general-
izes both the P4-free and the P4-reducible graphs. Class of cographs (P4-free) was
introduced by Lerchs ([9]) and P4-reducible graphs were introduced by Jamison and
Olariu ([7]) as those in which no vertex belongs to more than one induced P4. Both
cographs and P4-reducible graphs can be recognized in linear time ([2],[3],[7]). In (
[8]), Jamison and Olariu gave a constructive characterization asserting that P4-sparse
graphs are exactly the graphs constructible from single-vertex graphs by three graph
operations. This result leads to a linear time recognition algorithm for this class.
The classes of P4-sparse graphs, cographs and P4-reducible graphs have applications
in many areas of applied mathematics, computer science and engineering, mainly
because of their good algorithmic and structural properties.

An equivalent class of P4-sparse graphs ([12]) is (C5, P, P5, P, co-fork, fork,
house)-free.

2. PRELIMINARIES

Throughout this paper, G = (V, E) is a connected, finite and undirected graph ([1]),
without loops and multiple edges, having V = V(G) as the vertex set and E = E(G)
as the set of edges. G is the complement of G. If U ⊆ V , by G(U) we denote the
subgraph of G induced by U. By G − X we mean the subgraph G(V − X), whenever
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X ⊆ V , but we simply write G − v, when X = {v}. If e = xy is an edge of a graph G,
then x and y are adjacent, while x and e are incident, as are y and e. If xy ∈ E, we
also use x ∼ y, and x / y whenever x, y are not adjacent in G. If A, B ⊂ V are disjoint
and ab ∈ E for every a ∈ A and b ∈ B, we say that A, B are totally adjacent and we
denote by A ∼ B, while by A / B we mean that no edge of G joins some vertex of A
to a vertex from B and, in this case, we say A and B are totally non-adjacent.

The neighborhood of the vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈ E}, while
NG[v] = NG(v) ∪ {v}; we denote N(v) and N[v], when G appears clearly from the
context. The degree of v in G is dG(v) = |NG(v)|. The neighborhood of the vertex v in
the complement of G will be denoted by N(v).

The neighborhood of S ⊂ V is the set N(S ) = ∪v∈S N(v)−S and N[S ] = S ∪N(S ).
A graph is complete if every pair of distinct vertices is adjacent.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a chordless cycle on
n ≥ 3 vertices, and a complete graph on n ≥ 1 vertices, respectively.

The f ork (or chair) graph is the graph with vertices a, b, c, d, e and edges ab, bc, cd, be.
The co− f ork graph is the graph with vertices a, b, c, d, e and edges ab, bc, cd, bd, ca, ae.
The bull is the graph consisting of a triangle and two disjoint pendant edges. A house
graph is isomorphic to P5. The P graph is the graph with vertices a, b, c, d, e and
edges ab, bc, cd, da, ae.

A dominating set for a graph G = (V, E) is a subset D of V such that every vertex
not in D is adjacent to at least one member of D. The domination number ν(G) is the
number of vertices in a smallest dominating set for G. The stability number α(G) of
a graph G is the cardinality of the largest stable set. Recall that a stable set of G is a
subset of the vertices such that no two of them are connected by an edge. The clique
number of a graph G is the number of vertices in a maximum clique of G, denoted
ω(G).

Let F denote a family of graphs. A graph G is called F-free if none of its subgraphs
are in F.

The Zykov sum of the graphs G1,G2 is the graph G = G1 +G2 having:

V(G) = V(G1) ∪ V(G2),
E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V(G1), v ∈ V(G2)}.

A gem graph is isomorphic to K1 + P4.

3. A NEW CHARACTERIZATION OF P4-SPARSE
GRAPHS USING THE WEAK
DECOMPOSITION

The notion of weak decomposition (a partition of the set of vertices in three classes
A, B, C such that A induces a connected graph and C is totally adjacent to B and
totally non-adjacent to A) and the study of its properties allow us to obtain several
important results such as: characterization of cographs, K1,3-free graphs, {P4,C4}-
free and paw-free graphs.
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Definition 3.1. ([10], [11]) A set A ⊂ V(G) is called a weak set of the graph G if
NG(A) , V(G) − A and G(A) is connected. If A is a weak set, maximal with respect
to set inclusion, then G(A) is called a weak component. For simplicity, the weak
component G(A) will be denoted with A.

Definition 3.2. ([10], [11]) Let G = (V, E) be a connected and non-complete graph.
If A is a weak set, then the partition {A,N(A),V − A∪ N(A)} is called a weak decom-
position of G with respect to A.

Below we recall a characterization of the weak decomposition of a graph.
The name of ”weak component” is justified by the following result.

Theorem 3.1. ([10], [11]) Every connected and non-complete graph G = (V, E)
admits a weak component A such that G(V − A) = G(N(A)) +G(N(A)).

Theorem 3.2. ([4], [5]) Let G = (V, E) be a connected and non-complete graph
and A ⊂ V. Then A is a weak component of G if and only if G(A) is connected and
N(A) ∼ N(A).

The next result, that follows from Theorem 3.2, ensures the existence of a weak
decomposition in a connected and non-complete graph.

Corollary 3.1. If G = (V, E) is a connected and non-complete graph, then V admits a
weak decomposition (A, B,C), such that G(A) is a weak component and G(V − A) =
G(B) +G(C).

Theorem 3.2 provides an O(n + m) algorithm for building a weak decomposition
for a non-complete and connected graph.

Algorithm for the weak decomposition of a graph ([10])
Input: A connected graph with at least two nonadjacent vertices, G = (V, E).
Output: A partition V = (A,N,R) such that G(A) is connected, N = N(A), A / R =
N(A).
begin

A := any set of vertices such that A ∪ N(A) , V
N := N(A)
R := V − A ∪ N(A)
while (∃n ∈ N, ∃r ∈ R such that nr < E ) do

begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩ R)
R := R − (N(n) ∩ R)

end
end
A new characterization of P4-sparse graphs, using weak decomposition, is given

below.
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Theorem 3.3. Let G = (V, E) be a connected and non-complete graph, {gem, bull}-
free. Let (A,N,R) be a weak decomposition with G(A) as the weak component. G =
(V, E) is P4-sparse if and only if:
i) A ∼ N ∼ R;
ii) G(V − R), G(V − A) are P4-sparse.

Proof. I) Let conditions i) and ii) be fulfilled. We show that G is P4-sparse. From
ii) it follows that G(A), G(N), G(R), G(A ∪ N) and G(N ∪ R) are P4-sparse graphs.
Because G(A ∪ R) is not connected it follows that G(A ∪ R) is P4-sparse.

However, we suppose that there is X ⊆ V with |X| = 5 so that either G(X) = C5
or G(X) = P or G(X) = P5 or G(X) = f ork or G(X) = P or G(X) = P5 or G(X) =
co − f ork.

If |X ∩ R| = 1 then A ∼ N does not hold.
If |X ∩ R|=2 (r1, r2 ∈ R) then either (|X ∩ N|=1 and |X ∩ A|=2) or (|X ∩ N|=2 and

|X ∩ A|=1). For |X ∩ N|=1 and |X ∩ A|=2, ∃n ∈ X ∩ N and ∃a1, a2 ∈ A ∩ X with
r1n, r2n, a1n, a2n ∈ E. For |X ∩ N|=2 and |X ∩ A|=1, ∃n1, n2 ∈ N ∩ X, ∃a ∈ A ∩ X
with n1r1, n1r2, n2r1, n2r2, n1a, n2a ∈ E. The above statements are not possible for
G(X) = C5, G(X) = P5, G(X) = P5, while the above statements are possible for
G(X) = P, G(X) = f ork, G(X) = P, G(X) = co − f ork, and A ∼ N does not hold.

If |X ∩ R|=3 then, because R ∼ N, ∃r1, r2, r3 ∈ X ∩ R and either ∃n ∈ X ∩ N
with r1n, r2n, r3n ∈ E (for G(X) = P, G(X) = f ork, G(X) = P or G(X) = P5 or
G(X) = co − f ork, and A ∼ N does not hold) or @n ∈ X ∩ N with r1n, r2n, r3n ∈ E
(for G(X) = C5, G(X) = P5).
|X ∩ R| ∈ {4, 5} it is not possible, because X ∩ A , ∅ and X ∩ N , ∅.
Other situations do not exist.
II) Let G be P4-sparse. We show that i) and ii) hold. From the propriety of heredity

of P4-sparse graphs, it follows ii). From the weak decomposition with G(A) as weak
component, N ∼ R holds. We show that A ∼ N holds.

We assume that ∃n ∈ N, ∃b ∈ A, such that nb < E . From N = NG(A), for n ∈ N,
∃a ∈ A such that na ∈ E . Because G(A) is connected, for a, b ∈ A, ∃Pab ⊆ G(A) .
There exists a first vertex, from a to b, w ∈ V(Pab), with nw < E . Let v be on Pab,
the vertex before it w. Then nv ∈ E, wv ∈ E. Consider an arbitrary r ∈ R.

Case1. We suppose that a = v and b = w. Because |V(G)| ≥ 5 there is at least
a vertex either in R (r′ ∈ R) (and then there exists either P (if rr′ ∈ E) or f ork (if
rr′ < E) as induced subgraph in G) or in N (n′ ∈ N) (and then there exists either (P5
or C5 or P or P, if nn′ < E) or (P or house or co− f ork or gem, if nn′ ∈ E) as induced
subgraph in G) or in A (a′ ∈ A) (and then there exists either (P5 or f ork or P) (if
a′n < E) or ( f ork or P or bull or co − f ork) (if a′n ∈ E)).

Case2. We suppose that a = v and b , w. Because G(A) is connected, ∃Pab ⊆
G(A), then there is P5 as induced subgraph in G.

Case3. We suppose that a , v and b , w. Then there is (either P5 or f ork or P or
bull) as induced subgraph in G.



Combinatorial optimization algorithms for P4 -sparse graphs 173

Case4. We suppose that a , v and b = w. Then there is (either bull or f ork) as
induced subgraph in G. Other situations do not exist.

Algorithm 1
The recognition algorithm for P4-sparse, {gem, bull}-free graphs
Input: A connected, non-complete graph G = (V, E).
Output: An answer to the question: Is G P4-sparse ?
begin
1. LG ← {G}
2. while LG , ∅ do
3. extracts an element H from LG
4. determine the weak decomposition (A,N,R) with [A]H weak component
5. i f (∃a ∈ A, ∃n ∈ N such that an < E) then

G is not P4-sparse else
6. introduce in LG subgraphs [V-R], [V-A] incomplete and of at least order 4
7. Return: G is P4-sparse
8. end
EndRecognition

The complexity of the algorithm 1
Because step 4 takes O(n+m) time, and the other steps of the cycle while take less

time, it results that the algorithm is executed in an overall time of O(n(n + m)).
Corollary 3.2. Let G = (V, E) be a connected and non-complete graph. Let (A,N,R)
be a weak decomposition, with G(A) as weak component. If G = (V, E) is P4-sparse,
{gem, bull}-free then:
ν(G) = min{|N|, |A| + |R|};
ω(G) = ω(G(N)) + max{ω(G(A)), ω(G(R))};
α(G) = max{α(G(A)) + α(G(R)), α(G(N))}.

Algorithm 2
The determination of domination number for P4-sparse, {gem, bull}-free graphs
Input: A connected, non-complete graph G = (V, E).
Output: The determination of ν(G)
begin
1. LG ← {G}
2. extract an element H from LG
3. determine the weak decomposition (A,N,R) with [A]H weak component
4. i f (|N | < |A| + |R|) then
5. ν(G)=|N| else
6. ν(G)=|A| + |R|
7. end
EndAlgorithm 2
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The complexity of the algorithm 2
Because step 3 takes O(n + m) time, it results that the algorithm is executed in an

overall time of O(n + m).
We notice that the determination of α and ω, takes O(n(n + m)) time.

4. CONCLUSIONS AND FUTURE WORK

We give a characterization of P4-sparse, {gem, bull}-free graphs using weak de-
composition. We also give recognition algorithms for P4-sparse, {gem, bull}-free
graphs. Finally, we determine the combinatorial optimization numbers of these graphs
in efficient time. Our future work concerns some applications of P4-sparse graphs in-
cluding the medicine.
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