ON SOME GENERALIZED I-CONVERGENT DOUBLE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULI

Vakeel.A.Khan¹, Nazneen Khan¹, Ayhan Esi²

¹Department of Mathematics A.M.U., Aligarh, India

² Adiyaman University, Science and Art Faculty, Department of Mathematics, Adiyaman, Turkey vakhanmaths@gmail.com, nazneen4maths@gmail.com, aesi23@hotmail.com

Abstract In this article we introduce the sequence spaces ${}_{2}c_{0}^{l}(F, p)$, ${}_{2}c^{l}(F, p)$ and ${}_{2}l_{\infty}^{l}(F, p)$ for $F = (f_{ij})$ a sequence of moduli and $p = (p_{ij})$ sequence of positive reals and study some of the properties and inclusion relations on these spaces.

Keywords: ideal, paranorm, sequence of moduli, I-convergent double sequence spaces. **2010 MSC:** 65H05, 65F10.

1. INTRODUCTION AND PRELIMINARIES

The notion of ideal convergence was first introduced by Kostyrko et al. [1], as a generalization of statistical convergence [2], which was further studied in topological spaces by Das et al [3].

A family $I \subseteq 2^X$ of subsets of a non empty set X is said to be *an ideal in X* if (1) $\phi \in I$,

(2) I is additive i.e A, $B \in I \Rightarrow A \cup B \in I$,

(3) I is hereditary i.e $A \in I, B \subseteq A \Rightarrow B \in I$.

A non-empty family of sets $\pounds \subseteq 2^X$ is said to be *a filter* on X if and only if $\Phi \notin \pounds(I)$, for A, $B \in \pounds(I)$ we have $A \cap B \in \pounds(I)$ and for each $A \in \pounds(I)$ and $A \subseteq B$ implies $B \in \pounds(I)$. An ideal $I \subseteq 2^X$ is called *non-trivial* if $I \neq 2^X$.

A non-trivial ideal $I \subseteq 2^X$ is called *admissible* if $\{\{x\} : x \in X\} \subseteq I$.

A non-trivial ideal I is *maximal* if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

For each ideal I, there is a filter $\pounds(I)$ corresponding to I i.e $\pounds(I) = \{K \subseteq X : K^c \in I\}$, where $K^c = X$ -K.

Example 1. Let $I_2(P)$ be the class of all subsets of $\mathbb{N} \times \mathbb{N}$ such that $D \in I_2(P)$ implies that there exists $n_0, k_0 \in \mathbb{N}$ such that $D \subset \mathbb{N} \times \mathbb{N} - \{(n, k) \in \mathbb{N} \times \mathbb{N} : n \ge n_0, k \ge k_0\}$.

105

Then $I_2(P)$ is an ideal of $\mathbb{N} \times \mathbb{N}$ in the usual Pringsheim's sense of convergence of double sequences. If $I_2(P)$ is replaced by I(f), the class of finite subsets of \mathbb{N} , then we get the usual regular convergence of double sequences [4].

A double sequence of complex numbers is defined as a function $x : \mathbb{N} \times \mathbb{N} \to \mathbb{C}$ [5, 6, 7]. A number $a \in \mathbb{C}$ is called *a double limit* of a double sequence (x_{ij}) if for every $\epsilon > 0$ there exists some $N = N(\epsilon) \in \mathbb{N}$ such that

$$|x_{ij} - a| < \epsilon, \quad \forall i, j \ge N.$$

Throughout the article \mathbb{N} , \mathbb{R} , \mathbb{C} and ω denotes the set of natural, real, complex numbers and the class of all double sequences respectively.

The idea of modulus was structured in 1953 by Nakano [8]. A function $f : [0,\infty) \longrightarrow [0,\infty)$ is called *a modulus* if (1) f(t) = 0 if and only if t = 0, (2) $f(t+u) \le f(t) + f(u)$ for all $t,u \ge 0$, (3) f is increasing, and (4) f is continuous from the right at zero.

Example 2. Define $f : [0, \infty) \to [0, \infty)$ then if we take $f(x) = \frac{x}{x+1}$, f(x) is a bounded modulus function and if we take $f(x) = x^p$, 0 , then <math>f(x) is an unbounded modulus function.

Ruckle [9] used the idea of a modulus function f to construct the sequence space

$$X(f) = \{x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty\}.$$

This space is an FK space, and Ruckle [10] proved that the intersection of all such X(f) spaces is ϕ , the space of all finite sequences.

The space X(f) is closely related to the space l_1 which is an X(f) space with f(x) = x for all real $x \ge 0$. Thus Ruckle [11] proved that $X(f) \subset l_1$ and $X(f)^{\alpha} = l_{\infty}$. The space X(f) is a Banach space with respect to the norm

$$||x|| = \sum_{k=1}^{\infty} f(|x_k|) < \infty.$$

After that E. Kolk [12, 13] gave an extension of X(f) by considering a sequence of moduli $F = (f_k)$ and defined the sequence space

$$X(F) = \{x = (x_k) : (f_k(|x_k|)) < \infty\}.$$

SOME BASIC DEFINITIONS. 1.1.

A sequence space E is said to be *solid or normal* if $(x_{ij}) \in E$ implies $(\alpha_{ij}x_{ij}) \in E$ for all sequence of scalars (α_{ij}) with $|\alpha_{ij}| < 1$ for all $i, j \in \mathbb{N}$ [8].

A sequence $(x_{ij}) \in \omega$ is said to be *I*-convergent to a number *L* if for every $\epsilon > 0$, $\{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L| \ge \epsilon\} \in I$. In this case we write I-lim $x_{ij} = L$.

The space c^{I} of all I-convergent sequences to L is given by

$$c^{I} = \{(x_{ij}) \in \omega : \{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L| \ge \epsilon\} \in I, \text{ for some } L \in \mathbb{C} \}$$

A sequence $(x_{ij}) \in \omega$ is said to be I-*null* if L = 0. In this case we write I-*lim* $x_{ij} = 0$.

A double sequence (a_{nk}) is said to be I-Cauchy if for every $\epsilon > 0$ there exist $s = s(\epsilon), t = t(\epsilon) \in \mathbb{N}$ such that

$$\{(n,k)\in\mathbb{N}\times\mathbb{N}: |a_{nk}-a_{st}|\geq\epsilon\}\in I_2.$$

A sequence $(x_{ii}) \in \omega$ is said to be I-bounded if there exists M >0 such that $\{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_{ij}| > M\} \in I.$

Let X be a linear metric space. A function $g: X \longrightarrow R$ is called *paranorm*, if for all $x, y, \in X$, (1) g(x) = 0 if $x = \theta$, (2) g(-x) = g(x),(3) $g(x + y) \le g(x) + g(y)$, (4) If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ $(n \to \infty)$ and $x_n, a \in X$ with $x_n \to a$ $(n \to \infty)$, in the sense that $g(x_n - a) \to 0$ $(n \to \infty)$, in the sense that $g(\lambda_n x_n - \lambda a) \to 0$ $(n \to \infty)$. A paranorm g for which g(x) = 0 implies x = 0 is called a *total paranorm* on X, and the pair (X, g) is called a *total paranormed space* [14]. A convergence field of I-convergence is a set

 $F(I) = \{x = (x_k) \in l_{\infty} : \text{there exists I-lim } x \in \mathbb{R}\}.$

The convergence field F(I) is a closed linear subspace of l_{∞} with respect to the supre-

mum norm, therefore $F(I) = l_{\infty} \cap c^{I}$ ([15], [16], [17], [18], [19]). Throughout the article $_{2}l_{\infty}$, $_{2}c^{I}$, $_{2}c^{I}_{0}$, $_{2}m^{I}$ and $_{2}m^{I}_{0}$ represent the bounded, Iconvergent, I-null, bounded I-convergent and bounded I-null double sequence spaces respectively.

1.2. SOME USEFUL LEMMAS

Lemma 1.1. [22]. Let $h = \inf_{k} p_k$ and $H = \sup_{k} p_k$. Then the following conditions are

equivalent: (a) $H < \infty$ and h > 0; (b) $c_0(p) = c_0 \text{ or } l_{\infty}(p) = l_{\infty}$; (c) $l_{\infty}\{p\} = l_{\infty}(p)$; (d) $c_0\{p\} = c_0(p)$; (e) $l\{p\} = l(p)$.

Lemma 1.2. [18, 19]. Let $K \in \pounds(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.

2. MAIN RESULTS

In this article we introduce the following classes of sequence space:

$${}_{2}c^{I}(F,p) = \{(x_{ij}) \in \omega : f_{ij}(|x_{ij} - L|^{p_{ij}}) \ge \epsilon \text{ for some } L \in \mathbb{C}\} \in I,$$
$${}_{2}c^{I}_{0}(F,p) = \{(x_{ij}) \in \omega : f_{ij}(|x_{ij}|^{p_{ij}}) \ge \epsilon\} \in I,$$
$${}_{2}l^{I}_{\infty}(F,p) = \{(x_{ij}) \in \omega : \sup_{i,j} f_{ij}(|x_{ij}|^{p_{ij}}) < \infty\} \in I.$$

Also we denote

$$_2m^I(F,p) = _2c^I(F,p) \cap_2 l_{\infty}(F,p)$$

and

$$_{2}m_{0}^{I}(F,p) = _{2}c_{0}^{I}(F,p) \cap _{2}l_{\infty}(F,p).$$

Theorem 2.1. Let $p = (p_{ij}) \in {}_{2}l_{\infty}$. Then ${}_{2}c^{I}(F, p), {}_{2}c^{I}_{0}(F, p), {}_{2}m^{I}(F, p)$ and ${}_{2}m^{I}_{0}(F, p)$ are linear spaces.

Proof. Let $(x_{ij}), (y_{ij}) \in {}_2c^I(F, p)$ and α, β be two scalars. Then, for a given $\epsilon > 0$, we have

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|x_{ij} - L_1|^{p_{ij}}) \ge \frac{\epsilon}{2M_1}, \text{ for some } L_1 \in \mathbb{C}\} \in I,$$

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|y_{ij} - L_2|^{p_{ij}}) \ge \frac{\epsilon}{2M_2}, \text{ for some } L_2 \in \mathbb{C}\} \in I,$$

where

$$M_1 = D \cdot max\{1, \sup_{ij} |\alpha|^{p_{ij}}\}$$
 and $M_2 = D \cdot max\{1, \sup_{ij} |\beta|^{p_{ij}}\}$

and $D = max\{1, 2^{H-1}\}$ where $H = \sup_{ij} p_{ij} \ge 0$. Let

$$A_1 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|x_{ij} - L_1|^{p_{ij}}) < \frac{\epsilon}{2M_1}, \text{ for some } L_1 \in \mathbb{C}\} \in I$$

$$A_2 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|y_{ij} - L_2|^{p_{ij}}) < \frac{\epsilon}{2M_2}, \text{ for some } L_2 \in \mathbb{C}\} \in I$$

be such that $A_1^c, A_2^c \in I$. Then

$$\begin{aligned} A_3 &= \{(i,j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|(\alpha x_{ij} + \beta y_{ij}) - f_{ij}(\alpha L_1 + \beta L_2)|^{p_{ij}}) < \epsilon \} \\ &\supseteq \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : |\alpha|^{p_{ij}} f_{ij}(|x_{ij} - L_1|^{p_{ij}}) < \frac{\epsilon}{2M_1} |\alpha|^{p_{ij}} \cdot D \right\} \\ &\bigcap \left\{ (i,j) \in \mathbb{N} \times \mathbb{N} : |\beta|^{p_{ij}} f_{ij}(|y_{ij} - L_2|^{p_{ij}}) < \frac{\epsilon}{2M_2} |\beta|^{p_{ij}} \cdot D \right\} \end{aligned}$$

Thus $A_3^c = A_1^c \cap A_2^c \in I$. Hence $(\alpha x_{ij} + \beta y_{ij}) \in c^I(F, p)$. Therefore $c^I(F, p)$ is a linear space. The rest of the result follows similarly.

Theorem 2.2. Let $(p_{ij}) \in {}_{2}l_{\infty}$. Then ${}_{2}m^{I}(F, p)$ and ${}_{2}m^{I}_{0}(F, p)$ are paranormed spaces, paranormed by $g(x_{ij}) = \sup_{ij} f_{ij}(|x_{ij}|^{\frac{p_{ij}}{M}})$ where $M = \max\{1, \sup_{ij} p_{ij}\}$.

Proof. Let $x = (x_{ij}), y = (y_{ij}) \in _2m^I(F, p)$. (1) Clearly, g(x) = 0 if and only if x = 0.

(2) g(x) = g(-x) is obvious. (3) Since $\frac{p_{ij}}{M} \le 1$ and M > 1, using Minkowski's inequality and the definition of fwe have

$$\sup_{i,j} f_{ij}(|x_{ij} + y_{ij}|^{\frac{p_{ij}}{M}}) \le \sup_{i,j} f_{ij}(|x_{ij}|^{\frac{p_{ij}}{M}}) + \sup_{i,j} f(|y_{ij}|^{\frac{p_{ij}}{M}})$$

(4) Now for any complex λ we have (λ_k) such that $\lambda_k \to \lambda$, $(k \to \infty)$. Let $x_{ij} \in_2 m^I(f, p)$ such that $f_{ij}(|x_{ij} - L|^{p_{ij}}) \ge \epsilon$. Therefore, $g(x_{ij} - L) = \sup_{ij} f_{ij}(|x_{ij} - L|^{\frac{p_{ij}}{M}}) \le \sup_{i,j} f_{ij}(|x_{ij}|^{\frac{p_{ij}}{M}}) + \sup_{i,j} f_{ij}(|L|^{\frac{p_{ij}}{M}}).$ Hence $g(\lambda_n x_{ij} - \lambda L) \le g(\lambda_n x_{ij}) + g(\lambda L) = \lambda_n g(x_{ij}) + \lambda g(L)$ as $((i, j) \to \infty).$ Hence $_2m^l(F, p)$ is a paranormed space. The rest of the result follows similarly.

Theorem 2.3. A sequence $x = (x_{ij}) \in {}_{2}m^{I}(F, p)$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$\{(i,j)\in\mathbb{N}\times\mathbb{N}: f_{ij}(|x_{ij}-x_{N_{\epsilon}}|^{p_{ij}})<\epsilon\}\in _2m^I(F,p).$$
(1)

Proof. Suppose that $L = I-\lim x$. Then

$$B_{\epsilon} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L|^{p_{ij}} < \frac{\epsilon}{2}\} \in {}_2m^I(F, p), \text{ for all } \epsilon > 0.$$

Fix an $N_{\epsilon} \in B_{\epsilon}$. Then we have for all $(i, j) \in B_{\epsilon}$

$$|x_{N_{\epsilon}} - x_{ij}|^{p_{ij}} \le |x_{N_{\epsilon}} - L|^{p_{ij}} + |L - x_{ij}|^{p_{ij}} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Hence $\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|x_{ij} - x_{N_{\epsilon}}|^{p_i j}) < \epsilon\} \in _2m^I(F, p).$

Conversely, suppose that $\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|x_{ij} - x_{N_{\epsilon}}|^{p_{ij}}) < \epsilon\} \in _2m^I(F, p)$. That is $\{(i, j) \in \mathbb{N} \times \mathbb{N} : (|x_{ij} - x_{N_{\epsilon}}|^{p_{ij}}) < \epsilon\} \in _2m^I(F, p)$ for all $\epsilon > 0$. Then the set

$$C_{\epsilon} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \in [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]\} \in 2m^{l}(F, p) \text{ for all } \epsilon > 0$$

Let $J_{\epsilon} = [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in _{2}m^{I}(F, p)$ as well as $C_{\frac{\epsilon}{2}} \in _{2}m^{I}(f, p)$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in _{2}m^{I}(F, p)$. This implies that

$$J=J_\epsilon\cap J_{\frac{\epsilon}{2}}\neq \phi$$

that is

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \in J\} \in _2m^{I}(F, p)$$

that is

$$diamJ \leq diamJ_e$$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

$$J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq I_k \supseteq \dots$$

with the property that $diamI_k \leq \frac{1}{2}diamI_{k-1}$ for (k=2,3,4,....) and $\{(i, j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \in I_k\} \in_2 m^l(F, p)$ for (k=1,2,3,4,....). Then there exists a $\xi \in \cap I_k$ such that $\xi = \text{I-lim } x$. So that $f_{ij}(\xi) = \text{I-lim } f_{ij}(x)$, that is $L = \text{I-lim } f_{ij}(x)$.

Theorem 2.4. Let $H = \sup_{i,j} p_{ij} < \infty$ and I an admissible ideal. Then the following

are equivalent. (a) $(x_{ij}) \in {}_{2}c^{I}(F, p);$ (b) there $exists(y_{ij}) \in {}_{2}c(F, p)$ such that $x_{ij} = y_{ij},$ (c) there $exists(y_{ij}) \in {}_{2}c(F, p)$ and $(x_{ij}) \in {}_{2}c_{0}^{I}(F, p)$ such that $x_{ij} = y_{ij} + z_{ij}$ for all (i, j) $\in \mathbb{N} \times \mathbb{N}$ and $\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|y_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I;$ (d) there exists a subset $K = \{k_1 < k_2...\}$ of \mathbb{N} such that $K \in \pounds(I)$ and $\lim_{n \to \infty} f_{ij}(|x_{k_ik_j} - L|^{p_{k_ik_j}}) = 0.$

Proof. (a) \Rightarrow (b). Let $(x_{ij}) \in {}_2c^I(F, p)$. Then there exists $L \in \mathbb{C}$ such that

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ii}(|x_{ii} - L|^{p_i j}) \ge \epsilon\} \in I.$$

Let $(m_t, n_t) \in \mathbb{N} \times \mathbb{N}$ be an increasing sequence such that,

$$\{(i, j) \le (m_t, n_t) : f_{ij}(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I.$$

Define a sequence (y_{ij}) as

$$y_{ij} = x_{ij}$$
, for all $(i, j) \le (m_1, n_1)$

For $(m_t, n_t) \le (i, j) \le (m_{t+1}, n_{t+1}), t \in \mathbb{N}$.

$$y_{ij} = \begin{cases} x_{ij}, \text{ if } |x_{ij} - L|^{p_{ij}} < t^{-1}, \\ L, \text{ otherwise.} \end{cases}$$

Then $(y_{ij}) \in {}_2c(F, p)$ and form the following inclusion

$$\{(i, j) \le (m_t, n_t) : x_{ij} \ne y_{ij}\} \subseteq \{k \le (m_t, n_t) : f_{ij}(|x_{ij} - L|^{p_{ij}}) \ge \epsilon\} \in I.$$

We get $x_{ij} = y_{ij}$.

(b) \Rightarrow (c). For $(x_{ij}) \in {}_2c^I(F, p)$. Then there exists $(y_{ij}) \in {}_2c(F, p)$ such that $x_{ij} = y_{ij}$. Let $\overline{K} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : x_{ij} \neq y_{ij}\}$, then $(i, j) \in I$. Define a sequence (z_{ij}) as

$$z_{ij} = \begin{cases} x_{ij} - y_{ij}, & \text{if } (i, j) \in K \\ 0, otherwise. \end{cases}$$

Then $z_{ij} \in {}_2c_0^I(F, p)$ and $y_{ij} \in {}_2c(F, p)$.

$$\underbrace{(\mathbf{c}) \Rightarrow (\mathbf{d})}_{K}. \text{ Let } P_1 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|x_{ij}|^{p_{ij}}) \ge \epsilon\} \in I \text{ and}$$
$$K = P_1^c = \{(i_1, j_1) < (i_2, j_2) < (i_3, j_3) < ...\} \in \pounds(I).$$

Then we have $\lim_{n\to\infty} f_{ij}(|x_{i_n,j_n} - L|^{p_{i_n,j_n}}) = 0.$

 $\frac{(d) \Rightarrow (a). \text{ Let}}{K = \{(i_1, j_1) < (i_2, j_2) < (i_3, j_3) < ...\} \in \pounds(I) \text{ and } \lim_{n \to \infty} f_{ij}(|x_{i_n, j_n} - L|^{p_{i_n, j_n}}) = 0.$ Then for any $\epsilon > 0$, and Lemma 1.9, we have

$$\{(i,j)\in\mathbb{N}\times\mathbb{N}: f_{ij}(|x_{ij}-L|^{p_{ij}})\geq\epsilon\}\subseteq K^c\cup\{(i,j)\in K: f_{ij}(|x_{ij}-L|^{p_{ij}})\geq\epsilon\}.$$

Thus $(x_{ij}) \in {}_2c^I(F, p)$.

Theorem 2.5. Let (p_{ij}) and (q_{ij}) be two sequences of positive real numbers. Then ${}_{2}m_{0}^{I}(F,p) \supseteq {}_{2}m_{0}^{I}(F,q)$ if and only if $\lim_{(i,j)\in K} \inf \frac{p_{ij}}{q_{ij}} > 0$, where $K^{c} \subseteq \mathbb{N} \times \mathbb{N}$ such that $K \in I$.

Proof. Let $\lim_{(i,j)\in K} \inf \frac{p_{ij}}{q_{ij}} > 0$. and $(x_{ij}) \in {}_2m_0^I(F,q)$. Then there exists $\beta > 0$ such that $p_{ij} > \beta q_{ij}$, for all sufficiently large $(i, j) \in K$. Since $(x_{ij}) \in {}_2m_0^I(F,q)$, for a given $\epsilon > 0$, we have

$$B_0 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : f_{ij}(|x_{ij}|^{q_{ij}}) \ge \epsilon\} \in I.$$

Let $G_0 = K^c \cup B_0$ Then $G_0 \in I$, and for all sufficiently large $(i, j) \in G_0$,

 $\{(i,j)\in\mathbb{N}\times\mathbb{N}: f_{ij}(|x_{ij}|^{p_{ij}})\geq\epsilon\}\subseteq\{(i,j)\in\mathbb{N}\times\mathbb{N}: f_{ij}(|x_{ij}|^{\beta q_{ij}})\geq\epsilon\}\in I.$

Therefore $(x_{ij}) \in {}_2m_0^I(F, p)$.

Theorem 2.6. Let (p_{ij}) and (q_{ij}) be two sequences of positive real numbers. Then $_{2}m_{0}^{I}(F,q) \supseteq _{2}m_{0}^{I}(F,p)$ if and only if $\lim_{(i,j)\in K} \inf \frac{q_{ij}}{p_{ij}} > 0$, where $K^{c} \subseteq \mathbb{N} \times \mathbb{N}$ such that $K \in I$.

Proof. The proof is similar to Theorem 2.5.

Corollary 2.7 Let (p_{ij}) and (q_{ij}) be two sequences of positive real numbers. Then $_{2}m_{0}^{I}(F,q) = _{2}m_{0}^{I}(F,p)$ if and only if $\lim_{(i,j)\in K} \inf \frac{p_{ij}}{q_{ij}} > 0$, and $\lim_{(i,j)\in K} \inf \frac{q_{ij}}{p_{ij}} > 0$, where $K \subseteq \mathbb{N}$ such that $K^{c} \in I$.

Proof. On combining Theorem 2.5 and 2.6 we get the required result.

Theorem 2.7. Let $h = \inf_{(i,j)} p_{ij}$ and $H = \sup_{(i,j)} p_{ij}$. Then the following results are equivalent. (a) $H < \infty$ and h > 0. (b) ${}_{2}c_{0}^{I}(F, p) = {}_{2}c_{0}^{I}$.

Proof. Suppose that $H < \infty$ and h > 0, then the inequalities $min\{1, s^h\} \le s^{p_{ij}} \le max\{1, s^H\}$ hold for any s > 0 and for all $(i, j) \in \mathbb{N} \times \mathbb{N}$. Therefore the equivalent of (a) and (b) is obvious.

Acknowledgments: The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- Kostyrko, P., Salat, T., Wilczyński, W., *I-convergence*, Real Analysis Exchange, 26(2)(2000), 669-686.
- [2] Fast, H., Sur la convergence statistique, Colloq.Math., 2(1951), 241-244.
- [3] Das, P., Kostyrko, P., Wilczyński, W., Malik P., *I and I* convergence of double sequences*, Mathematica Slovaca, **58**(5)(2008), 605-620.
- [4] Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289 321.
- [5] Khan V. A., Khan N., On some I- Convergent double sequence spaces defined by a sequence of moduli Ilirias Journal of Mathematics, 4(2)(2013), 1-8.
- [6] Khan V. A., Khan N., On some I- Convergent double sequence spaces defined by a modulus function, Engineering, Scientific Research, 5(2013), 35-40.
- [7] Khan V. A., Khan N., *I-Pre-Cauchy Double Sequences and Orlicz Functions*, Engineering, Scientific Research, 5(2013), 52-56.
- [8] Nakano, H., Concave modulars, J. Math Soc. Japan, 5(1953), 29-49.

- [9] Ruckle, W. H., On perfect Symmetric BK-spaces., Math. Ann., 175(1968),121-126.
- [10] Ruckle, W. H., Symmetric coordinate spaces and symmetric bases, Canad.J.Math., 19(1967), 828-838.
- [11] Ruckle, W. H., *FK-spaces in which the sequence of coordinate vectors is bounded*, Canad. J. Math. **25**(5)(1973), 973-975.
- [12] Kolk, E., On strong boundedness and summability with respect to a sequence of modulii, Acta Comment. Univ. Tartu, **960**(1993), 41-50.
- [13] Kolk, E., Inclusion theorems for some sequence spaces defined by a sequence of modulii, Acta Comment. Univ. Tartu, 970(1994), 65-72.
- [14] Maddox, I. J., Some properties of paranormed sequence spaces, J. London. Math. Soc.1, 316-322, (1969).
- [15] Gurdal, M., Some Types Of Convergence, Doctoral Dissertation, S. Demirel Univ., Isparta, 2004.
- [16] Maddox, I. J., *Elements of Functional Analysis*, Cambridge University Press, 1970.
- [17] Maddox, I. J., Sequence spaces defined by a modulus, Math. Camb. Phil. Soc., 100(1986), 161-166.
- [18] Vakeel, A. K., Ebadullah, K., On some I-Convergent sequence spaces defined by a modulus function, Theory and Applications of Mathematics and Computer Science, 1(2)(2011), 22-30.
- [19] Tripathy, B. C., Hazarika, B., Some I-Convergent sequence spaces defined by Orlicz function., Acta Mathematicae Applicatae Sinica, 27(1)(2011), 149-154.