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Abstract In this article we introduce the sequence spaces zc(’)(F, D), 2c/(F, p) and ,I! (F, p) for

F = (fij) a sequence of moduli and p = (p;;) sequence of positive reals and study some
of the properties and inclusion relations on these spaces.
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1. INTRODUCTION AND PRELIMINARIES

The notion of ideal convergence was first introduced by Kostyrko et al. [1], as a
generalization of statistical convergence [2], which was further studied in topological
spaces by Das et al [3].

A family IC 2% of subsets of a non empty set X is said to be an ideal in X if
(MHeel,

(2) Iis additive i.e A, B € I =AU Bel,

(3) Lis hereditary i.e Ae I, BCA=Bel.

A non-empty family of sets £ C 2% is said to be a filter on X if and only if & ¢ £(I),
for A, Be £(I) we have AnBe £(I) and for each Ae £(I)and ACB implies Be £(I).
An ideal IC 2X is called non-trivial if 1# 2%,

A non-trivial ideal IC 2 is called admissible if {{x} : x € X} CL.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J#I contain-
ing I as a subset.

For each ideal I, there is a filter £(I) corresponding to li.e £1) ={K € X : K € [},
where K¢ = X-K.

Example 1. Let I,(P) be the class of all subsets of N x N such that D € I,(P) im-
plies that there exists ng, ko € N such that D ¢ NXN—{(n,k) € NXN : n > ng, k > ko}.
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Then I(P) is an ideal of N X N in the usual Pringsheim’s sense of convergence of
double sequences. If I;(P) is replaced by I(f), the class of finite subsets of N, then
we get the usual regular convergence of double sequences [4].

A double sequence of complex numbers is defined as a function x : NXN — C
[5, 6, 7]. A number a € C is called a double limit of a double sequence (x;;) if for
every € > 0 there exists some N = N(¢) € N such that

|xij —al <, Vi,j> N.

Throughout the article N, R, C and w denotes the set of natural, real, complex
numbers and the class of all double sequences respectively.

The idea of modulus was structured in 1953 by Nakano [8].
A function f : [0,00)—[0,00) is called a modulus if
(1) f(t) =0if and only if t = 0,
(2) f(t+w)< f(O)+ f(u) for all t,u=0,
(3) f is increasing, and
(4) f is continuous from the right at zero.

Example 2. Define f : [0,00) — [0, c0) then if we take f(x) = =5, f(x) is a
bounded modulus function and if we take f(x) = x*,0 < p < 1, then f(x) is an
unbounded modulus function.

Ruckle [9] used the idea of a modulus function f to construct the sequence space
X(f) = {r =) ), fllud < o).
k=1

This space is an FK space, and Ruckle [10] proved that the intersection of all such
X(f) spaces is ¢, the space of all finite sequences.

The space X(f) is closely related to the space [; which is an X(f) space with f(x) = x
for all real x > 0. Thus Ruckle [11] proved that X(f) C [, and X(f)* = l. The space
X(f) is a Banach space with respect to the norm

[59)

Il = D Flbad) < oo,

k=1

After that E. Kolk [12, 13] gave an extension of X(f) by considering a sequence of
moduli F' = (f) and defined the sequence space

X(F) = {x = ()« (fe(lxl)) < oo}
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1.1. SOME BASIC DEFINITIONS.

A sequence space E is said to be solid or normal if (x;;) € E implies (a;;x;;) € E
for all sequence of scalars («;;) with |a;;| < 1 for all i,j € N [8].

A sequence (x;;) € w is said to be I-convergent to a number L if for every € > 0,
{@,)) e NXN: |x;j — L| > €} € . In this case we write I-limx;; = L.

The space ¢/ of all I-convergent sequences to L is given by
o= {(xij) ew:{(i,j)) ENXN: |x;; — L| > €} € I,forsome L € C}.
A sequence(x;;) € w is said to be I-null if L = 0. In this case we write I-/limx;; = 0.

A double sequence (ay) is said to be I-Cauchy if for every € > 0 there exist
s = s(e), t = t(€)) € N such that

{(n,k) e NXN : gy — agl = €} € bb.

A sequence (x;;) € w is said to be I-bounded if there exists M >0 such that
{(G,)) e NXN:|xj| > M} el

Let X be a linear metric space. A function g : X — R is called paranorm, if for
all x,y, € X,
(1) gx) =0if x=6,
(2) g(=x) = g(x),
(3) glx +y) < gx) + gy,
(4) If (1,,) is a sequence of scalars with 1, = 1 (n — o0) and x,,,a € X with x,, —> «a
(n — 00), in the sense that g(x,—a) — 0 (n — o), in the sense that g(4,x,—Aa) — 0
(n - 00).
A paranorm g for which g(x) = 0 implies x = 0 is called a total paranorm on X, and
the pair (X, g) is called a total paranormed space [14].
A convergence field of I-convergence is a set

F() = {x = (x) € l» : there exists I[-lim x € R}.

The convergence field F(I) is a closed linear subspace of /., with respect to the supre-
mum norm, therefore F(I) = I, N ¢! ([15], [16], [17], [18], [19]).

Throughout the article /., el 2c6, »m! and zm{) represent the bounded , I-
convergent, [-null, bounded I-convergent and bounded I-null double sequence spaces
respectively.
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1.2. SOME USEFUL LEMMAS
Lemma 1.1. [22]. Let h = ir]:f pr and H = sup py. Then the following conditions are
k

equivalent:

(a) H < ooandh > 0;

(b) co(p) = co or lo(p) = loo;
(¢c) loip} = loo(p);

(d) colp} = co(p);

(e) {p} = U(p).

Lemma 1.2. [18,19]. Let Ke £(I) and MCN. If M¢l, then MNK ¢1.

2. MAIN RESULTS

In this article we introduce the following classes of sequence space:
2(F,p) = {(xij)) € w: fij(|xij — LIPV) > e for some L € C} € I,

2ch(F,p) = {(xi)) € w : fij(lxijlP7) > €} €1,

2G(F, p) = {(x;)) € w : sup fij(lijl") < oo} € 1.
ij
Also we denote

om'(F, p) = 2¢(F, p) M2 Io(F, p)
and

2my(F, p) = 2¢0(F, p) N 2leo(F, p).
Theorem 2.1. Let p = (p;j) € 2le. Then ! (F, p), 26'6(F,p), »m!(F, p) and
zmé(F, p) are linear spaces.

Proof. Let (x;)), (yij) € »c!(F, p) and a, 8 be two scalars. Then, for a given € > 0,
we have

{(i, j) e NXN: fii(lx;j — Ly|P7) > ﬁ, for some L; € C} € 1,
1

{(Q, ) e NXN: fiillyij — LolPi) > ﬁ, for some L, € C} € I,
2

where
M = D - max{1,sup|a|’’} and M, = D - max{1,sup |B|"/}
ij ij

and D = max{1,2"7!} where H = sup p;; > 0. Let
ij

Ay =G, ) e NXN: fis(lxi; — Ly|Pi) < ﬁ for some L; € C} € I
1
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Ay =i, j) e NXN: fij(lyij — Lol?) < ﬁ for some L, € C} € I
2
be such that AT,AE € I. Then

Az =i, j) e NXN : fij(l(axi; + Byij) — fislaLy +BLy)IPT) < €}
> (i, j) €N X N : el fij(|x;j — L1|P7) < —— i - D
2M,

N {o-, €N L B fsys = Lal) < 5B D}

Thus A5 = A{ NAS € I. Hence (ax;; + Byij) €2 c!(F, p). Therefore »c!(F, p) is a linear
space. The rest of the result follows similarly. §
Theorem 2.2. Let (p;;) € 2le. Then »m!(F, p)and gm(I)(F, p) are paranormed spaces,
paranormed by g(x;;) = sup f,-j(lxl-jl%) where M = max{1, sup p;;}.

ij ij

Proof. Let x = (x;),y = (ij) € »m!(F, p).

(1) Clearly, g(x) = 0 if and only if x = 0.

(2) g(x) = g(— x) is obvious.

(3) Since % ” < 1 and M > 1, using Minkowski’s inequality and the definition of f
we have

Pij Pij Pij
sup fij(xij + i) < sup fij(lxi;1 %) + sup f(lyij1 ™)
L] i,j i,j
(4) Now for any complex A we have (dx) such that 4y — A4, (k — 00).
Let x;j €2 m!(f, p) such that f;;(|x;; — L|I’U) > €.
Therefore, g(xij = L) = sup fij(lxi; - L)) < sup fisllifd ) + sup f0L

Hence g(4, Xij — AL) < g(/1 xu) +g(1L) = ng(-xl]) + Ag(L) as ((l J) — ).
Hence »m!(F, p) is a paranormed space.
The rest of the result follows similarly.

Theorem 2.3. A sequence x = (x;;) € om!(F, p) I-converges if and only if for every
€ > 0 there exists N. € N such that

(G, ) € NXN : fij(lxij — xn|P9) < €} € ym!(F, p). (1)
Proof. Suppose that L =I-lim x. Then
Be={(i,j) e NX N : |x;j — LIPV < g} € m'(F, p), foralle> 0,

Fix an N, € B,. Then we have for all (i, j) € B¢

-, . ., € €
|)C]\/g —Xl'j|p’-’ < |XN€ —L|p’-’ + |L— xijlp’f < 5 + 5 =€
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Hence {(i, j) € N X N : f;i(|x;; — xn,|PV) < €} € 2m!(F, p).

Conversely, suppose that {(7, /) € N XN : f;;(lx;; — xn.[PV) < €} € »m!(F, p).
That is {(i, j) € N x N : (|lx;; — xy_|P/) < €} € om!(F, p) for all € > 0. Then the set

Ce=13i, /) eNXN: x;; € [xn, — € xy, + €]} € am!(F, p) forall € > 0.

Let Je = [xn, — €, xn, + €]. If we fix an € > 0 then we have C, € »m!(F, p) as well as
C; e »m!(f, p). Hence Cc N Cg € ,m!(F, p). This implies that

J=JnJs#¢

that is
{(,)) eNXN: x;j € Jy € om!(F, p)

that is
diamJ < diamJ

where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals

with the property that diaml; < %diamlk_ 1 for (k=2,3,4,.....) and

{(i, /) ENXN: x;; € I} €2 m!(F, p) for (k=1,2,34,......).

Then there exists a & € NI such that & = I-lim x. So that f;;(£) =I-lim f;;(x), that is
L =I-lim f;;(x).

Theorem 2.4. Let H = sup p;; < oo and I an admissible ideal. Then the following
i,

are equivalent. !

(a) (xij) € 2! (F, p);

(b) there exists(y;j) € 2c(F, p) such that x;j = yjj,

(c) there exists(y;j) € 2c(F, p) and (x;j) € zcé(F, p) such that x;; = y;;j + z;j for all

(i, )) e NXNand {(i,j)) e NXN: fi(lyij — LIPV) > e} € I ;

(d) there exists a subset K = {k; < kp....} of N such that K € £(I) and

Tim_ f;j(1xk; = LI’y = 0.

Proof. (a) = (b). Let (x;;) € »c!(F, p). Then there exists L € C such that
{(, ) eNXN: fii(lx;j — L") > e} € L.
Let (m;,n;) € N X N be an increasing sequence such that,

{G, ) < (my,ny) = fij(lxij— LIPT) > e} € 1.
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Define a sequence (y;;) as
yij = xij, forall @i, j) < (my, ).
For (my,ny) < (i, j) < (M1, n41), 1€ N,

. Xijs if|xij—L|pij<t_l,
& L, otherwise.

Then (y;;) € 2c(F, p) and form the following inclusion
{(Q, ) < (my,my) = xi5 # yijh Sk < (my,ng) 2 fij(lxij — LIPY) > e} € 1.

We get Xij = Yij-

(b) = (c). For (x;;) € »c!(F, p). Then there exists (vij) € 2c(F, p) such that x;; = y;;.

Let K = {(i, j)) e NXN: x;; # y;;}, then (i, j) € I.
Define a sequence (z;;) as

i = 4 X T iy if (7, j) € K,
Y 0, otherwise.

Then z;; € zc(l)(F, p) and y;; € 2c(F, p).

(c) = (d). Let Py = {(i, j) e N XN : f;;(|x;;|’"/) > €} € I and

K = P{ = {(i1, 1) < (i2, j2) < (i3, J3) < ...} € £(D).

Then we have lim f;;(|x;, j, — LIPinin) = 0.
n—oo

(d) = (a). Let
K = {(i1, j1) < (i2, j2) < (i3, j3) < ...} € £() and nli_{goﬁj(lxin,jn = L|Pinin) = 0.
Then for any € > 0, and Lemma 1.9, we have
{(G, ) e NXN: fii(lxij — LIP) > €} € K UG, j) € K : fi(lxij — LIPY) > €}
Thus (x;j) € 2¢/(F, p). 1
Theorem 2.5. Let (p;j) and (q;;) be two sequences of positive real numbers. Then
zm{)(F, p) 2 zmé(F, q) if and only if lim inf 22 > 0, where K¢ € N x N such that
(i,j)eK 4ij
Kel

Proof. Let (1i)mK inf ‘ql > 0. and (x;;) € om}\(F,q). Then there exists 8 > 0 such that
i,j)e 1

pij > Bqij, for all sufficiently large (i, j) € K.

Since (x;;) € zm{)(F, q), for a given € > 0, we have

Bo ={(i, ) e NX N : fi;(|x;;|"") > e} € I.
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Let Go = K¢ U By Then Gy € 1, and for all sufficiently large (i, j) € Gy,

(G, ) eNXN: fij(lxijl") = €} C{(, j) € N XN : fij(lxi;jP%) > e} € 1.
Therefore (x;;) € zm(’)(F, P 1

Theorem 2.6. Let (p;;) and (q;;) be two sequences of positive real numbers. Then
zm{)(F, q) 2 zm(’)(F, p) if and only ijf(li)rnKinf f% > 0, where K° € N X N such that
1,])€ L

]
Kel
Proof. The proof is similar to Theorem 2.5.

Corollary 2.7 Let (p;;) and (g;;) be two sequences of positive real numbers. Then

oml(F,q) = omi(F, p) if and only if lim ian—jjf > 0,and lim inf% > 0, where

(i,))eKk (i,))eK
K C N such that K¢ € I.
Proof. On combining Theorem 2.5 and 2.6 we get the required result. |

Theorem 2.7. Let h = %nf) pij and H = sup p;;.
by @)

Then the following results are equivalent.

(a) H< ocoandh > 0.

(b) 2c{(F,p) = 2c}.

Proof. Suppose that H < co and & > 0, then the inequalities min{l1, s"} < sPi <
max{1, s} hold for any s > 0 and for all (i, j) € N x N.
Therefore the equivalent of (a) and (b) is obvious. I
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