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Abstract In this article we introduce the sequence spaces 2cI
0(F, p), 2cI(F, p) and 2lI

∞(F, p) for
F = ( fi j) a sequence of moduli and p = (pi j) sequence of positive reals and study some
of the properties and inclusion relations on these spaces.
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1. INTRODUCTION AND PRELIMINARIES

The notion of ideal convergence was first introduced by Kostyrko et al. [1], as a
generalization of statistical convergence [2], which was further studied in topological
spaces by Das et al [3].
A family I⊆ 2X of subsets of a non empty set X is said to be an ideal in X if
(1) ϕ ∈ I,
(2) I is additive i.e A, B ∈ I⇒A∪ B∈I,
(3) I is hereditary i.e A∈ I, B⊆A⇒B∈I.

A non-empty family of sets £ ⊆ 2X is said to be a filter on X if and only ifΦ < £(I),
for A, B∈ £(I) we have A∩B∈ £(I) and for each A∈ £(I)and A⊆B implies B∈ £(I).
An ideal I⊆ 2X is called non-trivial if I, 2X .
A non-trivial ideal I⊆ 2X is called admissible if {{x} : x ∈ X} ⊆I.
A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J,I contain-
ing I as a subset.
For each ideal I, there is a filter £(I) corresponding to I i.e £(I) = {K ⊆ X : Kc ∈ I},
where Kc = X-K.

Example 1. Let I2(P) be the class of all subsets of N × N such that D ∈ I2(P) im-
plies that there exists n0, k0 ∈ N such that D ⊂ N×N−{(n, k) ∈ N×N : n ≥ n0, k ≥ k0}.
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Then I2(P) is an ideal of N × N in the usual Pringsheim’s sense of convergence of
double sequences. If I2(P) is replaced by I( f ), the class of finite subsets of N, then
we get the usual regular convergence of double sequences [4].

A double sequence of complex numbers is defined as a function x : N × N → C
[5, 6, 7]. A number a ∈ C is called a double limit of a double sequence (xi j) if for
every ϵ > 0 there exists some N = N(ϵ) ∈ N such that

|xi j − a| < ϵ, ∀ i, j ≥ N.

Throughout the article N, R, C and ω denotes the set of natural, real, complex
numbers and the class of all double sequences respectively.

The idea of modulus was structured in 1953 by Nakano [8].
A function f : [0,∞)−→[0,∞) is called a modulus if
(1) f (t) = 0 if and only if t = 0,
(2) f (t+u)≤ f (t)+ f (u) for all t,u≥0,
(3) f is increasing, and
(4) f is continuous from the right at zero.

Example 2. Define f : [0,∞) → [0,∞) then if we take f (x) = x
x+1 , f (x) is a

bounded modulus function and if we take f (x) = xp, 0 < p < 1, then f (x) is an
unbounded modulus function.

Ruckle [9] used the idea of a modulus function f to construct the sequence space

X( f ) = {x = (xk) :
∞∑

k=1

f (|xk|) < ∞}.

This space is an FK space, and Ruckle [10] proved that the intersection of all such
X( f ) spaces is ϕ, the space of all finite sequences.
The space X( f ) is closely related to the space l1 which is an X( f ) space with f (x) = x
for all real x ≥ 0. Thus Ruckle [11] proved that X( f ) ⊂ l1 and X( f )α = l∞. The space
X( f ) is a Banach space with respect to the norm

||x|| =
∞∑

k=1

f (|xk|) < ∞.

After that E. Kolk [12, 13] gave an extension of X( f ) by considering a sequence of
moduli F = ( fk) and defined the sequence space

X(F) = {x = (xk) : ( fk(|xk|)) < ∞}.
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1.1. SOME BASIC DEFINITIONS.

A sequence space E is said to be solid or normal if (xi j) ∈ E implies (αi jxi j) ∈ E
for all sequence of scalars (αi j) with |αi j| < 1 for all i,j ∈ N [8].

A sequence (xi j) ∈ ω is said to be I-convergent to a number L if for every ϵ > 0,
{(i, j) ∈ N × N : |xi j − L| ≥ ϵ} ∈ I. In this case we write I-limxi j = L.

The space cI of all I-convergent sequences to L is given by

cI = {(xi j) ∈ ω : {(i, j) ∈ N × N : |xi j − L| ≥ ϵ} ∈ I, for some L ∈ C }.

A sequence(xi j) ∈ ω is said to be I-null if L = 0. In this case we write I-limxi j = 0.

A double sequence (ank) is said to be I-Cauchy if for every ϵ > 0 there exist
s = s(ϵ), t = t(ϵ)) ∈ N such that

{(n, k) ∈ N × N : |ank − ast| ≥ ϵ} ∈ I2.

A sequence (xi j) ∈ ω is said to be I-bounded if there exists M >0 such that
{(i, j) ∈ N × N : |xi j| > M} ∈ I.

Let X be a linear metric space. A function g : X −→ R is called paranorm, if for
all x, y, ∈ X,
(1) g(x) = 0 i f x = θ,
(2) g(−x) = g(x),
(3) g(x + y) ≤ g(x) + g(y),
(4) If (λn) is a sequence of scalars with λn → λ (n → ∞) and xn, a ∈ X with xn → a
(n→ ∞), in the sense that g(xn−a)→ 0 (n→ ∞) , in the sense that g(λnxn−λa)→ 0
(n→ ∞).
A paranorm g for which g(x) = 0 implies x = 0 is called a total paranorm on X, and
the pair (X, g) is called a total paranormed space [14].
A convergence field of I-convergence is a set

F(I) = {x = (xk) ∈ l∞ : there exists I-lim x ∈ R}.

The convergence field F(I) is a closed linear subspace of l∞ with respect to the supre-
mum norm, therefore F(I) = l∞ ∩ cI ([15], [16], [17], [18], [19]).

Throughout the article 2l∞, 2cI , 2cI
0, 2mI and 2mI

0 represent the bounded , I-
convergent, I-null, bounded I-convergent and bounded I-null double sequence spaces
respectively.
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1.2. SOME USEFUL LEMMAS

Lemma 1.1. [22]. Let h = inf
k

pk and H = sup
k

pk. Then the following conditions are

equivalent:
(a) H < ∞ and h > 0;
(b) c0(p) = c0 or l∞(p) = l∞;
(c) l∞{p} = l∞(p);
(d) c0{p} = c0(p);
(e) l{p} = l(p).

Lemma 1.2. [18, 19]. Let K∈ £(I) and M⊆N. If M<I, then M∩K <I.

2. MAIN RESULTS

In this article we introduce the following classes of sequence space:

2cI(F, p) = {(xi j) ∈ ω : fi j(|xi j − L|pi j) ≥ ϵ for some L ∈ C} ∈ I,

2cI
0(F, p) = {(xi j) ∈ ω : fi j(|xi j|pi j) ≥ ϵ} ∈ I,

2lI
∞(F, p) = {(xi j) ∈ ω : sup

i, j
fi j(|xi j|pi j) < ∞} ∈ I.

Also we denote
2mI(F, p) = 2cI(F, p) ∩2 l∞(F, p)

and
2mI

0(F, p) = 2cI
0(F, p) ∩ 2l∞(F, p).

Theorem 2.1. Let p = (pi j) ∈ 2l∞. Then 2cI(F, p), 2cI
0(F, p), 2mI(F, p) and

2mI
0(F, p) are linear spaces.

Proof. Let (xi j), (yi j) ∈ 2cI(F, p) and α, β be two scalars. Then, for a given ϵ > 0,
we have

{(i, j) ∈ N × N : fi j(|xi j − L1|pi j) ≥ ϵ

2M1
, for some L1 ∈ C} ∈ I,

{(i, j) ∈ N × N : fi j(|yi j − L2|pi j) ≥ ϵ

2M2
, for some L2 ∈ C} ∈ I,

where
M1 = D · max{1, sup

i j
|α|pi j} and M2 = D · max{1, sup

i j
|β|pi j}

and D = max{1, 2H−1} where H = sup
i j

pi j ≥ 0. Let

A1 = {(i, j) ∈ N × N : fi j(|xi j − L1|pi j) <
ϵ

2M1
, for some L1 ∈ C} ∈ I
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A2 = {(i, j) ∈ N × N : fi j(|yi j − L2|pi j) <
ϵ

2M2
, for some L2 ∈ C} ∈ I

be such that Ac
1, A

c
2 ∈ I. Then

A3 = {(i, j) ∈ N × N : fi j(|(αxi j + βyi j) − fi j(αL1 + βL2)|pi j) < ϵ}

⊇
{

(i, j) ∈ N × N : |α|pi j fi j(|xi j − L1|pi j) <
ϵ

2M1
|α|pi j · D

}
∩{

(i, j) ∈ N × N : |β|pi j fi j(|yi j − L2|pi j) <
ϵ

2M2
|β|pi j · D

}
Thus Ac

3 = Ac
1 ∩Ac

2 ∈ I. Hence (αxi j + βyi j) ∈2 cI(F, p). Therefore 2cI(F, p) is a linear
space. The rest of the result follows similarly.

Theorem 2.2. Let (pi j) ∈ 2l∞. Then 2mI(F, p) and 2mI
0(F, p) are paranormed spaces,

paranormed by g(xi j) = sup
i j

fi j(|xi j|
pi j
M ) where M = max{1, sup

i j
pi j}.

Proof. Let x = (xi j), y = (yi j) ∈ 2mI(F, p).
(1) Clearly, g(x) = 0 if and only if x = 0.
(2) g(x) = g(−x) is obvious.
(3) Since pi j

M ≤ 1 and M > 1, using Minkowski’s inequality and the definition of f
we have

sup
i, j

fi j(|xi j + yi j|
pi j
M ) ≤ sup

i, j
fi j(|xi j|

pi j
M ) + sup

i, j
f (|yi j|

pi j
M )

(4) Now for any complex λ we have (λk) such that λk → λ, (k → ∞).
Let xi j ∈2 mI( f , p) such that fi j(|xi j − L|pi j) ≥ ϵ.
Therefore, g(xi j − L) = sup

i j
fi j(|xi j − L|

pi j
M ) ≤ sup

i, j
fi j(|xi j|

pi j
M ) + sup

i, j
fi j(|L|

pi j
M ).

Hence g(λnxi j − λL) ≤ g(λnxi j) + g(λL) = λng(xi j) + λg(L) as ((i, j)→ ∞).
Hence 2mI(F, p) is a paranormed space.
The rest of the result follows similarly.

Theorem 2.3. A sequence x = (xi j) ∈ 2mI(F, p) I-converges if and only if for every
ϵ > 0 there exists Nϵ ∈ N such that

{(i, j) ∈ N × N : fi j(|xi j − xNϵ |pi j) < ϵ} ∈ 2mI(F, p). (1)

Proof. Suppose that L =I-lim x. Then

Bϵ = {(i, j) ∈ N × N : |xi j − L|pi j <
ϵ

2
} ∈ 2mI(F, p), for all ϵ > 0.

Fix an Nϵ ∈ Bϵ . Then we have for all (i, j) ∈ Bϵ

|xNϵ − xi j|pi j ≤ |xNϵ − L|pi j + |L − xi j|pi j <
ϵ

2
+
ϵ

2
= ϵ
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Hence {(i, j) ∈ N × N : fi j(|xi j − xNϵ |pi j) < ϵ} ∈ 2mI(F, p).

Conversely, suppose that {(i, j) ∈ N × N : fi j(|xi j − xNϵ |pi j) < ϵ} ∈ 2mI(F, p).
That is {(i, j) ∈ N × N : (|xi j − xNϵ |pi j) < ϵ} ∈ 2mI(F, p) for all ϵ > 0. Then the set

Cϵ = {(i, j) ∈ N × N : xi j ∈ [xNϵ − ϵ, xNϵ + ϵ]} ∈ 2mI(F, p) for all ϵ > 0.

Let Jϵ = [xNϵ − ϵ, xNϵ + ϵ]. If we fix an ϵ > 0 then we have Cϵ ∈ 2mI(F, p) as well as
C ϵ

2
∈ 2mI( f , p). Hence Cϵ ∩C ϵ

2
∈ 2mI(F, p). This implies that

J = Jϵ ∩ J ϵ
2
, ϕ

that is
{(i, j) ∈ N × N : xi j ∈ J} ∈ 2mI(F, p)

that is
diamJ ≤ diamJϵ

where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals

Jϵ = I0 ⊇ I1 ⊇ ..... ⊇ Ik ⊇ ...........

with the property that diamIk ≤ 1
2 diamIk−1 for (k=2,3,4,.....) and

{(i, j) ∈ N × N : xi j ∈ Ik} ∈2 mI(F, p) for (k=1,2,3,4,......).
Then there exists a ξ ∈ ∩Ik such that ξ = I-lim x. So that fi j(ξ) =I-lim fi j(x), that is
L =I-lim fi j(x).

Theorem 2.4. Let H = sup
i, j

pi j < ∞ and I an admissible ideal. Then the following

are equivalent.
(a) (xi j) ∈ 2cI(F, p);
(b) there exists(yi j) ∈ 2c(F, p) such that xi j = yi j,
(c) there exists(yi j) ∈ 2c(F, p) and (xi j) ∈ 2cI

0(F, p) such that xi j = yi j + zi j for all
(i, j) ∈ N × N and {(i, j) ∈ N × N : fi j(|yi j − L|pi j) ≥ ϵ} ∈ I ;
(d) there exists a subset K = {k1 < k2....} of N such that K ∈ £(I) and
lim
n→∞

fi j(|xkik j − L|pkik j ) = 0.

Proof. (a)⇒ (b). Let (xi j) ∈ 2cI(F, p). Then there exists L ∈ C such that

{(i, j) ∈ N × N : fi j(|xi j − L|pi j) ≥ ϵ} ∈ I.

Let (mt, nt) ∈ N × N be an increasing sequence such that,

{(i, j) ≤ (mt, nt) : fi j(|xi j − L|pi j) ≥ ϵ} ∈ I.
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Define a sequence (yi j) as

yi j = xi j, for all (i, j) ≤ (m1, n1).

For (mt, nt) ≤ (i, j) ≤ (mt+1, nt+1), t ∈ N.

yi j =

{
xi j, if |xi j − L|pi j < t−1,

L, otherwise.

Then (yi j) ∈ 2c(F, p) and form the following inclusion

{(i, j) ≤ (mt, nt) : xi j , yi j} ⊆ {k ≤ (mt, nt) : fi j(|xi j − L|pi j) ≥ ϵ} ∈ I.

We get xi j = yi j.

(b)⇒ (c). For (xi j) ∈ 2cI(F, p). Then there exists (yi j) ∈ 2c(F, p) such that xi j = yi j.
Let K = {(i, j) ∈ N × N : xi j , yi j}, then (i, j) ∈ I.
Define a sequence (zi j) as

zi j =

{
xi j − yi j, if (i, j) ∈ K,

0, otherwise.

Then zi j ∈ 2cI
0(F, p) and yi j ∈ 2c(F, p).

(c)⇒ (d). Let P1 = {(i, j) ∈ N × N : fi j(|xi j|pi j) ≥ ϵ} ∈ I and

K = Pc
1 = {(i1, j1) < (i2, j2) < (i3, j3) < ...} ∈ £(I).

Then we have lim
n→∞

fi j(|xin, jn − L|pin , jn ) = 0.

(d)⇒ (a). Let
K = {(i1, j1) < (i2, j2) < (i3, j3) < ...} ∈ £(I) and lim

n→∞
fi j(|xin, jn − L|pin , jn ) = 0.

Then for any ϵ > 0, and Lemma 1.9, we have

{(i, j) ∈ N × N : fi j(|xi j − L|pi j) ≥ ϵ} ⊆ Kc ∪ {(i, j) ∈ K : fi j(|xi j − L|pi j) ≥ ϵ}.

Thus (xi j) ∈ 2cI(F, p).

Theorem 2.5. Let (pi j) and (qi j) be two sequences of positive real numbers. Then
2mI

0(F, p) ⊇ 2mI
0(F, q) if and only if lim

(i, j)∈K
inf pi j

qi j
> 0, where Kc ⊆ N × N such that

K ∈ I.

Proof. Let lim
(i, j)∈K

inf pi j
qi j

> 0. and (xi j) ∈ 2mI
0(F, q). Then there exists β > 0 such that

pi j > βqi j, for all sufficiently large (i, j) ∈ K.
Since (xi j) ∈ 2mI

0(F, q), for a given ϵ > 0, we have

B0 = {(i, j) ∈ N × N : fi j(|xi j|qi j) ≥ ϵ} ∈ I.
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Let G0 = Kc ∪ B0 Then G0 ∈ I, and for all sufficiently large (i, j) ∈ G0,

{(i, j) ∈ N × N : fi j(|xi j|pi j) ≥ ϵ} ⊆ {(i, j) ∈ N × N : fi j(|xi j|βqi j) ≥ ϵ} ∈ I.

Therefore (xi j) ∈ 2mI
0(F, p).

Theorem 2.6. Let (pi j) and (qi j) be two sequences of positive real numbers. Then
2mI

0(F, q) ⊇ 2mI
0(F, p) if and only if lim

(i, j)∈K
inf qi j

pi j
> 0, where Kc ⊆ N × N such that

K ∈ I.

Proof. The proof is similar to Theorem 2.5.

Corollary 2.7 Let (pi j) and (qi j) be two sequences of positive real numbers. Then
2mI

0(F, q) = 2mI
0(F, p) if and only if lim

(i, j)∈K
inf pi j

qi j
> 0, and lim

(i, j)∈K
inf qi j

pi j
> 0, where

K ⊆ N such that Kc ∈ I.

Proof. On combining Theorem 2.5 and 2.6 we get the required result.

Theorem 2.7. Let h = inf
(i, j)

pi j and H = sup
(i, j)

pi j.

Then the following results are equivalent.
(a) H < ∞ and h > 0.
(b) 2cI

0(F, p) = 2cI
0.

Proof. Suppose that H < ∞ and h > 0, then the inequalities min{1, sh} ≤ spi j ≤
max{1, sH} hold for any s > 0 and for all (i, j) ∈ N × N.
Therefore the equivalent of (a) and (b) is obvious.

Acknowledgments: The authors would like to record their gratitude to the reviewer for his careful
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