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Abstract A robust linear PDE-based image restoration technique is proposed in this paper. The

PDE model provided here is based on a linear second-order diffusion equation. Some

nonlinear PDE schemes that can be derived from it are also mentioned. A robust and

consistent fast-converging finite-difference based numerical approximation algorithm is

then developed for the continuous differential model. Some image denoising experi-

ments method comparisons are also described.
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1. INTRODUCTION

The PDE-based models have been widely used in the image processing domains

in the last 30 years, since conventional approaches have numerous disadvantages

and cannot solve a lot of problems related to this field [1]. One of these issues is

the preservation of details during the restoration process. The nonlinear PDE-based

restoration schemes, such as Perona-Malik anisotropic diffusion framework [2], TV

Denoising [3] and other diffusion and PDE variational schemes derived from these

popular algorithms [4], clearly outperform the conventional 2D image filters [1], re-

moving the blurring and preserving the main image details.

Because the second-order nonlinear diffusion solutions may produce the unin-

tended staircase effect, many improved second-order nonlinear PDE techniques alle-

viating this effect, such as Adaptive TV Denoising [5], TV-L1 model [6], anisotropic

HDTV regularizer [7] and TV minimization with Split Bregman [8], have been de-

veloped recently. We also constructed numerous anisotropic diffusion and variational

restoration approaches that reduce considerably the Gaussian noise, preserve the de-

tails (edge, corners) and overcome the staircasing [9]–[12]. Although these nonlinear

diffusion schemes reduce the undesired effects, they have other drawbacks, like the

computational cost and the high running time.

Therefore, some improved linear PDE-based denoising algorithms could repre-

sent a solution. The existing linear diffusion-based schemes are affected often by

the image blurring effect and the absence of the localization property. Also, they

could dislocate the image edges when moving from finer to coarser scales [13]. For
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this reason, we describe here an improved linear hyperbolic PDE-based denoising

method that overcome these disadvantages and also executes quite fast and avoids

the staircase effect.

The linear second-order PDE model described in the following section achieves

satisfactory restoration results, removes the blurring effect and has the localization

property [13]. That means the solution of this second-order equation is propagating

with finite speed. Also, our proposed hyperbolic scheme may be further transformed,

so that to produce some effective nonlinear PDE restoration models.

A consistent numerical discretization scheme is developed for the continuous fil-

tering model, being described in the third section. The obtained explicit iterative

discretization procedure is based on finite differences and converges fast to a solu-

tion representing the enhanced image. Some successful denoising tests and method

comparisons are discussed in the fourth section. Our article ends with a conclusion

section, acknowledgements and references.

2. ROBUST PDE-BASED IMAGE DENOISING
MODEL

In this section we propose a diffusion-based image denoising scheme model. Our

model is composed of a linear second-order hyperbolic PDE and a set of boundary

conditions. Therefore, we have:



α2 ∂
2u

∂t2
+ β

∂u

∂t
− γ

2

2
∆u + E · ∇u = 0

u(0, x, y) = u0(x, y), (x, y) ∈ Ω
u(t, x, y) = 0, (x, y) ∈ ∂Ω

(1)

where the domain Ω ⊆ (0,∞) × R2, α, β, γ ∈ (0, 1], u0 represents the initial im-

age, which is affected by the Gaussian noise, and the function E : R2 → R2 takes the

following form:

E(x, y) = (e−η(x2+y2), e−ξ(x2+y2)) (2)

where η, ξ > 0. The second-order PDE provided by (1) represents a non-Fourier

model for the heat propagation. It is also well-posed, since it has a unique weak

solution u that is propagating with finite speed [14]. That means this well-posed

PDE-based model has also the localization property [13].

That unique and weak solution of the model (1) is approximated numerically by

applying an explicit finite-difference based discretization scheme that is consistent to

the continuous model. The discretization approach is described in the next section.

The linear PDE-based denoising model developed by us can be further modified,

so that much more performant nonlinear PDE image restoration schemes be obtained.

Thus, both second-order and fourth-order nonlinear diffusion approaches could be de-

rived from this linear hyperbolic equation-based technique. Second-order nonlinear



A linear diffusion-based image restoration approach 135

PDE models that would provide better denoising results can be obtained by replacing

the coefficient
γ2

2
to some function in (1):

α2 ∂
2u

∂t2
+ β

∂u

∂t
− f (∆u)∇2u + E · ∇u = 0 (3)

The PDE given by (3) can be further transformed into the following nonlinear

fourth-order hyperbolic PDE, by applying a Laplacian operator:

α2 ∂
2u

∂t2
+ β

∂u

∂t
− ∇2( f (∆u)∇2u) + E · ∇u = 0 (4)

where ∇2u = ∆u and f is a properly selected positive function. The nonlinear PDE

models of this type will represents the focus of our future work in this domain.

3. AN EXPLICIT NUMERICAL
APPROXIMATION SCHEME

We propose a consistent numerical approximation scheme for the discretization of

the continuous PDE model (1). This discretization technique is based on the finite-

difference method [15]. Therefore, let us consider a space grid size of h and a time

step ∆t. The space and time coordinates are quantized as:

x = ih, y = jh, t = n∆t,

∀ i ∈ {0, 1, ..., I}, j ∈ {0, 1, ..., J}, n ∈ {0, 1, ...,N} (5)

The diffusion-based equation given by (1) leads to:

α2 ∂
2u

∂t2
+ β

∂u

∂t
− γ

2

2

(
∂2u

∂x2
+
∂2u

∂y2

)

+(e−η(x2+y2), e−ξ(x2+y2)) ·
(
∂u

∂x
,
∂u

∂y

)
= 0

(6)

which is approximated by using finite differences [15], as:

α2 un+∆t(i, j) + un−∆t(i, j) − 2un(i, j)

∆t2
+ β

un+∆t(i, j) − un−∆t(i, j)

2∆t

−γ
2

2

un(i + h, j) + un(i − h, j) + un(i, j + h) + un(i, j − h) − 4un(i, j)

h2

+(e−η(i2/h2+ j2/h2), e−ξ(i
2/h2+ j2/h2))·

·
(
un(i + h, j) + un(i − h, j)

2h
,

un(i, j + h) + un(i, j − h)

2h

)
= 0

(7)
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We may take h = 1 and ∆t = 1 respectively, and (7) will lead to the following

explicit numerical approximation scheme of (1):

un+1(i, j) =
4α2

2α2 + β
un(i, j) +

β − 2α2

2α2 + β
un−1(i, j)

+
γ2

2α2 + β
(un(i + 1, j) + un(i − 1, j) + un(i, j + 1)

+un(i, j − 1) − 4un(i, j)) − 2

2α2 + β
(e−η(i2+ j2), e−ξ(i

2+ j2))·

·
(
un(i + 1, j) + un(i − 1, j)

2
,

un(i, j + 1) + un(i, j − 1)

2

)

(8)

This iterative denoising algorithm starts with the initial [I × J] noisy image and

applies repeatedly (8), for each n = 1, 2, ...,N. The number of iterations of this ap-

proximating scheme, N, is quite low, since the discretization algorithm converges fast

to the solution representing the optimal denoising.

4. EXPERIMENTS AND METHOD
COMPARISON

The described linear PDE-based filtering technique has been successfully on hun-

dred images corrupted with various amounts of Gaussian noise. The proposed image

restoration scheme produces satisfactory denoising results while preserving the im-

age details, such as boundaries, corners, very well. Although the image blurring is

not completely avoided, our approach overcomes successfully other undesired ef-

fects, such as staircase [16] or speckle noise.

The following set of empirically detected parameters of this diffusion-based model

provides the optimal smoothing results:

α = 0.8, β = 0.5, γ = 0.7, η = 2, ξ = 3, ∆t = 1, h = 1, N = 15 (9)

The optimal restoration is reached after a low number of iterations, N = 15, which

means the proposed method is running quite fast. Its execution time is less than

one second. We have performed method comparison and found that our linear diffu-

sion technique outperforms not only the 2D conventional filters, but also numerous

linear and nonlinear PDE-based techniques. Its restoration performance has been as-

sessed using Peak Signal-to-Noise Ratio (PSNR) measure [1]. Our filtering approach

achieves higher PSNR values than some popular 2D classic filters, such as Gaus-

sian, Average, Median and Wiener [1], and influential nonlinear PDE and variational

models, such as Perona-Malik algorithm [2] and TV Denoising [3], as one can see in

Table 1.
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Table 1. PSNR values for the noise reduction techniques

Our model Gaussian Average Median Wiener P-M TV

26.81(dB) 22.38(dB) 23.17(dB) 23.98(dB) 24.7(dB) 25.89(dB) 25.27(dB)

The denoising results obtained by these approaches are displayed in the next figure,

where one can see: a) original [512×512] Barbara image; b) the image affected by a

Gaussian noise of µ = 0.21 and variance = 0.023; c) the image enhanced by our PDE

approach; d)–g) restoration results achieved by classic [3 × 3] 2D filters (Gaussian,

Averaging, Median, Wiener); h) Perona-Malik model; i) TV Denoising.

Fig. 1.: Method comparison: image denoised by various approaches
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Therefore, our linear PDE-based restoration technique provides a better image en-

hancement than classic filters and linear diffusion models. It removes a higher amount

of Gaussian noise and produces a better deblurring result. It also performs better than

many nonlinear PDE models and variational schemes [2]-[4], operates much faster

than them (converges in fewer steps) and overcomes better the undesired effects [16].

Although many improved second-order nonlinear PDE-based approaches [5]-[8] ob-

tain higher PSNRs than our technique and remove totally the blur effect, sometimes

our method is preferable to them, since it avoids completely the staircasing and runs

much faster (fewer iterations) than those techniques.

5. CONCLUSIONS

A novel linear PDE image restoration model has been proposed in this article. It

produces an effective Gaussian noise reduction while preserving image details, such

as boundaries, very well.

The second-order linear hyperbolic diffusion-based scheme elaborated by us con-

stitutes a considerable improvement of the existing linear PDE denoising models,

because, unlike those models, it has the localization property and do not dislocate

the boundaries when moving to coarser scales. It also outperforms clearly the con-

ventional filtering algorithms, not only by providing a better filtering, but also by

providing a much better deblurring effect.

Also, our technique executes much faster than many nonlinear PDE-based models

and variational approaches for image restorations. The anisotropic diffusion methods

have a higher computational cost, therefore they run slower than our restoration tech-

nique. The low execution time of our restoration algorithm is due to the developed

fast-converging numerical approximation scheme that is based on the finite-difference

method and is consistent to the proposed PDE model. Given its low running time,

our restoration technique could be applied successfully to voluminous image database

denoising and restoration.

Although our model is outperformed by some improved nonlinear diffusion schemes,

it can be much improved such that to become an effective nonlinear PDE filtering

solution. We have mentioned some second and fourth-order nonlinear PDE-based

approaches that can be derived from it. Those models could represent much better

filtering approaches that outperform the state-of-the-art nonlinear diffusion-based al-

gorithms. Those nonlinear hyperbolic models will represent the focus of our future

research in image denoising field.
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