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Abstract In this paper we have introduced the sequence spaces cS (i)
0 (△), cS (i) (△) and li

∞ (△) of sta-
tistical convergent sequences of interval numbers based on the difference operator (△)
and studied some of their algebraic and topological properties. Also we have investi-
gated the relations related to these spaces.
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1. INTRODUCTION

The idea of statistical convergence was given by Zygmund [1] in the first edition of
his monograph published in Warsaw in 1935. The concept of statistical convergence
was introduced by Steinhaus [14] and Fast [11] and then reintroduced by Schoenberg
[16] independently. Over the years and under different names, statistical convergence
has been discussed in the theory of Fourier analysis, ergodic theory, number theory,
measure theory, trigonometric series, turnpike theory and Banach spaces. Later on,
Statistical convergence turned out to be one of the most active areas of research in
summability theory after the works of Fridy [17] and Salát [29]. For some very inter-
esting investigations concerning statistical convergence, one may consult the papers
of Cakalli [10], Miller [12], Maddox [15] and many others, where more references
on this important summability method can be found.

Recently, sequences of interval numbers and usual convergence of sequences of
interval numbers were studied by Chiao [18]. Later on, Sengönül and Eryilmaz [19]
introduced and studied bounded and convergent sequence spaces of interval numbers
and showed that these spaces are complete metric spaces. In the recent days, Esi [2,
3] introduced and studied strongly almost λ- convergence and statistically almost λ-
convergence of interval numbers and lacunary sequence spaces of interval numbers,
respectively. For more information about interval numbers one may refer to Debnath
et. al.[25, 26, 27, 28], Dwyer [20, 21], Fischer [22], Moore [23], Moore and Yang
[24 ], Esi [4, 5].
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Throughout the paper wi, li∞, ci and ci
0 denote the spaces of all, bounded, conver-

gent and null sequences of interval numbers x = (xk) with complex terms respectively.
Kizmaz [13] studied the notion of difference sequence spaces where l∞, c and c0

are the spaces of bounded, convergent and null sequences of real numbers respec-
tively. This notion is defined as follows:

Z(∆) = {x = (xk) : (∆xk)∈ Z}
For Z = ℓ∞ , c and c0 , where ∆xk = xk - xk+1.

The idea of Kizmaz [13] was applied to introduce different types of difference
sequence spaces and study their different properties by Tripathy [6], Tripathy et al.
[8], Tripathy and Mahanta [9], Tripathy and Sen [7] and many others.

2. PRELIMINARIES

We denote the set of all real valued closed intervals by R(I). Any elements of R(I)
is called interval number and denoted by x = [xl, xr]. The absolute value (magnitude
or interval norm) of an interval number is defined by |x| = max {|xl|, |xr |}. For x1, x2,
∈ R(I), we have x1 = x2 ⇔ xl1 = xl2, xr1 = xr2, x1 + x2 = {x ∈ R : xl1 + xl2 ≤ x
≤ xr1 + xr2}, and if α ≥ 0, then αx = {x ∈ R : αxl1 ≤ x ≤ αxr1} and if α < 0, then
αx = {x ∈ R : αxr1 ≤ x ≤ αxl1},

x1.x2 = {x ∈ R : min{xl1.xl2, xl1.xr2, xr1.xl2, xr1.xr2}
≤ x ≤ max{xl1.xl2, xl1.xr2, xr1.xl2, xr1.xr2}}.

The set of all interval numbers R(I) is a complete metric space [21] defined by
d(x1, x2)= max {|xl1 − xl2|, |xr1 − xr2|}.

In the special case x1 =[a, a] and x2 = [b, b], we obtain usual metric on R with
d(x1, x2)= |a − b|.

Let us define the transformation f from N to R(I) by k→ f (k) = x, x = (xk). Then
(xk) is called sequence of interval numbers. The xk is called kth term of sequence
(xk).

Definition 2.1. A sequence x = (xk) of interval numbers is said to be convergent to
the interval number x0 if for each ϵ > 0 there exists a positive number k0 such that
d(xk, x0) < ϵ for all k ≥ k0 and we denote it by limk xk = x0. Thus limk xk = x0 ⇔
limk xlk = xl0 and limk xrk = xr0.

Definition 2.2. A sequence x = (xk) of interval numbers is said to be convergent
statistically to the interval number x0 if for every ϵ > 0, limn

1
n |{k ≤ n : d(xk, x0) ≥ ϵ}|

= 0, denote it by writing stat-limk xk = x0.
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Definition 2.3. An interval valued sequence space E is said to be solid if y = (yk) ∈
E whenever ∥yk∥ ≤ ∥xk∥ for all k ∈ N and x = (xk) ∈ E.

Definition 2.4. An interval valued sequence space E is said to be convergence free
if y = (yk) ∈ E whenever x = (xk) ∈ E and xk = θ implies yk = θ, where θ = [0, 0].

Definition 2.5. An interval valued sequence space E is said to be sequence algebra
if (xkyk) ∈ E whenever x = (xk) ∈ E, y = (yk) ∈ E (k ∈N).

The spaces of all statistically null and statistically convergent sequences of interval
numbers cS (i)

0 and cS (i) respectively have been introduced recently by Debnath and
Saha [28]

In this article, for any sequence of interval numbers x =(xk) ∈ wi we write △x
= (△xk) = (xk − xk+1) and we define the new sequence spaces of interval numbers
cS (i)

0 (△) , cS (i) (△) and li∞ (△) respectively are as follows:

cS (i)
0 (△) =

{
x = (xk) ∈ wi : stat − limk △xk = θ

}
, where θ = [0, 0] .

cS (i) (△) =
{
x = (xk) ∈ wi : stat − limk △xk = x0

}
.

li∞ (△) =
{
x = (xk) ∈ wi : supk (|△xlk| , |△xrk|) < ∞

}
.

Let us also set

mS (i)
0 (△) = cS (i)

0 (△) ∩ li∞ (△)

and mS (i) (△) = cS (i) (△) ∩ li∞ (△).

3. MAIN RESULTS

Theorem 3.1.
(
mS (i)

0 (∆) , d
)
,
(
mS (i) (∆) , d

)
are complete metric spaces with the met-

ric defined by

d
(
xk, yk

)
= supk max {|△xlk − ∆ylk| , |△xrk − ∆yrk|} .

Proof. We proof the result for the class mS (i)
0 (△). The rest can be established simi-

larly.
Let (xk

n) = (x1
n, x

2
n, x

3
n) ∈ mS (i)

0 (△) for each n , then limk→∞xk
n = θ for each n ∈ N.

Let (xn) be a Cauchy sequence. Then for each ε > 0 , there exists a k0 ∈ N such that
d(xn, xm) < ε, whenever n,m ≥ k0. Hence we have supn,m{max|∆xk

nl − ∆xk
ml,∆xk

nu −
∆xk

mu|} < ε. Thus we have |∆xk
nl − ∆xk

ml| < ε and |∆xk
nu − ∆xk

mu| < ε. This means that
(∆xk

n) is a Cauchy sequence in R(I). Since R(I) is a complete, (∆xk
n) is convergent i.e

limnl→∞∆xk
nl = θ and limnu→∞∆xk

nu = θ.
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Now, |∆xk
nl − 0| < ε and |∆xk

nu − 0| < ε, takingm→ ∞ gives
supnmax{|∆xk

nl − 0|, |∆xk
nu − 0|} < ε i.e., d(xn, θ) < ε.

This implies that (xn) is a convergent sequence and converge to θ ∈ mS (i)
0 (△) .

Theorem 3.2. mS (i)
0 (△) and mS (i) (△) are normed interval spaces with the norm

∥x∥ =max (|xl1| , |xr1|) +supk max {|△xlk| , |△xrk|} .

Proof. Let λi = mS (i)
0 (△) (or mS (i) (△)) and x, y ∈ λi

N1. Since ∥x∥λi = max (|xl1| , |xr1|) + supk max {|△xlk| , |△xrk|}

We easily see that ∥ x ∥λi > 0, ∀ x ∈ λi - {θ} .

N2. ∥ x ∥λi = 0⇐⇒ max (|xl1| , |xr1|) + supk max {| ∆xlk |, | ∆xrk |} = 0⇐⇒ x = θ,
where θ =[0, 0] .

N3. ∥ x + y ∥λi

= max (|xl1 + yl1| , |xr1 + yr1|) + supk max {| ∆ (xlk + ylk) |, | ∆ (xrk + yrk) |}

≤max(|xl1| + |yl1| , |xr1| + |yr1|) + supk max {| ∆xlk | + | ∆ylk |, | ∆xrk | + | ∆yrk |}

≤ max(|xl1| , |xr1|) + supk max {| ∆xlk |, | ∆xrk |} + max (|yl1| , |yr1|) + supk max
{| ∆ylk |, | ∆yrk |}

= ∥ x ∥λi + ∥ y ∥λi

N4. ∥ αx ∥λi=max (|αxl1| , |αxr1|) + supk max {| α∆xlk |, | α∆xrk |}

=max (|α| |xl1| , |α| |xr1|) + supk max {|α| |∆xlk| , |α| |∆xrk|}
= |α| max (|xl1| , |xr1|) + | α | supk max {| ∆xlk |, | ∆xrk |}

= | α |∥ x ∥λi

So, ∥ x ∥λi is a norm on λi.

Theorem 3.3. The spaces mS (i)
0 (△) and mS (i) (△) are solid.

Proof. We consider only mS (i)
0 (△).
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Now, let
∥∥∥yk

∥∥∥ ≤ ∥xk∥ , for all k ∈ N and for some x ∈ mS (i)
0 (△). Then we have, d

(yk, θ) ≤ d (xk, θ), that is {| ∆ylk − 0 |, | ∆yrk − 0 |} ≤ {| ∆xlk − 0 |, | ∆xrk − 0 |}.

Thus we have ∆ylk ≤ ∆xlk and ∆yrk ≤ ∆xrk, i.e., ∆y ≤ ∆x.

So, clearly y ∈ mS (i)
0 (△). Hence mS (i)

0 (△) is solid.

Theorem 3.4. The spaces cS (i) (△) and cS (i)
0 (△) are not solid.

Proof. We consider only cS (i) (△) .

Let x = (xk) ∈ cS (i) (△) , where xk = [k, k + 1] and k ∈ N and

let αk =

{
[1, 1] for k = 2n, and n ∈ N
0, otherwise

Then, (αkxk) < cS (i) (△) and so cS (i) (△) is not solid.

For the space cS (i)
0 (△) the result can be proved similarly.

Theorem 3.5. The spaces mS (i)
0 (△) and mS (i) (△) are sequence algebra.

Proof. We prove that mS (i)
0 (△) is a sequence algebra.

Let (xk), (yk) ∈ mS (i)
0 (△) .

Then,
stat − lim

k ∆xk = θ and
stat − lim

k ∆yk = θ, where θ = [0, 0].

Then we have,
stat − lim

k
(
∆xk∆yk

)
= θ.

Thus
(
xkyk

) ∈ mS (i)
0 (△) . Hence mS (i)

0 (△) is a sequence algebra.

For the space mS (i) (△), the result can be proved similarly.

Theorem 3.6. The spaces cS (i) (△) and cS (i)
0 (△) are not convergence free .

Proof. Here, we give a counter example.

Let, x = (xk) and y = (yk) be two sequences of interval numbers.
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Now let, xk = [k, k + 1]

and yk =
[
k2, 1

k

]
for all k ∈N.

Then (xk) ∈ cS (i) (△) but (yk) < cS (i) (△).

Hence the space cS (i) (△) is not convergence free in general.

Similarly, it can be shown that the space cS (i)
0 (△) is not convergence free.

Theorem 3.7. The inclusion cS (i)
0 (△) ⊂ cS (i) (△) holds.

Proof. If we take x = (xk)∈ cS (i)
0 (△) then clearly (xk) ∈ cS (i) (△) . Now we will prove

the inclusion is strict.

Consider, the interval sequence x = (xk) is defined as xk = [k, k + 2] , where k ∈N.

Then, clearly (xk) ∈ cS (i) (△) but (xk) < cS (i)
0 (△) .
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