
STRATEGIC GAMES ON DIGRAPHS

ROMAI J., v.12, no.1(2016), 133–161

Valeriu Ungureanu
Mathematics Department, Moldova State University, Chişinău, Republic of Moldova
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Abstract We investigate strategic form games on digraphs, and examine maximin solution con-
cepts based on different types of digraph substructures [45]. Necessary and sufficient
conditions for maximin solution existence in digraph matrix games with pure strate-
gies are formulated and proved. Some particular games are considered. Algorithms
for finding maximin substructures are suggested. Multi-player simultaneous games and
dynamical/hierarchical games on digraphs are considered too.
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1. INTRODUCTION

We regard games which can appear in real situations when several companies
manage the activity of a big network. Decision-making subjects may have antag-
onistic interests. In such circumstances, well-known extremal network/digraph prob-
lems [10, 33] and problems of constructing various structures on networks/digraphs
[5, 10, 33] become mono or multi criteria strategic network game problems. Systems
of human, information, hardware (servers, routers, etc.) or other types, controled by
different subjects, involve their interactions [42]. As a consequence, many traditional
network problems have to be treated from the perspective of game theory [42], in-
cluding problems of routing [36], load balancing [41], facility location [47], network
design [13], etc.

A series of related problems have been investigated and described in scientific
literature [19, 42] in the context of cyclic games solving. That approach has used
a special type of strategy definition [19]. This work is based on paper [45] which
introduced some types of games on digraphs by defining originally the notions of
pure strategies, outcome and payoff functions, and may be seen as a survey of related
works.

The paper is divided into six sections, including introduction and conclusions. Sec-
tion 2 introduces the notion of zero-sum matrix games on digraphs. Some properties
giving a general tool for matrix games investigations are proved. Section 3 presents
some particular solvable games. A special investigation is provided on flow games.
It is proved that the problem of maximin cost flow finding is NP-hard. Section 4 gen-
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eralises the notion of digraph matrix game for an arbitrary finite number of players.
Section 5 introduces the notion of dynamic games.

2. MATRIX GAMES ON DIGRAPHS

In this section we investigate three types of matrix games on directed graphs:

basic (root) matrix games or simply matrix games,

matrix games with admissible strategies,

and matrix games with feasible strategies and profiles.

The games are defined by means of two related matrices: an outcome matrix, and a
payoff matrix.

2.1. CONCEPTS

Let us consider a digraph G = (V, E), |V | = n, |E| = m, further called simply
graph. Every directed edge e ∈ E has the length (weight) c(e) ∈ Z. The vertex set V
is partitioned into two disjoint subsets

V1, V2
(
V1 ∪ V2 = V, V1 ∩ V2 = Ø

)
,

being positions of two players. The edge set E is partitioned into two disjoint subsets
too, as

E1 = {(u, v) ∈ E|u ∈ V1}, E2 = {(u, v) ∈ E|u ∈ V2}.
Any subset S 1 ⊆ E1 or S 2 ⊆ E2 is called a strategy of the corresponding player.
The pair of strategies (S 1, S 2) ∈ 2E1 × 2E2 is called a game profile. Any game profile
generates a subgraph GS = (V, S 1∪S 2), called the graph of the profile (S 1, S 2), where
S = S 1 ∪ S 2.

Let us introduce some notation.

• 2G = {G′ = (V, E′) | E′ ⊆ E} denotes the set of all subgraphs of the graph G;

• D = {G′ ∈ 2G | P} denotes the set of all subgraphs of G, verifying a set of
properties P, that is, D is the set of feasible subgraphs;

• M: 2E1×2E2 ( D, M(S 1, S 2) = 2GS ∩D denotes the set-valued choice function
which maps the graph of the profile (S 1, S 2) ∈ 2E1 × 2E2 into the set of all
feasible subgraphs of GS , that is into the subgraphs which verify the set of
properties P;

• C: D→ R denotes the choice criterion.

Let
k(E1, E2, M) = max

(S 1,S 2)∈2E1×2E2
|M(S 1, S 2)|.
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be the cardinality of the choice function. There exists four alternatives, for given E1,
E2, and M:

00. k(E1, E2, M) = 0;

10. k(E1, E2, M) = 1;

20. k(E1, E2, M) > 1 and for any M(S 1, S 2) , Ø,G′, G′′ ∈ M(S 1, S 2), the equality
C(G′) = C(G′′) is true;

30. k(E1, E2, M) > 1 and there exists M(S 1, S 2) , Ø, and the subgraphs G′, G′′ ∈
M(S 1, S 2), such that the relation C(G′) , C(G′′) holds.

The case 00 doesn’t make sense.
The matrix game can be defined when the choice function M(S 1, S 2) verifies either

the property 10 or 20. The case 30 (as well as the case 20) can be reduced to 10 by
introducing the choice function

M(S 1, S 2) = argmax
G′∈M(S 1,S 2)

C(G′).

It is a mapping assigning to each profile (S 1, S 2) ∈ 2E1×2E2 an element of M(S 1, S 2),
optimal by criterion C. The value M(S 1, S 2) , Ø is a feasible subgraph of the profile
(S 1, S 2). We has to remark that the choice function M(S 1, S 2) reduces both the cases
20 and 30 to 10.

Now, we can define the (root) matrix game on digraph G via the means of two
related matrices: the outcome matrix M(S 1, S 2) and the payoffmatrix C(S 1, S 2).

The outcome matrix of the matrix game is defined by the function M(S 1, S 2) and
has the same notation. Its elements are either feasible subgraphs or the empty set.
The lines of the matrix are identified by the strategies S 1 ∈ 2E1 of the first player and
the columns are identified by the strategies S 2 ∈ 2E2 of the second player.

The payoffmatrix of the matrix game with the same dimensions as the dimensions
of the outcome matrix is defined by the function

C(S 1, S 2) =


C(M(S 1, S 2)), if M(S 1, S 2) , Ø,
−∞, if M(S 1, S ′2) = Ø for all S ′2 ∈ 2E2 ,
+∞, otherwise,

and has the same notation.

Depending on the set of properties P, various types of games may be investigated.

Remark 2.1. The set P of properties can induce in a particular game various feasi-
ble subgraphs: trees; paths between two fixed vertices vs and vt; flows between output
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vertex vs and input vertex vt; matchings; medians; cliques; cycles; Hamiltonian cy-
cles, etc. Any feasible subgraph M(S 1, S 2) satisfies both the set of properties P and
the optimality criterion C.

First, let us consider the root strategic game

Γ = ⟨2E1 , 2E2 , C(S 1, S 2)⟩

which is a (zero-sum) matrix game defined on the graph G. The first player has 2|E1 |

strategies, the second — 2|E2 |. The players choose their strategies simultaneously and
independently. The first player chooses his strategy S 1 from E1, the second — S 2
from E2. Every profile (S 1, S 2) ∈ 2E1 × 2E2 has a numerical value C(S 1, S 2). For
the first player it means the gain C(S 1, S 2) if C(S 1, S 2) > 0 and the loss C(S 1, S 2) if
C(S 1, S 2) < 0. For the second player is valid vice versa — it means the loss C(S 1, S 2)
if C(S 1, S 2) > 0 and the gain |C(S 1, S 2)| if C(S 1, S 2) < 0. Let us recall that in a zero-
sum game the gain C(S 1, S 2) of one of the players means the loss C(S 1, S 2) of the
other.

To introduce two other types of games we need some additional notation and con-
cepts. The sets

B1 =

{
S 1 ∈ 2E1 |∃ S 2 ∈ 2E2 : M(S 1, S 2) , Ø

}
, (1)

B2 =

{
S 2 ∈ 2E2 |∃ S 1 ∈ 2E1 : M(S 1, S 2) , Ø

}
, (2)

are sets of admissible strategies. The sets

B1(S 2) =
{
S 1 ∈ B1|M(S 1, S 2) , Ø

}
,

B2(S 1) =
{
S 2 ∈ B2|M(S 1, S 2) , Ø

}
,

are sets of admissible strategies, connected with S 1 and S 2 correspondingly.
In such notation, we may consider the game

Γ+ = ⟨B1,B2,C(S 1, S 2)⟩

which is a matrix game with admissible strategies. All the profiles of the game Γ+

are admissible.
Let us introduce a generic notation

Γ+∗ = ⟨B1(S 2),B2(S 1),C(M(S 1, S 2))⟩

for a game based on two Stackelberg games [37]:
the game

Γ+1 = ⟨B1,B2(S 1),C(M(S 1, S 2))⟩,
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and the game
Γ+2 = ⟨B2,B1(S 2),C(M(S 1, S 2))⟩.

The players select their strategies consequently on two stages in these three games.

1 In the game Γ+1 the first player moves at the first stage and the second player
moves at the second stage.

2 In the game Γ+2 the second player moves at the first stage and the first player
moves at the second stage.

3 In the game Γ+∗ we distinguish two stages as well as for Γ+1 and Γ+2 . At the
first stage the first player selects his strategy as he plays the game Γ+1 , and the
second player selects his strategy as he plays the game Γ+2 . At the second stage,
one of them, chosen aleatory, may change his strategy, knowing the choice of
his opponent at the first stage.

Remark 2.2. It is obvious that the Stackelberg games Γ+1 and Γ+2 are matrix games
with feasible strategies. As all the profiles of the game Γ+∗ are feasible, we will call it
matrix game with feasible profiles. Clearly, when the game Γ+∗ is referred, it means
implicitly that the games Γ+1 and Γ+2 are referred too.

Remark 2.3. The game Γ+∗ may be seen as a special “matrix” game, for which the
outcome and payoff matrices are obtained from the matrices of the game Γ+ by delet-
ing the elements with non-finite payoff values. These “special” or pseudo matrices
may be associated with two dimensional lists in the Wolfram Language [50, 51].

2.2. PROPERTIES OF DIGRAPH MATRIX
GAMES

The games Γ, Γ+, and Γ+∗ , have some interesting and important properties. Let us
investigate and highlight them.

Lemma 2.1. In any games Γ and Γ+ the following relations between lower and upper
values of the games hold:

max
S 1∈2E1

min
S 2∈2E2

C(S 1, S 2) ≤ min
S 2∈2E2

max
S 1∈2E1

C(S 1, S 2),

max
S 1∈B1

min
S 2∈B2

C(S 1, S 2) ≤ min
S 2∈B2

max
S 1∈B1

C(S 1, S 2).

Lemma 2.1 exposes a well-known property of the matrix games. The concept
of upper and lower values of the games Γ and Γ+ are imposed by the right and left
members of the inequalities in Lemma 2.1.

Definition 2.1. The matrix game has a solution (is solvable) if its upper and lower
values are equal. The corresponding profile is called an equilibrium (equilibrium



138 Valeriu Ungureanu

solution, equilibrium profile, equilibrium outcome) of the game and its value is called
the value of the game.

In the game with feasible profiles Γ+∗ , the opposite inequality may occur when the
payoff function C satisfies some special properties, that is, it is possible that the value
min

S 2∈B2
max

S 1∈B1(S 2)
C(S 1, S 2) of the game Γ+2 do not surpass the value

max
S 1∈B1

min
S 2∈B2(S 1)

C(S 1, S 2) of the game Γ+1 .

Lemma 2.2. If C(M(S 1, S 2)) = C′(S 1) +C′′(S 2) and B1 , Ø, then

max
S 1∈B1

min
S 2∈B2(S 1)

C(S 1, S 2) ≥ min
S 2∈B2

max
S 1∈B1(S 2)

C(S 1, S 2)

Proof. It is obvious that if B1 , Ø, then B2 , Ø and vice versa. Thus, we have

max
S 1∈B1

min
S 2∈B2(S 1)

C(M(S 1, S 2)) =

= max
S 1∈B1

[C′(S 1) + min
S 2∈B2(S 1)

C′′(S 2)] ≥

≥ max
S 1∈B1

C′(S 1) + min
S 2∈B2

C′′(S 2) ≥

≥ min
S 2∈B2

[C′′(S 2) + max
S 1∈B1(S 2)

C′(S 1)] =

= min
S 2∈B2

max
S 1∈B1(S 2)

C(M(S 1, S 2)).

The truth of the lemma follows from the above chain of the equalities and inequal-
ities.

Definition 2.2. The game with feasible profiles Γ+∗ has an equilibrium if the values
of the Stackelberg games Γ+1 and Γ+2 are equal.

This solution concept may have an integrative power for all the precedent ones.
The following results have to prove this.

Lemma 2.3. If B1 , Ø, then

max
S 1∈2E1

min
S 2∈2E2

C(S 1, S 2) = max
S 1∈B1

min
S 2∈B2

C(S 1, S 2) =

= max
S 1∈B1

min
S 2∈B2(S 1)

C(M(S 1, S 2)).
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Proof. The payoff function is so defined that min
S 2∈2E2

C(S 1, S 2) < ∞ for any strategy

S 1 ∈ 2E1 . As B1 , Ø, then

−∞ < max
S 1∈2E1

min
S 2∈2E2

C(S 1, S 2) < +∞.

Therefore, the maximin profile is feasible and

max
S 1∈2E1

min
S 2∈2E2

C(S 1, S 2) = max
S 1∈B1

min
S 2∈B2

C(S 1, S 2). (3)

For some admissible strategy S 1 ∈ B1 we have

min
S 2∈B2

C(S 1, S 2) = min
S 2∈B2(S 1)

C(S 1, S 2),

as C(S 1, S 2) = +∞ for any strategy S 2 < B2(S 1). Then

max
S 1∈B1

min
S 2∈B2

C(S 1, S 2) = max
S 1∈B1

min
S 2∈B2(S 1)

C(S 1, S 2). (4)

Relations (3) – (4) prove the lemma.

Considering Lemma 2.3 and the equality max
S 1∈2E1

C(S 1, S 2) = +∞ for all S 2 < B2,

the following theorem becomes obvious.

Theorem 2.1. Let B1 , Ø. The upper (lower) values of the games Γ and Γ+ are
equal.

For a sufficiently large set of edges E, an exhaustive search of equilibria in the
games Γ,Γ+,Γ+∗ is a hard task. Theorem 2.1 suggests how to narrow sets of admissible
strategies by taking into account properties of G and the set of properties P of feasible
subgraphs.

Supposition 2.1. Further on, we assume that B1 , Ø.
Supposition 2.2. We may define/consider the sets of admissible strategies B1 and

B2 being subsets of 2E1 and 2E2 less powerful than (1) – (2) too.

Thus, we have for the fixed game Γ several possible games Γ+, and Γ+∗ , by defining,
e.g., the game Γ+ constrained by the condition

|M(S 1, S 2)| ≤ 1,

for all (S 1, S 2) ∈ B1 ×B2.

It is easy to observe that the payoff function is defined in such a way, that if there
exists only one feasible profile in Γ+∗ , then for both players it is advantageous the
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same profile, namely the equilibrium profile. However, in some games Γ+∗ several
feasible profiles exist, but the equilibrium profile itself does not exist in all the games
Γ, Γ+ and Γ+∗ .

The following example has to illustrate the above exposition.

Example 2.1. Let the games Γ,Γ+, and Γ+∗ , be formulated on the next acyclic digraph
G = (V, E):
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If V1 = {1} and V2 = {2; 3; 4; 5} are the positions of the players, then

E1 = {(1, 2); (1, 3); (1, 4)},
E2 = {(2, 4); (2, 5); (3, 2); (3, 4); (3, 5); (4, 5)},

are their sets of edges.
We have a purpose to construct the matrix games based on three sets of paths from

the input vertex vs = 1 to the output vertex vt = 5.

First, let us consider the set D3 of feasible graphs as the set of all paths from
vs = 1 to vt = 5 that contain exactly 3 edges.

It is easy to observe that in the game Γ the first player has 23 = 8 strategies and the
second — 26 = 64.

It is a difficult task to find the equilibrium by an exhaustive search because of 512
profiles of the game Γ. But taking into account the essence of the feasible graphs,
admissible strategies are defined as the sets with cardinality |E1| = |V1| = 1 for the
first player, and |E2| = |V2| − 1 = 3 for the second player, with an additional property
that exactly one edge exits from every vertex, except vt = 5.

As the graph G is acyclic, the subgraph GS is a directed tree entering the vertex
vt = 5 for any profile S , that is, it has a path from vs = 1 to vt = 5, not obligatory
with exactly 3 edges.

Observe that for S 1 = {(1, 4)} a 3 – path from vs = 1 to vt = 5 does not exist for
any strategy of the second player. Besides that, for strategy S 2 = {(2, 5); (3, 5); (4, 5)}
a 3 – path from vs = 1 to vt = 5 does not exist for any strategy of the first player.

If the payoff function C is defined as the length of the path from vs = 1 to vt = 5,
and the first player has the purpose to maximise the length of the path (the second
trying to minimise it), then it is easy to find the payoff matrices of the games Γ+ and
Γ+∗ :
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B2
B1 (3,2) (2,4) (2,4) (2,4) (4,5) (3,2) (2,5) (2,5) (2,5)

(4,5) (3,4) (4,5) (3,5) (4,5) (3,4) (4,5) (3,5) Γ+: Γ+1 :
(4,5) min

S 2∈B2
min

S 2∈B2(S 1)

(1,2) 8 8 8 +∞ +∞ +∞ 8 8

(1,3) +∞ 11 +∞ 5 11 +∞ 5 5

(1,4) −∞ −∞ −∞ −∞ −∞ −∞ −∞

Γ+:
max

S 1∈B1
+∞ 11 +∞ +∞ +∞ +∞ 11\ 8

Γ+2 :
max

S 1∈B1(S 2)
8 11 8 5 11 5\ 8

In the game Γ+ (consequently in Γ)

max
S 1∈B1

min
S 2∈B2

C(S 1, S 2) = 8 ≤ min
S 2∈B2

max
S 1∈B1

C(S 1, S 2) = 11.

But in the game Γ+∗ we have

max
S 1∈B1

min
S 2∈B2(S 1)

C(S 1, S 2) = 8 ≥ min
S 2∈B2

max
S 1∈B1(S 2)

C(S 1, S 2) = 5.

Second, let D2 be the set of all paths from vs = 1 to vt = 5, having exactly 2
edges.

As in the first case, the games Γ,Γ+ and Γ+∗ , with their payoff matrices are consid-
ered:

B2
B1 (3,2) (2,4) (2,4) (2,4) (4,5) (3,2) (2,5) (2,5) (2,5)

(4,5) (3,4) (4,5) (3,5) (4,5) (3,4) (4,5) (3,5) Γ+: Γ+1 :
(4,5) min

S 2∈B2
min

S 2∈B2(S 1)

(1,2) +∞ +∞ +∞ 2 2 2 2 2

(1,3) +∞ +∞ 8 +∞ +∞ 8 8 8

(1,4) 7 7 7 7 7 7 7 7

Γ+:
max

S 1∈B1
+∞ +∞ +∞ +∞ 11 8 8\ 8

Γ+2 :
max

S 1∈B1(S 2)
7 7 7 7 11 8 7\ 8

In the game Γ+ (consequently in Γ)

max
S 1∈B1

min
S 2∈B2

C(S 1, S 2) = 8 = min
S 2∈B2

max
S 1∈B1

C(S 1, S 2) = 8.
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But in the game Γ+∗

max
S 1∈B1

min
S 2∈B2(S 1)

C(S 1, S 2) = 8 ≥ min
S 2∈B2

max
S 1∈B1(S 2

C(S 1, S 2) = 7.

Remark, there exists an equilibrium only in the games Γ, Γ+. The game Γ+∗ doesn’t
have equilibrium.

Third, let us consider the set D of all paths from vs = 1 to vt = 5 as the set of
feasible graphs.

B2
B1 (3,2) (2,4) (2,4) (2,4) (4,5) (3,2) (2,5) (2,5) (2,5)

(4,5) (3,4) (4,5) (3,5) (4,5) (3,4) (4,5) (3,5) Γ+: Γ+1 :
(4,5) min

S 2∈B2
min

S 2∈B2(S 1)

(1,2) 8 8 8 2 2 2 2 2

(1,3) 11 11 8 5 11 8 5 5

(1,4) 7 7 7 7 7 7 7 7

Γ+:
max

S 1∈B1
11 11 8 7 11 8 7\ 7

Γ+2 :
max

S 1∈B1(S 2)
11 11 8 7 11 8 7\ 7

Let us remark, that all the games Γ, Γ+,Γ+∗ have the equilibrium

(S 1, S 2) = ({(1, 4)}, {(3, 2); (2, 5); (4, 5)}) ,

with the 2-edge feasible path P = {(1, 4); (4, 5)} and the length C(P) = 7.

Theorem 2.2. If
C(M(S 1, S 2)) = C′(S 1) +C′′(S 2)

for all M(S 1, S 2) , Ø and if all the profiles in the game Γ+ are feasible, then Γ, Γ+, Γ+∗
have an equilibrium, moreover, it is the same in all three games Γ,Γ+, Γ+∗ .

Proof. All the profiles in the game Γ+ are feasible. Then B2(S 1) = B2 for all S 1 ∈
B1, and B1(S 2) = B1 for all S 2 ∈ B2. Then, taking into account Lemma 2.1, we have

max
S 1∈B1

min
S 2∈B2(S 1)

C(M(S 1, S 2)) = max
S 1∈B1

min
S 2∈B2

C(M(S 1, S 2)) ≤

≤ min
S 2∈B2

max
S 1∈B1

C(M(S 1, S 2)) = min
S 2∈B2

max
S 1∈B1(S 2)

C(M(S 1, S 2)),
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and, taking into account Lemma 2.2, we have

max
S 1∈B1

min
S 2∈B2

C(M(S 1, S 2)) = max
S 1∈B1

min
S 2∈B2(S 1)

C(M(S 1, S 2)) ≥

≥ min
S 2∈B2

max
S 1∈B1(S 2)

C(M(S 1, S 2)) = min
S 2∈B2

max
S 1∈B1

C(M(S 1, S 2)).

From these inequalities follows that

max
S 1∈B1

min
S 2∈B2

C(M(S 1, S 2)) = max
S 1∈B1

min
S 2∈B2(S 1)

C(M(S 1, S 2)) =

= min
S 2∈B2

max
S 1∈B1(S 2)

C(M(S 1, S 2)) = min
S 2∈B2

max
S 1∈B1

C(M(S 1, S 2)).

Therefore Γ+ and Γ+∗ have the equilibrium profile. Finally, it follows from Theorem
2.1 that all the games Γ,Γ+, Γ+∗ have the same equilibrium profile.

Remark 2.4. Lemma 2.2 and Theorem 2.1 may be extended for other types of func-
tions. One of such types is, for example: C(M(S 1, S 2)) = C′(S 1) · C′′(S 2), where
C′: B1 → N∗, C′′: B2 → N∗.

Remark 2.5. Example 2.1 shows that if in the game Γ+ there is a profile that is not
feasible, then the equilibrium profile may be absent from any game Γ, Γ+, or Γ+∗ .

Remark 2.6. Example 2.1 illustrates also that the equilibrium profile may exist in the
games Γ, Γ+, but in the corresponding game Γ+∗ it may be absent. Inverse is possible:
in the game Γ+∗ there is an equilibrium profile, but in the games Γ, Γ+ it is absent.

Theorem 2.2 formulates only sufficient condition for the existence of the equilib-
rium profile in the games Γ,Γ+,Γ+∗ . The following theorem formulates necessary and
sufficient conditions.

Theorem 2.3. Let
C(M(S 1, S 2)) = C′(S 1) +C′′(S 2)

for all M(S 1, S 2) , Ø. The profile (S ∗1, S
∗
2) forms an equilibrium in all the games

Γ, Γ+,Γ+∗ if and only if the profile (S ∗1, S
∗
2) is an equilibrium in the game Γ+ and

max
S 1∈B1(S 2)

C(M(S 1, S 2)) ≥ C(M(S ∗1, S
∗
2)),

for all S 2 ∈ B2.
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Proof. Necessity is obvious.
Sufficiency follows from the following relations:

min maxΓ+
L. 7.2.1
≥ max min Γ+ =

L. 7.2.3
= max minΓ+1

L. 7.2.2
≥ min max Γ+2 ,

(5)

and Theorem 2.1.

If the game Γ+ has an equilibrium profile (S ∗1, S
∗
2), then, taking into account Lemma

2.3 and Theorem 2.3, we deduce that min max Γ+ < +∞. This means that, for strategy
S ∗2 ∈ B2,

C(S 1, S ∗2) = C(M(S 1, S ∗2)) < +∞
for all S 1 ∈ B1.

Definition 2.3. A strategy that may have only feasible profiles, B1(S 2) = B1 for
the first player and B2(S 1) = B2 for the second one, is called an essential feasible
strategy.

From Theorem 2.3 follows the next statement.

Corollary 2.1. If the second player does not have at least one essential feasible
strategy in the game Γ+, then both the games Γ and Γ+ do not have equilibrium
profiles.

3. SOLVABLE MATRIX GAMES ON DIGRAPHS

An investigation of digraph matrix games implies solving of three important prob-
lems:

1 the problem of determining maximin and minimax profiles;

2 the problem of determining feasible subgraphs in graphs of maximin and min-
imax profiles;

3 the problem of determining an equilibrium profile.

From relations (5) it follows that for an equilibrium profile computing in Γ, Γ+,
Γ+∗ , it is sufficiently to determine and to compare minimax profiles in the games Γ+

and Γ+2 .

If min maxΓ+ = min max Γ+2 , then all three games Γ, Γ+, Γ+∗ are solvable and
have the same equilibrium profile,

else it is necessary to find max min Γ+ that is equal to max min Γ+2 and to com-
pare it with min max Γ+ and min max Γ+1 :
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• if max min Γ+ = min max Γ+, then Γ+ is solvable;

• if max min Γ+ = min max Γ+1 , then Γ+∗ is solvable;

• if max min Γ+ , min maxΓ+ and max min Γ+ , min max Γ+1 , then all
three games Γ, Γ+, Γ+∗ are unsolvable.

Consequently, in order to investigate the games Γ+ and Γ+∗ , the problem of deter-
mining maximin and minimax profiles with the corresponding maximin and minimax
feasible graphs becomes very important. As the games have limited numbers of pro-
files, maximin and minimax profiles hypothetically may be found by an exhaustive
search, which for large m becomes a hard computational problem. It is obvious, that a
game has polynomial complexity if both maximin and minimax profiles may be found
in polynomial time on n and m. If the problem of a feasible graph M(S 1, S 2) , Ø
construction in GS for some profile (S 1, S 2) is NP – complete, then the game is at
least NP – hard.

The exhaustive search method for solving the game Γ has an exponential com-
plexity, supposing it is necessary to examine 2|E| profiles. If the algorithm for con-
struction a feasible subgraph in G has the polynomial complexity O(nk0ml0) and
|B1| = O(nk1ml1), |B2| = O(nk2ml2), where k0, k1, k2, l0, l1, l2 are numbers indepen-
dent of m and n, then the straightforward method in Γ+ and Γ+∗ has the polynomial
complexity

O(nk0+k1+k2ml0+l1+l2).

Thus, depending on properties of G and elements of D, this problems may be
essentially simplified in particular games. Further on, we illustrate this for some
particular games.

3.1. MAXIMIN DIRECTED TREE

Let G be an acyclic digraph and assume that there exist paths in G from every
vertex v ∈ V to vertex v0. Let D be the set of all directed trees of G going to v0;
C : D → R be the length of tree (sum of edge lengths). The first player has the aim
to maximize the length of tree, the second tries to minimize it.

Take into consideration that feasible graphs are directed trees, we will define ad-
missible strategies so that from every vertex except v0 exactly one edge is going out.
In this case every element belonging to D at least once is feasible subgraph in Γ+.
Remark, that inadmissible strategies are not advantageous to players because they ei-
ther not ensure tree construction or they lead to adversary possibility to choice from
several alternatives. Therefore, either B1 and B2 contain the optimal strategies of the
players and the game Γ+ is right defined, that ensure equality of costs of the games Γ
and Γ+.

Remark further, for all (S 1, S 2) ∈ B1 × B2 we have M(S 1, S 2) = (V, S 1 ∪ S 2).
This means, that all profiles of the game Γ+ are feasible. From theorem 2 follows that
Γ, Γ+,Γ+∗ have the same equilibrium profile.
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To determine the maximin input in v0 tree we propose the following application of
the dynamical programming method [45]:

M = {v0}, T = Ø
while |M| < n do

begin (u∗, v∗) = arg max
(u,v)∈((V\M)×M)∩E

C(u, v)

If (u∗ ∈ V1) or ((u∗ ∈ V2) and |((V\M) × M) ∩ E| = 1)
then M = M ∪ u∗, T = T ∪ (u∗, v∗)
else E = E\(u∗, v∗).

end
T – maximin tree.

Remark 3.1. Algorithm determines maximin tree in arbitrary digraph. But, because
maximin may be not equal to minimax in general case, for determining of minimax
tree, we must found on every iteration

(u∗, v∗) = arg min
(u,v)∈((V−M)×M)∩E

C(u, v).

3.2. MAXIMIN DIRECTED PATH

Let G be an acyclic digraph and assume that there exists a path from every vertex
v ∈ V to vertex vt. Let D be the set of all directed paths from v0 to vt; C : D → R

be the length of path (sum of edge lengths). The first player has the aim to maximize
the length of path, the second has the aim to minimize it.

We will define admissible strategies so that from every vertex except v0 exactly one
edge is going out. In this case every GS is an input in v0 tree, containing a path from
vs to vt. The set of all feasible profiles of the maximin path game Γ+ is equivalent to
the set of all feasible profiles of the maximin tree game Γ+. Therefore all three games
Γ, Γ+,Γ+∗ have the same equilibrium profile.

To determine maximin path we may use an adaptation of Dijkstra algorithm. An
example of such adaptation is presented in [7].

3.3. MAXIMIN TRAVELING SALESMAN
PROBLEM WITH TRANSPORTATION

Generaly, a Traveling Salesman Problem (TSP) includes diverse mathematical
models of distinct real practical problems. Its history may be traced back to the
Irish mathematician Sir William Rowan Hamilton and British mathematician Thomas
Penyngton Kirkman, who treated it incipiently in 1800s [6, 38]. In the 1930s Karl
Menger studied TSP in general form and Hassler Whitney and Merrill Floodlater
promoted promoted TSP later [38].
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We consider and investigate an original model of TSP motivated by applications
— a synthesis of classical TSP and classical Transportation Problem. Algorithms
based on Integer Programming cutting-plane methods and Branch and Bound Tech-
niques are obvious. A maximin traveling salesman problem and the correspondent
maximin Hamiltonian cycle problem may be formulated similar to the problem of
maximin directed tree. So, in this subsection we expose only the specific features
of the traveling salesman problem with transportation. But, why is important this
problem in context of considered games? The answer is rather obvious: it suggests
an example of games which are simple formulated but are hard to solve.

3.3.1 Introduction. The TSP gained notoriety over the past century as
the prototype of problem that is easy to state and hard to solve practically. It is simply
formulated: a traveling salesman has to visit exactly once each of n cities and to return
to the start city but in a order that minimizes the total cost (it is supposed that the cost
ci j of traveling from every city i to every city j is known). There are other related
formulations of this problem and a lot of methods for solving [26, 35, 14, 17, 3]. It is
well known equivalence of TSP with Hamiltonian circuit problem [16].

The TSP is representative for a large class of discrete problems known as
NP-complete combinatorial optimization problems [16]. NP-complete problems have
an important property that all of them have or don’t have simultaneously polynomial-
time algorithms for its solving [16]. To date, no one has found efficient (polynomial-
time) algorithms for the TSP. But over the past few years many practical problems
of really large size are solved [1]. Thus, at present, the largest solved Norwegian
instance of TSP has 24 978 cities (D. Applegate, R. Bixby, V. Chvátal, W. Cook, and
K. Helsgaun — 2004). But, the largest solved instance of TSP includes 85,900 cities
(points) in an application on chips (2005-2006) [1].

The Transportation Problem is a well known classical problem [20]. There are
several efficient methods for its solving [33, 21, 34]. Note that there exists also an
impressive extension of Transportation Problem in functional spaces [48, 49], that
have to highlight once and more a transportation problem significance.

The TSP with Transportation and Fixed Additional Payments (TSPT) generalizes
these two problems: TSP and Transportation Problem [46]. The TSPT has some
affinities with a Vehicle Routing Problem [9, 43].

3.3.2 TSPT Formulations. Let a digraph G = (V, E), |V | = n, |E| = m
be given. Each node j ∈ V has its own capacity δ j (demand, if δ j < 0, supply, if
δ j > 0), such that

∑n
j=1 δ j = 0. A salesman starts his traveling from the node k ∈ V

with δk > 0. The unit cost of transportation throw arc (i, j) ∈ E is equal to ci j. If
the arc (i, j) is active, then the additional payment di j is demanded. If (i, j) < E, then
ci j = di j = ∞. We must find a Hamiltonian circle and a starting node k ∈ V with a
property that the respective salesman travel satisfies all the demands δ j, j = 1, ..., n,
and minimizes the total cost.
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The TSPT may be formulated as an integer programming problem. Let xi j be a
quantity of product which is transported via (i, j). Let yi j ∈ {0; 1} be equal to 1 if
xi j > 0, and let xi j be equal to 0 if yi j = 0. In such notation the TSPT, as stated above,
is equivalent to the following problem:

n∑
i=1

n∑
j=1

(
ci jxi j + di jyi j

)
→ min, (6)

n∑
i=1

yi j = 1, j = 1, ..., n, (7)

n∑
j=1

yi j = 1, i = 2, ..., n, (8)

n∑
k=1

x jk −
n∑

i=1

xi j = δ j, j = 1, ..., n, (9)

ui − u j + nyi j ≤ n − 1, i, j = 2, ..., n, i , j, (10)

xi j ≤ Myi j, i, j = 1, ..., n, (11)

xi j ≥ 0, yi j ∈ {0; 1}, u j ≥ 0, i, j = 1, ..., n, (12)

where M =
∑n

j=1 |δ j|.
If ci j = 0 for all i, j = 1, ..., n, then the problem (6)–(12) becomes a classical TSP.

If di j = 0 for all i, j = 1, ..., n, then the problem (6)–(12) is simplified to a classical
Transportation Problem.

Theorem 3.1. The TSPT and the problem (6)–(12) are equivalent.

Proof. The components (6)–(8), (10) and (12) of the problem (6)–(12) define a Hamil-
tonian circuit [33]. The components (6), (9) and (12) state the transportation prob-
lem [20]. The constraint (11) realizes a connection between these two “facets” of
the TSPT. The starting node k ∈ V may determined by an elementary sequential
search.

A capacity mathematical model of the problem is obtained when any arc (i, j) ∈ E
has an upper bound capacity ui j > 0. Constraints

xi j ≤ ui jyi j, (i, j) ∈ E,

substitute (11).
The inequalities

li jyi j ≤ xi j ≤ ui jyi j, (i, j) ∈ E,
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substitute (11) when any arc (i, j) ∈ E has also a lower bound capacity li j > 0.
Kuhn [33] restrictions (10) may be substituted by equivalent restrictions:∑

i∈K

∑
j∈K

yi j = |K| − 1, ∀K ⊂ V,

where K is any proper subset of V .

3.3.3 Algorithms for TSPT. It is obvious that the solution of the clas-
sical TSP does not solve TSPT.

The branch-and-bound algorithm may be constructed on back-tracking technique
for a branch generation and lower bound estimation of the sum of a 1-tree value and
T0, where T0 is calculated at the first step. T0 represents the value of a minimal cost
flow problem obtained in a relaxed problem without Hamiltonian circuit requirement.
For an efficient bounding, T0 may be substituted, at every step of the algorithm, by
the exactly cost of transportation throw the respective fragment of the circuit.

A direct solving of (6)–(12) with an Gomory type cutting-plane algorithms is ra-
tional for a problem with modest size. In recent vogue opinion, the branch-and-cut
super-algorithm [21, 34] may be much more recommended for the TSPT.

Finally, note that a dynamic programming approach [4] to solve the TSPT implies
some difficulties as the TSPT optimal value depends on first node choosing from
which the travel starts. This fact may be simply taken into consideration in previous
methods, but not in dynamic programming method.

3.3.4 TSP Matrix Games. Finally, let us only remark once again that
the TSP and TSPT suggest us an example of matrix games that are simple formulated,
but are difficult to solve because of its computation complexity.

3.4. MAXIMIN COST FLOW

Let us consider a flow network on a digraph G = (V, E), |V | = n, |E| = m with
an output (source) vertex vs ∈ V and a input vertex (sink) vt ∈ V, vs , vt, where any
edge (u, v) ∈ E has a capacity b(u, v) ∈ Z+ and a unit transportation cost c(u, v) ∈ Z.
The set V is partitioned into two disjoint sets of player positions:

V1, V2, (V1 ∪ V2 = V, V1 ∩ V2 = Ø).

Without loss of generality let us assume that vs ∈ V1. Thus, the player edge sets are

E1 = {(u, v) ∈ E | u ∈ V1}, E2 = {(u, v) ∈ E | u ∈ V2}.

Subsets S 1 ⊆ E1, S 2 ⊆ E2 are strategies of the first and second players, correspond-
ingly. Any profile (S 1, S 2) ∈ 2E1 × 2E2 generates a net GS = (V, S 1 ∪ S 2). In the net
GS , a flow f of a fixed value φ0 is defined as the vector f ∈ R|S 1∪S 2 | which satisfies
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the following properties:

10. 0 ≤ f (u, v) ≤ b(u, v), (u, v) ∈ S 1 ∪ S 2,

20.
∑

(u, v)∈S 1∪S 2

f (u, v) −
∑

(v, u)∈S 1∪S 2

f (v, u) =


0, u < {vs, vt},
φ0, u = vs,
−φ0, u = vt.

The cost of the flow f is equal to
∑

(u, v)∈S 1∪S 2

c(u, v) f (u, v).

Let us suppose that there exists at least one flow with the value φ0 in the considered
net.

For any pair of strategies (S 1, S 2) there is a polyhedron of solutions of system
10 − 20, denoted by FS = F(GS ). Generally, the polyhedron FS may be an empty
set for some pair of strategies if system 10 − 20 does not have solutions, but, due to
our supposition, there exists at least one pair of strategies for which FS , Ø. It is
known that if the capacity b(u, v) is integer for any (u, v) ∈ E, then all the vertices of
the polyhedron FS have integer components. Thus, as FS is bounded, the set of all
flows, corresponding to (S 1, S 2), is a linear convex combination of a finite number of
integer flows. The cardinality of the set FS may be equal to 0, when system 10 − 20

does not have solutions, may be equal to 1, when 10 − 20 has one solution, or may be
equal to ℵ, when 10 − 20 has an infinite number of solutions.

Let D be a set of all subgraphs (subnets) of G that has a flow of a value φ0 from vs
to vt. Let

M: 2G → D, M(S 1, S 2) = Gs ∩D

be the choice function,

C: D→ R, C(Γ) = max
f∈F(Γ)

∑
c(e) f (e)

be the choice criterion and

M(S 1, S 2) =


argmax
Γ∈M(S 1,S 2)

C(Γ), if M(S 1, S 2) , Ø,

Ø, otherwise,

be a mono-valued choice function that chooses the flow of the value φ0 with a mini-
mal cost in the net GS . Then, we have the following cost function (payoff matrix):

C(S 1, S 2) =


C(M(S 1, S 2)), if M(S 1, S 2) , Ø,
−∞, if M(S 1, S ′2) = Ø, ∀ S ′2 ∈ 2E2 ,
+∞, otherwise.

So, the matrix game Γ is defined. By analogy with the general case, we define games
Γ+ and Γ+∗ too. A strategy is called admissible if there exists an adversary strategy for
which the corresponding profile is feasible (has a φ0 flow).
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Lemma 3.1. Let the net G has at least one φ0 flow. Then both the players have at
least one feasible strategy in Γ+.

Proof. Let us order rows and columns of the matrices of Γ+ in a non-decreasing order
of cardinalities of corresponding strategies. It is obvious that the pair of strategies,
which are equal to a union of all admissible strategies of a correspondent player, are
feasible.

The following example shows that for a solvable game Γ there are several non-
identical approaches to define games Γ+, Γ+∗ so that the game Γ+∗ may be both solvable
and unsolvable.

Example 3.1. Consider the flow games Γ, Γ+, Γ+∗ , defined on the following graph

l1 l4
l2

l3
�������*

HHHHHHHj �������*

HHHHHHHj

1/1 1/1

5/1 5/1

where φ0 = 1; vs = 1; vt = 4;

V1 = {1}; V2 = {2; 3; 4};

E1 = {(1, 2); (1, 3)}; E2 = {(2, 4); (3, 4)}.

The following table contains the payoff matrices of the considered games.

2
(2, 4)

1 (2, 4) (3, 4) (3, 4) min
B2

min
B2(S 1)

(1, 2) 10 +∞ 10 10 10

(1, 3) +∞ 2 2 2 2

(1, 2) (1, 3) 10 2 2 2 2

max
B1

+∞ +∞ 10 10\10

max
B1(S 2)

10 2 10 2\10

The games Γ, Γ+ have the equilibrium profile. The game Γ+∗ does not have.
If the sets of admissible strategies are narrowed so that from every vertex, except

the fourth, at least one edge is going out, then the payoff matrices are modified
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2
(2, 4)

1 (3, 4) min
B2

min
B2(S 1)

(1, 2) 10 10 10

(1, 3) 2 2 2

(1, 2) (1, 3) 2 2 2

max
B1

10 10\10

max
B1(S 2)

10 10\10

and all the games Γ, Γ+, Γ+∗ have the same equilibrium profile.
Thus, for a game Γ there are two pairs of games Γ+, Γ+∗ . For one pair, the game Γ+∗

does not have an equilibrium profile. For another one, all the games Γ, Γ+, Γ+∗ have
the same equilibrium profile.

It is well known that the problem of minimal cost flow may be represented as a
linear programming problem [33]. By numbering the vertices and edges of G in a
such way that vertices and edges of the first player are the first in the order list, we
can define elements of an incidence matrix A = [ai j] of the graph G as

ai j =


+1, if e j exits from vertex i,
−1, if e j enters in vertex i,

0, otherwise,

i = 1, ..., n; j = 1, ...,m. By notation f =
[

f1
f2

]
= ( f1, . . . , fm)T ∈ Rm, f j — the flow

through edge e j; b, c ∈ Rm, b j — the capacity of edge e j, c j — the unit cost of edge
e j flow;

d ∈ Rm, di =


−1, if vi = vs,
+1, if vi = vt,

0, otherwise,

the following minimal cost flow problem in the net G may be formulated

cT f → min, (13)
A f = dφ0,

f ≤ b,
f ≥ 0.

(14)

Let us associate with the first n constraints, corresponding to the safety law of the
φ0 flow, dual variables πi, and with the remains m constraints — dual variables γk.
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Then, the problem (13) – (14) has the following dual problem

φ0(πs − πk) + bTγ → max, (15){
πi − π j + γk ≤ ck, for ek = (vi, v j) ∈ E,

γk ≤ 0, k = 1, ...,m. (16)

According to the Strong Duality Theorem of Linear Programming Theory, problems
(13) – (14) and (15) – (16) have optimal solutions if and only if the system

cT f = φ0πs − φ0πt + bTγ,
A f = dφ0,

f ≤ b,
f ≥ 0,

πi − π j + γk ≤ ck, for ek = (vi, v j) ∈ E,
γk ≤ 0, k = 1, ...,m,

(17)

has a solution (remark, the first equality is the binding one).
It is important to observe that for any profile (S 1, S 2) ∈ B1 ×B2 there is a system

of (17) type. Let Φ(S 1, S 2) be the set of all the solutions of the corresponding system
(17). Then, the cost function may be defined as

C(S 1, S 2) =


cT f , if Φ(S 1, S 2) , Ø where ( f , π, γ)T ∈ Φ(S 1, S 2),
−∞, if Φ(S 1, S ′2) = Ø for all S ′2 ∈ B2,
+∞, otherwise.

By applying linear programming concepts and results, let us show now that prob-
lems of finding maximin and minimax profiles in the flow game are equivalent to
maximin and minimax linear problems.

Clearly, the set of feasible solutions of problem (13) – (14) is an polyhedron in
Rm, and the minimum is attained on its vertex. Then, the first player purpose is to
maximize the flow cost by rational choice of the net GS structure. This is equivalent to
maximisation of the flow cost by optimal choice of the basic columns of the matrix A
that corresponds to a choice of edges of E1. The second player purpose is to minimize
the cost of the flow by rational choice of the net GS structure. This is equivalent to
minimisation of the flow cost by optimal choice of the basic columns of the matrix A.
Therefore, the first player has to choice a feasible solution for which at least columns,
that correspond to edges from E1, have non-negative dual estimations. The second
player has to choice a feasible solution for which at least columns, that correspond to
edges from E2, have non-positive dual estimations. Consequently, a feasible solution
is both saddle point and equilibrium profile. So, the problem of an equilibrium profile
computing in the flow game is equivalent to a maximin linear problem

max
f1

min
f2

cT
[

f1
f2

]
, (18)
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A

[
f1
f2

]
= dφ0,

0 ≤
[

f1
f2

]
≤ b.

(19)

Problem (18) – (19) is equivalent to

φ( f1) = min
f2

(c1 f1 + c2 f2) = c1 f1 +min
f2

c2 f2 → max . (20)


A2 f2 = dφ0 − A1 f1,
0 ≤ f1 ≤ b1,
0 ≤ f2 ≤ b2.

(21)

In (21), the function φ( f1) is determined as a solution of a linear parametric program
with restrictions (21). It is known that solutions of such problems are piecewise linear
convex functions [18]. Therefore, φ( f1) is a piecewise-linear convex function on on
(21).

Analogically, the function

ψ( f2) = max
f1

(c1 f1 + c2 f2) = max
f1

c1 f1 + c2 f2

is a piecewise-linear concave function on (21).

Theorem 3.2. The function φ( f1) is a piecewise-linear convex function on (21).
The function ψ( f2) is a piecewise-linear concave function on (21).

The problems of maximizing φ( f1) and minimizing ψ( f2) are the problems of con-
cave programming, which, as it is well known, are NP – hard even on a unit hy-
percube [44]. Consequently, taking into the consideration that (20) – (21) may be
represented as the problem of maximizing a piecewise-linear convex function over a
hyper-parallelepiped the following result becomes obvious.

Theorem 3.3. The maximin (minimax) cost flow problem is an NP – hard problem.

4. POLYMATRIX GAMES ON DIGRAPHS

Matrix games may be generalized on the case of arbitrary number of players p ≤ n.
The vertex set V is partitioned into disjoint subsets of player positions

V1,V2, . . . ,Vp

 p∪
i=1

Vi = V, Vi ∩ V j = ∅, for i , j

 ,
which define evidently the corresponding sets of player edges

Ei = {(u, v) ∈ E | u ∈ Vi} , i = 1, ..., p.
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All the players independently choose their strategies

(S 1, S 2, . . . , S p) ∈ 2E1 × · · · × 2Ep .

After that, M(S ) (defined analogically as above) is determined, S = (S 1, S 2, . . . , S p).
Each player determines his gain

ci(S ) =


ci(M(S )), if M(S ) , Ø,
−∞, if M(S ′) = Ø, ∀ S ′k ∈ 2Ek , k , i,
+∞, otherwise,

where i = 1, . . . , p. Thus, the vector payoff function is defined as the mapping

c : 2E1 × · · · × 2Ep → Rp,

which sets the correspondence between every profile of player strategies and their
gains.

Analogically with the case of matrix games, polymatrix games with feasible strate-
gies can be defined, requiring of course the ordering of player vertices ans edges.

The solution of the polymatrix game may be defined, e.g., as a Nash equilibrium
profile [52, 22, 12]. If the characteristics of some players have similar tendencies to
increase or decrease, coalition games may be considered. Evidently, if p = 2 and
c2(S 1, S 2) = −c(S 1, S 2), a zero-sum matrix game is defined.

5. DYNAMIC GAMES ON DIGRAPHS

In this section, we consider games [45] which are closely related to extensive form
games [23, 24, 25], network and algorithmic games [42, 30, 39, 11, 28]. They extend
simultaneous single stage games considered above to multi-stage games.

Consider the above digraph G. Denote by Γ a digraph polymatrix game with p
players defined on G. It is evident that the digraph matrix game is a particular case of
the digraph polymatrix game when p = 2 and the gain of one of the players is a loss
of his opponent.

The game Γ is a single stage/single shot game. Players choose their strategies
simultaneously, at the same single stage/single time moment. As a result a feasible
graph G∗S is set, the cost of the game is determined and the gain or loss is distributed
to players.

Let G be the set of all possible polymatrix games on a digraph G.
Generally, a dynamic/multi-stage game may be seen as a sequence of single stage

games. It is denoted by Γ(t), and it is defined equivalently both as a mapping

Γ : N→ G,

and a sequence

(Γt)t∈N = (Γ(t))t∈N = (Γ(1),Γ(2), . . . , Γ(t), . . . ) .
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The definition of the dynamic game Γ(t) may be completed by a terminus criterion
— the criterion which defines conditions for which the game ends/stops/finishes.
According to considered types of future horizons, the dynamic games may be divided
into two classes:

• the class of dynamic games with finite time horizon θ denoted by Γθ(t) and
defined equivalently both as a mapping

Γ : {1, 2, . . . , θ} → G,

and a finite sequence

(Γθ1, Γθ2, . . . ,Γθθ) = (Γ(1),Γ(2), . . . , Γ(θ)) ,

• the class of dynamic games with infinite time horizon denoted by Γ∞(t) or
simply Γ(t), and defined equivalently both as a mapping

Γ : N→ G,

and an infinite sequence

(Γ1,Γ2, . . . ) = (Γ(1), Γ(2), . . . ) .

Remark, the infinite and finite dynamic games Γ∞(t) and Γθ(t) are repeated games
(supergames or iterated games) [29, 2, 15, 32, 27, 40, 31] if the set of all single-stage
games G consists only of one element. A game of a single fixed type is played at
every stage t of a repeated game. Evidently, the class of repeated games may be
enlarged with dynamic games in which a subsequence of games is repeated.

Games considered in theory of moves present an alternative point of view on di-
graph matrix and polymatrix games [8] based on dynamics of player moves.

The strategies of the player i ∈ {1, 2, . . . , p} in the dynamic game Γ(t) are defined
as sequences of stage game strategies

(S i(t))t∈N = (S i(1), S i(2), . . . , S i(t), . . . ) ∈ 2Ei × 2Ei × · · · × 2Ei × · · ·

The game Γ(τ) of any particular stage τ generates a stage profile digraph G∗S (τ).
Denote by S (τ) the profile of player strategies at the stage τ, i.e.

S (τ) = (S 1(τ), . . . , S p(τ)).

The payoff of the stage game Γ(τ) is a vector denoted equivalently both by c(Γ(τ))
and c(S (τ)), with components

ci(S (τ)) =


ci(M(S (τ))), if M(S (τ)) , Ø,
−∞, if M(S ′(τ)) = Ø, ∀ S ′k(τ) ∈ 2Ek , k , i,
+∞, otherwise,

i = 1, . . . , p.
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If the game Γ(t) is considered on the finite discrete time interval defined as
Θ = {1, 2, . . . , θ}, then it is obvious that the player strategies are finite sequences
of the form (S i(1), S i(2), . . . , S i(θ)), where S i(t), t = 1, 2, . . . θ, are the strategies of
the ith player on the corresponding stages.

The cost/payoff of the dynamic game Γθ(t) is determined on the base of the
cost/payoff of stage games on the stages 1, 2, . . . , θ. In the simplest case, the cost
function may be defined by

1. c(Γθ(t)) =
θ∑

t=1

c(Γ(t)); 2. c(Γθ(t)) =
1
θ

θ∑
t=1

c(Γ(t)),

interpreted as vector expressions for polymatrix games and scalar expressions for
matrix games, or by

3. ci(Γθ(t)) =
θ∑

t=1

ci(Γ(t)); 4. ci(Γθ(t)) =
1
θ

θ∑
t=1

ci(Γ(t)),

i = 1, . . . , p, interpreted as components of the payoff vector function in polymatrix
dynamic games.

If we suppose that the type of stage games is fixed, the result of the t-stage game
does not depend on results of previous stages and the dynamic game ends at the step
θ, then it is obvious that for solvable stage game Γ with optimal strategies (S ∗1, S

∗
2)

the corresponding dynamic game Γθ(t) has optimal strategies

(S 1(t))t∈Θ = (S ∗1, . . . , S
∗
1︸      ︷︷      ︸

θ

)

and
(S 2(t))t∈Θ = (S ∗2, . . . , S

∗
2︸      ︷︷      ︸

θ

)

with cost c(Γθ(t)) = θc(S ∗1, S
∗
2) or c(Γθ(t)) = c(S ∗1, S

∗
2). Therefore, such dynamic

games are generally identical with matrix and polymatrix games.
A dynamic game model acquires more valuable features if the terminus criterion

implies to finish the game when a feasible subgraph with prescribed structure is con-
structed in some stage τ graph GS (τ). In such case the time horizon may be infinite,
but the game nevertheless stops if the terminus criterion is satisfied.

Next, we associate with every stage t a dynamic game state

G(t) = (W(t), E(t))

as a couple formed by a vertex set and an edge set which depend on t. Evidently, sets
of player strategies depend on game states.
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If the initial state is
G(0) = (W(0), E(0)) ⊆ (V, E)

at the initial time moment, the set of all possible strategies of the ith player at the
moment t may be defined as:

Ei(t) = {(u, v) ∈ E|u ∈ Vi ∩W(t − 1)}, t = 1, 2, . . . ; i = 1, . . . , p,

where W(t − 1) is the set of vertices in the graph G(t − 1) at the stage t − 1, Vi —
the set of positions of the ith player. Every subset S i(t) ⊆ Ei(t) is called a strategy of
player i at the stage t.

The state of the dynamic game at the stage t is determined after examination of the
corresponding game at the previous stage t − 1 according to formula

W(t) = {v ∈ V | ∃(u, v) ∈
p∪

i=1

S i(t)}, t = 1, . . . , τ.

As the player strategies at the stage t depend both on their positions and the game
state at the moment t, we have to solve games of the same type at consecutive time
moments t and t + 1, but generally with different sets of strategies for every player.
After that, as the player strategies are the edges which determine the mapping of W(t−
1) in W(t), then players, in antagonistic interests, endeavour to increase (to decrease)
the set of their own advantageous positions of the stage W(t), and to decrease (to
increase) the set of advantageous (non-advantageous), positions of adversaries on the
same state W(t). Therefore, G is the graph of all possible passages (strategies), their
number being limited by 2m. The set V defines the set of all possible states, which
cardinality is limited by 2n.

If the dynamical game is examined on infinite time interval {1, 2, . . . }, then it fol-
lows from the limited number of states that some states of the game and correspond-
ing strategies of players will be repeated in some sequences. It is obvious, that the
payoff function c(Γ(t)), having the form of the number sequences, will be unlimited
on τ → +∞. Therefore, the definition of such game must be completed with special
ending criterion: or the value cost function is larger then determined limit, or at some
moment the graph of determined structure is constructed, etc. In the case of cost
function c(Γ(t)) we can examine the limit

c(Γ(t)) = lim
θ→+∞

(1
θ

θ∑
t=0

c(Γ(t)
)
,

for which there exists (as is mentioned above) repeated sequences of game states with
limited value of the cost function, such that c(Γ(t) is equal to fixed number. In this
case, the problem to find cycle of the states may be considered.

Next, lengths of edges can be functions depending on t and the cost of a dynamic
game is calculated using static game costs only at some stages.
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As mentioned, it is clear that the contents and type of dynamic games are depend-
ing on:

• static game;

• initial state and restriction of cardinality of the game states;

• cost function;

• edge length function;

• time interval on which the game is examined;

• terminus criterion,

• etc.

In investigation of dynamic games Γ(t) it is useful sometimes to use the property
that every dynamic game Γ(t) can be represented as a matrix game.

6. CONCLUDING REMARKS

It is necessary to mention that strategies of players may be defined also as subsets
of vertices, or the pair of subsets of vertices and edges. The investigation of such
games, the determination of solvable games and the elaboration of corresponding
algorithms are problems for future work.
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