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Abstract In this work, we define the Vandermonde-type sequence and then we obtain the rela-
tions among the elements of the sequence and generating matrix of the sequence. Also,
we study the Vandermonde-type sequence modulo m and we obtain the cyclic groups
from the generating matrix of the sequence when read modulo m. Then we derive the
relationships among the orders of the obtained cyclic groups and the periods of the
Vandermonde-type sequence modulo m. Finally, we redefine the adjacency-type se-
quences by means of the elements of the groups which have two or more generators and
then we obtain the periods of the Vandermonde-type sequence in the polyhedral groups
(n, 2, 2), (2, n, 2) and (2, 2, n) for n ≥3 as applications of the results produced.
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1. INTRODUCTION AND PRELIMINARIES

It is well-known that the Vandermonde matrix V of order n is defined by

V =



1 x1 x2
1 · · · xn−1

1
1 x2 x2

2 · · · xn−1
2

1 x3 x2
3 · · · xn−1

3
...

...
... · · ·

...
1 xn x2

n · · · xn−1
n


or

Vi, j = x j−1
i

for all indices i and j.
It is clear that a Vandermonde matrix presents a geometric sequence in every row

with the first element being 1. Note that some authors use the transpose of the above
matrix.

Suppose that the (n + k)th term of a sequence is defined recursively by a linear
combination of the preceding k terms:

an+k = c0an + c1an+1 + · · · + ck−1an+k−1
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where c0, c1, . . . , ck−1 are real constants. In [11], Kalman derived a number of closed-
form formulas for the generalized sequence by the companion matrix method as fol-
lows:

A =
[
ai, j

]
k×k
=



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


.

Then by an inductive argument he obtained that

An


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1


for n > 0.

Let G be a finite j-generator group and let

X =

(x1, x2, . . . , x j
)
∈ G ×G × · · · ×G︸              ︷︷              ︸

j

| ⟨
{
x1, x2, . . . , x j

}
⟩ = G


we call

(
x1, x2, . . . , x j

)
a generating j-tuple for G.

In Section 2, we define the Vandermonde-type sequence and then we give the
relationship among the elements of the sequence and the generating matrix of the
sequence. In [4, 5, 6, 7, 8, 12, 14], the authors obtained the cyclic groups and
semigroups via some special matrices. In Section 3, we consider the multiplica-
tive orders of the generating matrix of the Vandermonde-type sequence according
to modulo α and then, we obtain the cyclic groups and semigroups. The study of
recurrence sequences in groups began with the earlier work of Wall [15] where the
ordinary Fibonacci sequences in cyclic groups were investigated. Recently, many
authors have studied some special recurrence sequences in groups; see for exam-
ple, [1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14]. In Section 4, we extend the theory to the
Vandermonde-type sequence and then, we study this sequences in finite groups. Fi-
nally, we obtain the lengths of the periods of the Vandermonde-type sequences in the
polyhedral groups (n, 2, 2), (2, n, 2) and (2, 2, n), (n ≥ 3) in the 3-generator cases.

2. MAIN RESULTS AND PROOFS

Define the Vandermonde-type sequence as shown:
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xk
n = xk

n−1 + kxk
n−2 + k2xk

n−3 + · · · + kk−1xk
n−k for k ≥ 3 and n ≥ k + 1,

where xk
1 = xk

2 = · · · = xk
k−1 = 0 and xk

k = 1.
Letting

Mk =
[
mi, j

]
k×k
=


1 k k2 · · · kk−1

1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 0 1 0


, (k ≥ 3) .

The matrix Mk is said to be the Vandermonde-type matrix. It can be readily estab-
lished by mathematical induction that

(M3)n =

 x3
n+3 9x3

n+1 + 3x3
n+2 9x3

n+2
x3

n+2 9x3
n + 3x3

n+1 9x3
n+1

x3
n+1 9x3

n−1 + 3x3
n 9x3

n

 for n ≥ 2, (1)

(M4)n =


x4

n+4 x4
n+5 − x4

n+4 64x4
n+2 + 16x4

n+3 64x4
n+3

x4
n+3 x4

n+4 − x4
n+3 64x4

n+1 + 16x4
n+2 64x4

n+2
x4

n+2 x4
n+3 − x4

n+2 64x4
n + 16x4

n+1 64x4
n+1

x4
n+1 x4

n+2 − x4
n+1 64x4

n−1 + 16x4
n 64x4

n

 for n ≥ 3, (2)

(Mk)n =


xk

n+k xk
n+k+1 − xk

n+k kk−1xk
n+2 + kk−2xk

n+3 + · · · + k2xk
n+k−1

xk
n+k−1 xk

n+k − xk
n+k−1 kk−1xk

n+1 + kk−2xk
n+2 + · · · + k2xk

n+k−2
...

...
... M1 M2

xk
n+1 xk

n+2 − xk
n+1 kk−1xk

n−k+3 + kk−2xk
n−k+4 + · · · + k2xk

n


(3)

for n ≥ k − 1 and k ≥ 5 where

M1 =


kk−1 xk

n+3 + kk−2 xk
n+4 + · · · + k3 xk

n+k−1 · · · kk−1 xk
n+k−3 + kk−2 xk

n+k−2 + · · · + kk−3 xk
n+k−1

kk−1 xk
n+2 + kk−2 xk

n+3 + · · · + k3 xk
n+k−2 · · · kk−1 xk

n+k−4 + kk−2 xk
n+k−3 + · · · + kk−3 xk

n+k−2
... · · ·

...

kk−1 xk
n−k+4 + kk−2 xk

n−k+5 + · · · + k3 xk
n · · · kk−1 xk

n−2 + kk−2 xk
n−1 + · · · + kk−3 xk

n


(k)×(k−5)

and

M2 =


kk−1xk

n+k−2 + kk−2xk
n+k−1 kk−1xk

n+k−1
kk−1xk

n+k−3 + kk−2xk
n+k−2 kk−1xk

n+k−2
...

...
kk−1xk

n−1 + kk−2xk
n kk−1xk

n


k×2

.

Since det Mk = (−k)k−1, we easily derive that det (Mk)n = (−k)(k−1)·n. It is well-
known that the Simson formula for a recurrence sequence can be obtained from
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the determinant of its generating matrix. For example, the Simpon formula of the
Vandermonde-type sequence for k = 3 and n ≥ 2 is as follows:

9
(
x3

n+1

)3−18x3
n+1x3

n+2x3
n+2x3

n+3x3
n+1x3

n−9x3
n+3x3

n−1x3
n+1−2

(
x3

n+2

)2
x3

n+9x3
n+3

(
x3

n

)2
= 9n−1

For an integer matrix A =
[
ai, j

]
with ai, j’s integers, A (mod m) means that all

entries of A are modulo m, that is, A (mod m) =
(
ai, j (mod m)

)
. Let us consider the

set ⟨A⟩m =
{
Ai (mod m) | i ≥ 0

}
. If gcd (m, det A) = 1, then ⟨A⟩m is a cyclic group; if

gcd (m, det A) , 1, then ⟨A⟩m is a semigroup. We denote the order of the set ⟨A⟩m by
|⟨A⟩m|. Since det Mk = (−k)k−1, we easily see that the set ⟨Mk⟩m is a cyclic group if
gcd (m, k) = 1. Similary, the set⟨Mk⟩m is a semigroup if gcd (m, k) , 1.

Now we consider the order of the cyclic groups which are generated by the matri-
ces Mk, (k ≥ 3).

Theorem 2.1. Let p be a prime such that gcd (p, k) = 1 with k ≥ 3. If u is the largest
positive integer such that

∣∣∣⟨Mk⟩pu

∣∣∣ = ∣∣∣⟨Mk⟩p
∣∣∣, then

∣∣∣⟨Mk⟩pv

∣∣∣ = pv−u ·
∣∣∣⟨Mk⟩p

∣∣∣ for every
v ≥ u. In particular, if

∣∣∣⟨Mk⟩p2

∣∣∣ , ∣∣∣⟨Mk⟩p
∣∣∣, then

∣∣∣⟨Mk⟩pv

∣∣∣ = pv−1 ·
∣∣∣⟨Mk⟩p

∣∣∣.
Proof. Since gcd (p, k) = 1, the sets ⟨Mk⟩pα are cyclic groups for every positive

integer α. Let λ be a positive integer such that (Mk)
∣∣∣∣⟨Mk⟩pλ+1

∣∣∣∣ ≡ I
(
mod pλ+1

)
,where I

is the k × k identity matrix. Then it is clear that (Mk)
∣∣∣∣⟨Mk⟩pλ+1

∣∣∣∣ ≡ I
(
mod pλ

)
, which

implies that
∣∣∣⟨Mk⟩pλ

∣∣∣ divides
∣∣∣⟨Mk⟩pλ+1

∣∣∣ .
Furthermore, if we denote (Mk)

∣∣∣∣⟨Mk⟩pλ
∣∣∣∣ = I +

(
m(λ)

i, j · pλ
)
, then by the binomial

expansion, we can write

(Mk)
∣∣∣∣⟨Mk⟩pλ

∣∣∣∣·p = (
I +

(
mi, j · pλ

))p
=

p∑
i=0

(
p
i

) (
mi, j · pλ

)i ≡ I
(
mod pλ+1

)
.

Then we get that
∣∣∣⟨Mk⟩pλ+1

∣∣∣ divides
∣∣∣⟨Mk⟩pλ

∣∣∣ · p. Thus, it is clear that
∣∣∣⟨Mk⟩pλ+1

∣∣∣ =∣∣∣⟨Mk⟩pλ
∣∣∣ or

∣∣∣⟨Mk⟩pλ+1

∣∣∣ = ∣∣∣⟨Mk⟩pλ
∣∣∣ · p. It is easy to see that the latter holds if and only if

there is a m(λ)
i, j which is not divisible by p. Since u is the largest positive integer such

that
∣∣∣⟨Mk⟩pu

∣∣∣ = ∣∣∣⟨Mk⟩p
∣∣∣, ∣∣∣⟨Mk⟩pu+1

∣∣∣ , ∣∣∣⟨Mk⟩pu

∣∣∣ . Thus, it is readily seen that there is an
m(u+1)

i, j which is not divisible by p. Then, we obtain
∣∣∣⟨Mk⟩pu+2

∣∣∣ , ∣∣∣⟨Mk⟩pu+1

∣∣∣ . The proof
is finished by induction on u.

Reducing the Vandermonde-type sequence by a modulo m, we can write the fol-
lowing recuurence sequence:{

xk
n (m)

}
=

{
xk

1 (m) , xk
2 (m) , . . . , xk

i (m) , . . .
}
,

where xk
i (m) = xk

i (mod m) and k ≥ 3. It has the same recurrence relation as in the
Vandermonde-type sequence.
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It is well known that a sequence is periodic if, after a certain point, it consists
only of repetitions of a fixed subsequence. The number of elements in the shortest
repeating subsequence is called the period of the sequence.

Theorem 2.2. For every positive integer m, the Vandermonde-type sequence modulo
m,

{
xk

n (m)
}

is periodic.

Proof. Let us consider the set

S =
{
(s1, s2, . . . , sk) | si’s are interegers such that 0 ≤ si ≤ m − 1

}
.

Since |Q| = mk, there are mk distinct k-tuples of elements of Zm. Then, it is easy
to see that at least one of the k-tuples appears twice in the sequence

{
xk

n (m)
}

for
k ≥ 3. Therefore, the subsequence following this k-tuple repeats; hence, the sequence{
xk

n (m)
}

is periodic for k ≥ 3.

We denote the length of the period of the sequence
{
xk

n (m)
}

by Pk (m).
By (1), (2) and (3), it is readily seen that Pk (m) = |⟨Mk⟩m| when gcd (m, k) = 1.

Theorem 2.3. If gcd (m, k) = 1 and m has the prime factorization m =
τ∏

i=1

pui
i ,

(τ ≥ 1), then Pk (m) equals the least common multiple of the Pk
(
pui

i

)
’s.

Proof. Pk
(
pui

i

)
is the period of the sequence

{
xk

n

(
pui

i

)}
, the sequence

{
xk

n

(
pui

i

)}
repeats

only after blocks of length λ · Pk
(
pui

i

)
, (λ ∈ N). Since also Pk (m) is the period of the

sequence
{
xk

n (m)
}
, the sequence

{
xk

n

(
pui

i

)}
repeats after Pk (m) terms for all values i.

Then, it is clear that Pk (m) is the form λ · Pk
(
pui

i

)
for all values i, and since any

such number gives a period of Pk (m), we obtain that Pk (m) equals the least common
multiple of the Pk

(
pui

i

)
’s.

We will now consider the Vandermonde-type sequences in groups.

Definition 2.1. Let G be a k-generator group and let (x1, x2, . . . , xk) be a generat-
ing k-tuple of G, where k ≥ 3. Then the Vandermonde-type orbit of the group G,
VG

(x1,x2,...,xk) is defined as shown:

ak
n =

(
ak

n−k

)kk−1 (
ak

n−k+1

)kk−2

· · ·
(
ak

n−2

)k
ak

n−1 for k ≥ 3 and n ≥ k + 1,

where ak
i = xi for 1 ≤ i ≤ k.

Theorem 2.4. If G is a finite group, then the sequence VG
(x1,x2,...,xk) is periodic.

Proof. Assume that n is the order of G. Since there nk distinct k-tuples of elements
of G, at least one of the k-tuples appears twice in the sequence VG

(x1,x2,...,xk). Therefore,
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the subsequence following this k-tuple repeats. On account of the repetition, the orbit
VG

(x1,x2,...,xk) is periodic.

We denote the period of the orbit VG
(x1,x2,...,xk) by PVG

(x1,x2,...,xk).
Now we consider the Vandermonde-type orbits of the polyhedral groups (n, 2, 2),

(2, n, 2) and (2, 2, n) for n ≥3.
The polyhedral group (l,m, n) for l,m, n > 1, is defined by the presentation⟨

x, y, z : xl = ym = zn = xyz = e
⟩

or ⟨
x, y : xl = ym = (xy)n = e

⟩
.

The polyhedral group (l,m, n) is finite if and only if the number

µ = lmn
(
1
l
+

1
m
+

1
n
− 1

)
= mn + nl + lm − lmn

is positive, i.e., in the case (2, 2, n) , (2, 3, 3) , (2, 3, 3) , (2, 3, 4) , (2, 3, 5) . Its order is
2lmn
µ . Using Tietze transformations we may show that (l,m, n) u (m, n, l) u (n, l,m).
For detail information about the polyhedral groups, see [3].

Conjecture 1. Let gcd (n, 3) = 1, let G be any the polyhedral groups (n, 2, 2), (2, n, 2)
and (2, 2, n), then

gcd
(
PV (G)

(x,y,z), P3 (n)
)
, 1.

Conjecture 2. The periods of the Vandermonde-type orbits PV (n,2,2)
(x,y,z) , PV (2,n,2)

(x,y,z) and

PV (2,2,n)
(x, y, z) are odd integers.

Now we give the periods of the Vandermonde-type orbits of the polyhedral groups
(n, 2, 2), (2, n, 2) and (2, 2, n) for some integers n by the following table:

n PV (2,n,2)
(x,y,z) PV (n,2,2)

(x,y,z) PV (2,2,n)
(x,y,z)

2 4 4 4
3 6 4 4
4 8 8 8
5 24 12 12
6 12 4 4
7 48 96 48
8 16 16 16
9 18 4 4
10 24 12 12
15 24 12 12
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