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Abstract
The authors of [1] didn’t proof minimality of finding by them system of

generators for such Sylow 2-subgroups of An and structure of it were founded
only descriptively. The purpose of this paper is to research the structure of
Sylow 2-subgroups alternating group and to construct a minimal generating
set for Syl2An, where n = 4k + 2, n = 4k + 3. In other words, the problem is
not simply in the proof of existence of a generating set. For the construction
of minimal generating set we used the representation of elements of group by
automorphisms of portraits for binary tree. Also, the goal of this paper is to
investigate the structure of 2-sylow subgroup of alternating group. We obtain a
symmetric irreducible generating set Λ = S∪S−1 = S because every generator
has order two.

In this article the research of Sylow p-subgroups of An and Sn, which
was started in [1, 2, 3] is continued. Let syl2A2k and syl2An be Sylow 2-
subgroups of the corresponding alternating groups A2k and An. We find
a minimal generating set and the structure for such subgroups syl2A2k and
syl2An, n = 4k + 2, n = 4k + 3.

Keywords: minimal generating sets; iterated wreath product of groups; wreath power;

semidirect product; Sylow 2-subgroups; alternating group; number of minimal generating

sets; group of automorphisms Reebs graph.
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1. INTRODUCTION

In the articles [1, 3], the the sets of generators for Sylow p-subgroups of An

and its normalizer as well as the structure of this subgroups were investigated.
We found the following inaccuracies in these articles: minimal generating sets
for the Sylow 2-subgroups of An were not investigated, also the structure of
the Sylow 2-subgroups was described not fully, besides for case n = 2k the
structure of Syl2An was not described. Moreover, there was a mistake in a
statement about irreducibility of a set of k + 1 elements for Syl2(A2k) that
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appeared in the abstract [4]. All obtained results were reported by the author
at the conferences [28, 29, 30].

The aim of this paper is to study the structure of Sylow 2-subgroups of A2k ,
An and to construct a minimal generating set for syl2A2k , syl2An. The case of
a Sylow subgroup where p = 2 is very special because the group C2 ≀C2 ≀ . . . ≀C2

admits odd permutations, so C2 ≀ C2 ≀ . . . ≀ C2 is not a subgroup of A2k . This
case was not fully investigated in [1, 2] and the question remains open.

Let X be a finite alphabet. Sylow p-subgroups of A2k appear in the au-
tomaton theory, because if all states of an automaton A have output function
that can be presented as a cycle (1, 2, ..., p) then the profinite group GA(X)
of this automaton is a Sylows p-subgroup of the restriction of the group of all
automaton transformations GA(X) also GA(X) < GA(X) [6]. In this case for
the profinite groups we have Sylp(AutX) > FGA(X) [6]. Thus, finding the
minimum cardinality of a generating set is important.

Acknowledgment. I would like to thanks to Igor Samoilovych for sharing
his knowledge with me.

2. PRELIMINARIES

Let X∗ be the free monoid freely generated by X = {0, 1}. Stated another
way the setX∗ is naturally a vertex set of a regular rooted tree, i.e. a connected
graph without cycles and a designated vertex v0 called the root, in which two
words are connected by an edge if and only if they are of form v and vx, where
v ∈ X∗, x ∈ X. The set Xn ⊂ X∗ is called the n-th level of the tree X∗ and
X0 = v⊘. We denote by vj,i the vertex of Xj , j > 0, which has the number i,
1 ≤ i ≤ 2j , indexing starts from left most vertex. The subtree of X∗ induced
by the set of vertices ∪k

i=0X
i is denoted by X [k]. Note that the unique vertex

vk,i corresponds to the unique word v in alphabet X. For every automorphism
g ∈ AutX∗ and every word v ∈ X∗ define the section (state) g(v) ∈ AutX∗ of
g at v by the rule: g(v)(x) = y for x, y ∈ X∗ if and only if g(vx) = g(v)y. The

restriction of the action of an automorphism g ∈ AutX∗ to the subtree X [l]

is denoted by g(v)|X[l] . A restriction g(v)|X[1] is called the vertex permutation
(v.p.) of g in a vertex v. Let us introduce conventional signs for a v.p. state
value of α in vki as ski(α) we put that ski(α) = 1 if α(vki)|X[1](x) = y, x ̸= y
such state of v.p. is active, and ski(α) = 0 if α(vki)|X[1](x) = x such state of

v.p. is trivial. Let us label every vertex of X l, 0 ≤ l < k by sign 0 or 1 in
relation to state of v.p. in it. Obtained by such way a vertex-labeled regular
tree is an element of AutX [k]. All undeclared terms are from [7, 11].

Let us denote by vj,iX
[k−j] subtree of X [k] with a root in vj,i.

An automorphism of X [k] with non-trivial states of v.p. in some of v1,1, v1,2,
v2,1,..., v2,4, ... ,vm,1, ... ,vm,j , m < k, j ≤ 2m is denoted by
β1,(i11,i12);...;l,(il1,...,il2l );...;m,(im1,...,im2m ) where the index that stands straight be-
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fore parentheses are number of a level in parentheses we write a tuple of
states of v.p. of this level. In other words we set imj = 0 if v.p. in vmj

is trivial, imj = 1 in other case, i.e., imj = smj(β), where β ∈ AutX [k],
m < k. If for some l all ilj = 0 then 2l-tuple l, (il1, ..., il2l) does not figure
in indexes of β. But if numbers of active vertices are certain, for example
vj,1 and vj,s, we can use more easy notation βj,(1,s);, where in parentheses
numbers of vertices with active state of v.p. from a level j. If in paren-
theses only one index presents then parentheses can be omitted for instance
βj,(s); = βj,s;. Denote by τ i,...,j the automorphism of X [k], which has a non-

trivial v.p. only in vertices vk−1,i, ... ,vk−1,j , j ≤ 2k−1 of the level Xk−1.
Denote by τ the automorphism τ1,2k−1 . Let us consider special elements such
that: α0 = β0 = β0,(1), α1 = β1 = β1,(1), . . . , αl = βl = βl,(1).

As well known, the set of Sylow p-subgroups of G is denoted as Sylp(G)
[8, 9]. Since all Sylow p-subgroups are conjugated [8], we may investigate any
one Sylow p-subgroup instead of all subgroups from Sylp(Apn) and denote this
group as sylp(Apn). Analogously, one Sylow p-subgroup from the Sylp(Spn) is
denoted by us as sylp(Spn).

3. MAIN RESULT

Recall that the wreath product of permutation groups is an associative
construction. We consider C2 as additive group with two elements 0, 1. For
constructing a wreath product we define an action of C2 by shift on X. As

well known, that AutX [k−1] ≃
k−1
≀C2
i=1

[6].

Lemma 3.1. Every automorphism that has active v.p. only on X l, l < k − 1
acts by even permutation on Xk.

Proof. Actually every transposition in vertex from X l, l < k − 1 acts on
even number of pair of vertexes because of binary tree structure. More pre-
cisely it realizes an even permutation on the set Xk with cyclic structure [13]

(12
k−1−2k−l−l

, 22
k−l−l

) because it formed by the structure of binary tree.

Corollary 3.1. Due to Lemma 3.1 automorphisms from

AutX [k−1] = ⟨α0, ..., αk−2⟩ form a group Bk−1 =
k−1
≀

i=1
C2 acting on Xk−1 by

even permutations. Size of Bk−1 equals to 22
k−1−1.

The parity of the action follows from Lemma 3.1.
Let us denote by Wk−1 the subgroup of AutX [k] such that has active states

only on Xk−1 and number of such states is even, i.e., Wk−1 ▹ StAutX[k](k− 1)
[7].
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Proposition 3.1. The order of Wk−1 is equal to 22
k−1−1, k > 1 and

Wk−1 = C2k−1−1
2 .

Proof. On Xk−1 we have 2k−1 vertices where can be elements of a group

Vk−1 ≃ C2 × C2 × ... × C2 ≃ (C2)
2k−1

, but as a result of the fact that Xk−1

contains only even number of non trivial v.p. from Xk−1, there are only half
of all permutations from Vk−1 ≃ StGk

(k − 1) on Xk−1. So it is the subgroup

Wk−1 ≃ C2k−1

2 /C2 of Vk−1. So we can state that |Wk−1| = 22
k−1−1, Wk−1 has

k − 1 generators and we can consider Wk−1 as a vector space of dimension
k − 1.

For example let us consider the subgroup W4−1 of A24 its cardinality is

22
4−1−1 = 27 and |A24 | = 214. Let us denote by Gk the subgroup of AutX [k]

such that Gk ≃ Bk−1 nWk−1.

Lemma 3.2. The elements τ and α0, ..., αk−1 generate arbitrary element τ ij.
The set {τ , α0, ..., αk−1} is enough to generate a basis of Wk−1.

Proof. Firstly, we shall prove the possibility of generating arbitrary τ ij , 1 ≤
i, j ≤ 2k−1. According to [11, 2] the set α0, ..., αk−2 is the minimal generating
set for group AutX [k−1].

Since Autv1,1X
[k−2] ≃ ⟨α1, ..., αk−2⟩ acts on Xk−1 transitively [10], then

there exists a transposition of vk−1,1 and vk−1,j , j ≤ 2k−2. For this goal
we act by αk−j on τ : αk−jταk−j = τ j,2k−2 . Similarly we act on τ by the

corespondent αk−i to get τ i,2k−2 from τ : αk−iτα
−1
k−i = τ i,2k−2 . Note that

the automorphisms αk−j and αk−i, 1 < i, j < k − 1 acts non-trivial only on

subtree v1,1X
[k−1]. To get τm,l from v1,2X

[k−1], i.e., 2k−2 < m, l ≤ 2k−1 we

use α0 to map τ i,j in τ i+2k−2,j+2k−2 ∈ v1,2AutX
[k−1]. To express an arbitrary

transposition τ j,m from Wk−1 we have to multiply τ1,jττm,2k−1 = τ j,m. To
construct an permutation of vk−1,1 and vk−1,j we need to realize a natural
number j, 1 < j < 2k−2, in 2-adic set of presentation (binary arithmetic).
Then j = δj12

mj+δj22
mj−1+...+δjmj+1 , δji ∈ {0, 1} where is a correspondence

between δji that from such presentation and expressing of automorphisms:

τ j,2k−1 =
∏mj

i=1 α
δji
k−2−(mj−i)τ

∏mj

i=1 α
δji
k−2−(mj−i), 1 ≤ mj ≤ k − 2. Generating

the basis of Wk−1 by all τ ij is clear.

Lemma 3.3. Orders of groups Gk = ⟨α0, α1, α2, ..., αk−2, τ⟩ and syl2(A2k)

are equal to 22
k−2.

Proof. In accordance with Legendre’s formula, the power of 2 in 2k! is[
2k

2

]
+
[
2k

22

]
+
[
2k

23

]
+ ... +

[
2k

2k

]
= 2k−1

2−1 . We need to subtract 1 from it be-

cause we have only n!
2 of all permutations as a result: 2k−1

2−1 − 1 = 2k − 2.
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So |Syl(A2k)| = 22
k−2. The same size has group Gk = Bk−1 n Wk−1 and

|Gk| = |Bk−1| · |Wk−1| = |syl2A2k |. Since size of groups Gk according to

Proposition 3.1 and the fact that |Bk−1| = 22
k−1−1 is 22

k−2. For instance

the orders of syl2(A8), B3−1 and W3−1 are such |W3−1| = 22
3−1−1 = 23 = 8,

|B3−1| = |C2 ≀C2| = 2 ·22 = 23 and according to Legendre’s formula, the power

of 2 in 2k! is 23

2 + 23

22
+ 23

23
− 1 = 6 so syl2(A8) = 26 = 22

k−2, where k = 3.

Next example for A16: syl2(A16) = 22
4−2 = 214, k = 4, |W4−1| = 22

4−1−1 = 27,
|B4−1| = |C2 ≀ C2 ≀ C2| = 2 · 22 · 24 = 27. So we have the |A16| = |W3||B3|
equality which endorse the condition of this Lemma.

An automorphisms group of the subgroup C2k−1−1
2 is based on permutations

of copies of C2. Orders of
k−1
≀

i=1
C2 and C2k−1−1

2 are equals. A homomorphism

from
k−1
≀

i=1
C2 into Aut(C2k−1−1

2 ) is injective because a kernel of action
k−1
≀

i=1
C2

on C2k−1−1
2 is trivial, action is effective. The group Gk is a proper subgroup

of index 2 in the group
k
≀

i=1
C2 [2, 14].

Theorem 3.1. A maximal 2-subgroup of AutX [k] which consists of even
permutations on Xk has the structure of the semidirect product
Gk ≃ Bk−1 nWk−1 and is isomorphic to syl2A2k .

Proof. A maximal 2-subgroup of AutX [k−1] is isomorphic to
Bk−1 ≃ C2 ≀ C2 ≀ ... ≀ C2︸ ︷︷ ︸

k−1

acting by even permutation onXk according to Lemma

3.1. A maximal 2-subgroup which has elements with active states only on
Xk−1 is isomorphic to subgroup Wk−1. The construction of Wk−1 contributes
an action of Wk−1 by even permutations. From Lemma 3.1 it follows that
every element of Bk−1 acts by an even permutation on Xk. Thus, Gk acts by
even permutations on Xk.

Using the Corollary 3.1 and Proposition 3.1 about sizes of Bk−1 and Wk−1

we get size of Gk ≃ Bk−1 nWk−1 is 22
k−1−1 · 22k−1−1 = 22

k−2. A group Gk

is subgroup of AutX [k] and it is well known that AutX [k] ≃ syl2S2k , so Gk is

isomorphic to some subgroup G̃k of syl2S2k . A group syl2A2k is subgroup of

syl2S2k . As supplementary according to Lemma 3.3 order of G̃k equals to order
of syl2(A2k). Hence, according to Sylow’s theorems 2-subgroup Gk ≃ syl2A2k .

Since subgroups Bk−1 and Wk−1 are embedded in AutX [k], then define an
action of Bk−1 on elements ofWk−1 as τ

σ = στσ−1, σ ∈ Bk−1, τ ∈Wk−1, i.e.,
action by inner automorphism (inner action) from AutX [k]. Note that Wk−1

is subgroup of stabilizer of Xk−1 i.e. Wk−1 < StAutX[k](k − 1)� AutX [k] and
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is normal too Wk−1�AutX
[k], because conjugation keeps a cyclic structure of

permutation so even permutation maps in even. Therefore such conjugation
induce an automorphism of Wk−1 and Gk ≃ Bk−1 nWk−1.

Proposition 3.2. The group Gk is normal subgroup in the group
k
≀

i=1
C2 i.e.

Gk �Bk.

Proof. The commutator of Bk is B′
k = Bk−1. In other hand Bk−1 < Gk

because Gk ≃ Bk−1 n Wk−1. Thus, Gk � Bk. In other words, as well

known [7] wreath product
k
≀

i=1
C2 can be defined as equality Aut(X [k−1]) n

StAut(X[k])(X
k). But Aut(X [k−1]) ≃ Bk−1, Vk−1 ≃ StAut(X[k])(k − 1) and

Wk−1 < Vk−1 and taking in consideration the order of this semidirect product

we have |Bk : Gk| = 2, so Gk�
k
≀

i=1
C2 = Bk.

Theorem 3.2. The set Sα = {α0, α1, α2, ..., αk−2, τ} of elements from AutX [k]

generates the group Gk.

Proof. The fact that the group Gk are generated by Sα results from Corollary
3.1 and Lemma 3.2. The order of Gk equals the order of syl2(A2k) according
to Lemma 3.3. Isomorphism of syl2(A2k) and Gk is proved in Theorem 1.

Consequently, we construct a generating set, which contains k elements,
that is less than in [4]. We will not distinguish syl2(A2k) and its isomorphic
copy Gk in AutX [k].

The structure of Sylow 2-subgroup ofA2k is the following:
k−1
≀

i=1
C2n

∏2k−1−1
i=1 C2,

where we consider C2 as group of action on two elements and this action is
faithful. It adjusts with construction of normalizer for sylp(Sn) from [16],
where it was said that syl2(A2l) is self-normalized in S2l .

Definition 3.1. Let us call the index of automorphism β on X l a number of
active v.p. of β on X l.

Definition 3.2. Define an element of type T as an automorphism
τ i0,...,i2k−1 ;j2k−1 ,...,j2k

, that has an even index at Xk−1 and has exactly m1 ac-

tive states, m1 ≡ 1mod2, in vertexes of form vk−1,j, 1 ≤ j ≤ 2k−2 and m2

active states in vertices of form vk−1,j, 2
k−2 < j ≤ 2k−1, m2 ≡ 1mod2. Set of

such elements is denoted by T. In this article we use case m1 = m2.

Definition 3.3. A combined generator is such an automorphism βl;τ̃ , that the
restriction βl;τ̃ |Xk−1 coincides with αl and Rist<βil;τ̃

>(k − 1) = ⟨τ ′⟩, where

τ ′ ∈T.
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Definition 3.4. A combined element is such an automorphism
β1,i1;2,i2;...;k−1,ik−1;τ̃

, that its restriction β1,i1;2,i2;...;k−1,ik−1;τ̃

∣∣
Xk−1

coincides with
one of elements that can be generated by Sα and

Rist<β1,i1;2,i2;...;k−1,ik−1;τ̃
>(k − 1) =

⟨
τ ′
⟩

[7] where τ ′ ∈T. The set of such elements is denoted by C.

In other words elements g ∈C on level Xk−1 have such structure as elements
and generators of type T. As well τ i0,...,i2k−1 ;j2k−1 ,...,j2k

∈ StAutXk(k − 1).
The minimum size of a generating set S of G we denote by rkG and call

the rank of G [17]. By the distance between vertices we shall understand
the usual distance at graph between these vertexes. By the distance ρ(g)
of automorphism g ∈ AutX [k] (element) we shall understand the maximal
distance between two vertexes with active v.p. of g.

Lemma 3.4. The automorphism having a distance d0 that has v.p. only on
Xk−1 can not be generated by automorphism with a distance d1 such that
d1 < d0.

Proof. An element g with a distance ρ(g) = d0, d0 < d1 can be mapped by
automorphic mapping only in automorphism with a distance d0 because auto-
morphic mapping keeps incidence relation. So it possess property of isometry.
Also multiplication of portraits (labeled graphs) of automorphisms that have
distance d1 gives us portrait of an element with distance no greater than d1,
it follows from properties of group operation. For instance τ1iτ1j = τ ij , where
i, j > 2k−2, ρ(τ1i) = ρ(τ1j) = 2k − 2 but ρ(τ ij) < 2k − 2.

Lemma 3.5. An arbitrary automorphism τ ′ ∈T can be expressed only as a
product of the odd number of automorphisms from C or T.

Proof. Let us assume that there is no such element τ ij , which has distance
2k − 2 then accord to Lemma 3.4 it is imposable to generate are pair of
transpositions τ ′ with distance ρ(τ ij) = 2k − 2. If we consider product P
of even number elements from T then automorphism P has even number of
active states in vertexes vk−1,i with number i ≤ 2k−2 so P does not satisfy the
definition of type T generator. An combined element βil;τ can be decomposed

in product βil;τ = τ β̇il so we can express τ by using a combine element or
using a product, where odd number elements from T or C.

Corollary 3.2. Any element of type T cannot be generated by
τ ij ∈ Autv1,1X

[k−1] and τml ∈ Autv1,2X
[k−1]. The same corollary is true

for a combined element.

Proof. It can be obtained from Lemma 3.4 because τ ij from Autv1,1X
[k−1]

has distance less then 2k − 2. So it does not satisfy conditions of Lemma 3.4,
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i.e. τ ′ can not be generated by the automorphisms having distance between
vertices less than 2k − 2 such distance has only automorphisms of type T and
C. But elements from Autv1,1X

[k−1] do not belongs neither to type T nor C.

Lemma 3.6. Sets of types T, C elements are not closed with respect to multi-
plication and raising to even power.

Proof. Let ϱ, ρ ∈ T (or C) and ϱρ = η. Let µ0 be a tuple of vertices vk−1,i,
1 ≤ i ≤ 2k−2. In the product ϱρ = η the number of active states of η
in the tuple µ0 congruent to the sum by mod2 of active states of ϱ and ρ
from µ0. The same sum is in the tuple µ1 which consists of vertices vk−1,i,
2k−2 < i ≤ 2k−1. Thus, η has even numbers of active states on these tuples.
Hence, RiSt⟨η⟩(k− 1) does not contain elements of type T, so η /∈T. If we raise
the element β1,i1;2,i2;...;k−1,ik−1;τ

∈T to even power or we evaluate a product of
even number of multipliers from C then tuples µ0 and µ1 permutes with whole
subtrees v1,1X

[k−1] and v1,2X
[k−1], then we get an element g with even indices

on Xk−2 in subtrees v1,1X
[k−1] and v1,2X

[k−1]. Thus, g /∈T. Consequently,
elements of C do not form a group, the set T as a subset of C is not closed
too.

We have to take into account that all elements from T have the same
main property to comprise odd number m1 of active v.p. in vertices of form
vk−1,j , j ≤ 2k−2 and odd number m2 of active v.p. in vertices with index
j : 2k−2 < j ≤ 2k−1.

Let S
′
α = ⟨α0, α1, ..., αk−2⟩ so as it well known [11]

⟨
S

′
α

⟩
= AutX [k−1]. The

cardinality of a generating set S is denoted by | S | so | S′
α |= k − 1. Recall

that rk (G) is the rank of a group G [17].
Let Sβ = S

′
α ∪ τ i...j , where τ i...j ∈T and S

′
β is generating system which

contains combine elements, | S′
β |= k.

It’s known that rk(AutX [k−1]) = k − 1 and | S′
α |= k − 1 [11]. So if we

complete S
′
α by τ or element of type T we obtain set Sβ such that Gk ≃ ⟨Sβ⟩

and |Sβ| = k. Hence to construct combined element β we multiply generator

αi of S
′
α or arbitrary element that can be express from S

′
α on the element of

type T, i.e., we take τ ′ ·βi instead of βi and denote it βi;τ ′ . It’s equivalent that
Ristβi;τ ′ (k − 1) = ⟨τ ′⟩, where τ ′ – generator of type T.

Let us assume that S
′
β has a cardinality k−1. If in this case S

′
β is generating

system again, then element τ can be expressed from it. There exist too ways
to express the element of type T from S

′
β. To express element of type T

from S
′
β we can use a word βi,τβ

−1
i = τ but if βi,τ ∈ S

′
β then βi /∈ S

′
β in

contrary case | S′
β |= k. So we can not express word βi,τβ

−1
i |X[k−1] = e to

get βi,τβ
−1
i = τ . For this goal we have to find relation in a group that is
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a restriction of the group Gk on X [k−1]. We have to take in consideration

that Gk |X[k−1] = Bk−1. Really in wreath product ≀kj=1C
(j)
2 ≃ Bk−1 holds a

constitutive relations α2m
i = e and

[
αi
mαinα

−i
m , αj

mαikα
−j
m

]
= e, i ̸= j, where

αm ∈ S
′
α , αik ∈ S

′
α are generators of factors of ≀kj=1C

(j)
2 (m < n, m < k) [2, 5].

Such relations are words
[
βimβin,πβ

−i
m , βjmβik,πβ

−j
m

]
, i ̸= j or β2

m

i = e, βin ,
βm, βik

, βin,π are generators of S∗
β(k − 1), that could be an automorphism

θ. But
[
βimβin,πβ

−i
m , βjmβik,πβ

−j
m

]
, i ̸= j does not belongs to T because this

word has logarithm 0 by every element [15]. According to Lemma 3.5 and
Lemma 3.6 product of even number element of type C doesn’t equal to the
element of C or T.

Lemma 3.7. A generating set of Gk contains S
′
α and has at least k − 1 gen-

erators.

Proof. The subgroup Bk−1 < Gk is isomorphic to AutXk−1 that has a minimal
set of generators of k − 1 elements [11]. Moreover, the subgroup Bk−1 ≃
Gk/Wk−1

, because Gk ≃ Bk−1 nWk−1, where Wk−1 ◃ Gk. As it is well known

that if H�G then rk(G) ≥ rk(G/H), because all generators of Gk may belongs
to the different quotient classes [12].

As a corollary of last Lemma we see that generating set of size k − 1 does
not exist because S

′
β \ {τ} generates only a proper subgroup Bk−1 of Gk as it

was shown above.
Note that Frattini subgroup of any finite 2-group is equal to ϕ(Gk) = Gk

2 ·
[Gk, Gk] = Gk

2 because Gk
2 > [Gk, Gk]. Hence, generating sets of a 2-group

Gk correspond to generating sets of 2-abelization and to generating sets of the
quotient group by Gk

2.
LetX1 = {vk−1,1, vk−1,2, ..., vk−1,2k−2} andX2 = {vk−1,2k−2+1, ..., vk−1,2k−1}.

Lemma 3.8. Commutators of all elements from syl2A2k have all possible
even indexes on X l, l < k − 1 of X [k] and on Xk−2 of subtrees v11X

[k−1] and
v12X

[k−1].

Proof. Recall that any authomorphism θ ∈ syl2An has an even index on Xk−1

so the number parities of the active v. p. on X1 and on X2 are the same.
Conjugation by automorphism α from Autv11X

[k−1] of the automorphism θ,
that has some number x : 1 ≤ x ≤ 2k−2 of active v. p. on X1 does not change
x. Also automorphism θ−1 has the same number x of v. p. on Xk−1 as θ has.
If α from Autv11X

[k−1] and α /∈ AutX [k] then conjugation (αθα−1) permutes
vertices only inside X1 (X2).

Thus, αθα−1 and θ have the same parities of number of active v.p. on X1

(X2). Hence, a product αθα−1θ−1 has an even number of active v.p. on X1
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(X2) in this case. More over a coordinate-wise sum by mod2 of active v. p.
from (αθα−1) and θ−1 on X1 (X2) is even and equal to y : 0 ≤ y ≤ 2x.

If the conjugation by α permutes sets X1 and X2 then there are coordinate-
wise sums of no trivial v.p. from αθα−1θ−1 on X1 (analogously on X2) have
form: (sk−1,1(αθα

−1), ..., sk−1,2k−2(αθα−1))⊕ (sk−1,1(θ
−1), ..., sk−1,2k−2(θ−1)).

This sum has even number of v.p. on X1 and X2 because (αθα−1) and θ−1

have the same parity of no trivial v.p. on X1 (X2). Hence, (αθα−1)θ−1 has
even number of v.p. on X1 as well as on X2.

An authomorphism θ from Gk was arbitrary so number of the active v.p.
x on X1 is arbitrary. And α is arbitrary from AutX [k−1] so vertices can be
permuted in such way that the commutator [α, θ] has arbitrary even number
y of the active v.p. on X1, 0 ≤ y ≤ 2x.

A conjugation of an automorphism θ having arbitrary index x, 1 ≤ x ≤ 2l

on X l by different α ∈ AutX [k] gives us all permutations of active v.p. that
θ has on X l. So the multiplication (αθα−1)θ generates a commutator having
index y equal to coordinate-wise sum by mod2 of no trivial v.p. from vectors
(sl1(αθα

−1), sl2(αθα
−1), ..., sl2l(αθα

−1)) ⊕ (sl1(θ), sl2(θ), ..., sl2l(θ)) on X
l. A

indexes parities of αθα−1 and θ−1 are the same so their sum by mod2 are
even. Choosing θ we can choose an arbitrary index x of θ also we can choose
arbitrary α to make a permutation of active v.p. on X l. Thus, we obtain an
element with arbitrary even index on X l and arbitrary location of active v.p.
on X l.

Check that property of number parity of v.p. on X1 and on X2 is closed
with respect to conjugation. We know that numbers of active v. p. on X1 as
well as on X2 have the same parities. So the action by conjugation only can
permutes it, hence, we again get the same structure of element. Conjugation
by an automorphism α from Autv11X

[k−1] of an automorphism θ, that has the
odd number of the active v. p. on X1 does not change its parity. Choosing
the θ we can choose an arbitrary index x of θ on Xk−1 and number of active
v.p. on X1 and X2 also we can choose arbitrary α to make a permutation
active v.p. on X1 and X2. Thus, we can generate all possible elements from a
commutant.

Let us check that the set of all commutators K from syl2A2k is closed with
respect to the multiplication of commutators.

Let κ1, κ2 ∈ K then κ1κ2 has an even index on X l, l < k − 1 because
coordinate-wise sum (sl,1(κ1), ..., sk−1,2l(κ1))⊕ (sl,κ1(1)(κ2), ..., sl,κ1(2l)(κ2)) of

two 2l-tuples of v.p. with an even number of no trivial coordinate has even
number of such coordinate. Note that conjugation of κ can permute sets X1

and X2 so parities of x1 and X2 coincide. It is obviously index of ακα−1 is
even as well as index of κ.

Check that a set K is a set closed with respect to the conjugation.
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Let κ ∈ K, then ακα−1 also belongs to K, it is so because conjugation does
not change index of an automorphism on a level. The conjugation only per-
mutes vertices on level because the elements of AutX [l−1] acts on the vertices
of X l. But as it was proved above the elements of K have all possible indexes
on X l, so as a result of the conjugation ακα−1 we obtain an element from K.

Check that the set of commutators is closed with respect to the multipli-
cation of commutators. Let κ1, κ2 be an arbitrary commutators of Gk. The
parity of the number of vertex permutations on X l in the product κ1κ2 is
determined exceptionally by the parity of the numbers of active v.p. on X l

in κ1 and κ2 (independently from the action of v.p. from the higher levels).
Thus κ1κ2 has an even index on X l.

Hence, normal closure of the set K coincides with K.

Proposition 3.3. Frattini subgroup ϕ(Gk) acts by all even permutations on
X l, 0 ≤ l ≤ k − 1 and any element of ϕ(Gk) has even indexes on Xk−2 of
subtrees v11X

[k−1] and v12X
[k−1].

Proof. Since a group G2
k contains the subgroup G′ then a product G2G′ con-

tains all elements from the commutant. We need to prove that G2
k ≃ G′.

An indexes of the automorphisms α2, (αβ)2 and α, β ∈ Gk on X l, l < k− 1
are always even. In more detail the indexes of α2, (αβ)2 and βαβ−1α−1 on
X l are determined exceptionally by the parity of indexes of α and β on X l

(independently of the action of v.p. from the higher levels) and this parity is
even. Since an index of αβ on X l is an arbitrary x : 0 ≤ x ≤ 2l then an index
of (αβ)2 is arbitrary even number that is between 0 and 2l. As it was shown
in Lemma 3.8 any γ ∈ Gk has same parities of numbers of active v.p. on X1

as well as on X2. Then γ
2 has an even number of active v.p. on each sets X1

and X2. There are no elements with odd number of active v.p. on each sets
X1 and X2 in Gk.

Thus, we can generate all possible elements from the commutant which was
studied in Lemma 3.8.

We denote as Gk(l) such subgroup of AutX [k] that contains all v.p. from
X l, l < k− 1. In other words it contains all v.p. from StabAutX[k](l) and does
not contains v.p. from StabAutX[k](l + 1), l < k − 1. We denote as Gk(k − 1)

such subgroup of AutX [k] that consists of v.p. which are located on Xk−1

and isomorphic to Wk−1. Let us construct a homomorphism from G(l) onto

C2 in the following way: φl(α) =
2l∑
i=1

sli(α) mod 2. Note that φl(α · β) =

φl(α) ◦ φl(β) = (
2l∑
i=1

sli(α) +
2l∑
i=1

sli(β))mod2.
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Structure of subgroup G2
kGk

′ ▹
k
≀
1
S2 ≃ AutX [k] can be described in next way.

This subgroup contains the commutantG′
k. So it has on eachX l, 0 ≤ l < k−1

all even indexes that can exists there. There does not exist v.p. of type T on
Xk−1, rest of even the indexes are present on Xk−1. It is so, because the
sets of elements of types T and C are not closed with respect to operation of
rasing to the even power as it proved in Lemma 3.6. Thus, the squares of the
elements don’t belong to T and C. This implies the corollary.

Corollary 3.3. A quotient group Gk/
G2

kG
′
k
is isomorphic to C2 × C2 × ...× C2︸ ︷︷ ︸

k

.

Proof. The proof is based on two facts G2
kG

′
k ≃ G2

k ▹ Gk and
∣∣∣G : G2

kG
′
k

∣∣∣ =
2k. Construct a homomorphism from Gk(l) onto C2 in the following way:

φl(α) =
2l∑
i=1

sli(α) mod 2. Note that φl(α · β) = φl(α) ◦ φl(β) = (
2l∑
i=1

sli(α) +

2l∑
i=1

sli(β))mod2, where α, β ∈ AutX [n]. Index of α ∈ G2
k on X l, l < k − 1 is

even but index of β ∈ Gk on X l can be both even and odd. Note that Gk(l)
is abelian subgroup of Gk and G2

k(l) E Gk.
By virtue of the fact that we can construct the homomorphism φi from

every subgroup Gk(i) of this product to Gk(i)/G2
k(i)

we have homomorphism

from Gk to Gk/G2
k
. The group Gk/G2

k
is elementary abelian 2-group because

g2 = e, g ∈ G and G′ �G2. Let us find a 2-rank of this group.
We use the homomorphism φl which is described above, to map Gk(l) onto

Gk(l)/G2
k(l)

the kerφl = G2
k(l). If α from Gk(l) has odd number of active

states of v.p. on X l, l < k − 1 than φl(α) = 1 in Gk(l)/G2
k(l)

otherwise if this

number is even than α from kerφi = G2
k(l), so φl(α) = 0. Hence we have

Gk(l)/G2
k(l)

≃ C2. Let us check that mapping φ = (φ0, φ1, ..., φk−2, ϕk−1) is the

homomorphism from Gk onto (C2)
k.

Parity of index of α ·β on X l is equal to sum by mod 2 of indexes of α and β
hence φl(α·β) = (φl(α) + φl(β)) because the multiplication α·β inGk does not
change a parity of index of β, β ∈ Gk on X l. Really action of element of active
group A = C2 ≀ C2 ≀ ... ≀ C2︸ ︷︷ ︸

l−1

from wreath power (C2 ≀ C2 ≀ ... ≀ C2︸ ︷︷ ︸
l−1

) ≀C2 on element

from passive subgroup C2 of second multiplier from product gf, g, f ∈ A ≀C2

does not change a parity of index of β on X l, if index of β was even then
under action it stands to be even and the sum φl(α) mod 2+φl(β) mod 2 will
be equal to (φl(α) + φl(β)) mod 2, hence it does not change a φ(β).



Involutive irreducible generating sets and structure of Sylow 2-subgroups of ... 129

Indexes of α(v11) and α(v12) for arbitrary α ∈ Gk on Xk−1 can be as even as
well as odd. But these indexes of α(v11) and α(v12) are equal by mod 2.

The subgroup G2
kG

′
k admits only automorphisms α such that α(v11) and

α(v12) have even indexes on Xk−1. So this set is a kernel of mapping from
Gk(k − 1) onto C2. This homomorphism can be obtained from the for-

mula ϕ(α) =
2k−2∑
i=1

sk−1,i(α)(mod2) ·
2k−1∑

i=2k−2+1

sk−1,i(α)(mod2). It follows from

structure of Gk that
2k−2∑
i=1

sk−1,i(α)(mod2) =
2k−1∑

i=2k−2+1

sk−1,i(α)(mod2). Thus

the image ϕ(Gk(k− 1)) consist of 2 elements: 0 and 1, these elements we map
in different elements of C2. Hence homomorphism ϕ is surjective.

Hence for an abelian subgroup Gk(k − 1) ≃ Wk−1 such that Gk(k − 1) ◃
Gk

2(k − 1) it was constructed a homomorphism ϕ : (Gk(k − 1)) → Gk(k−1)/G2
k(k−1) ≃

C2. This homomorphism is injective because for every j two different elements
of Gk(j)/

G2
kG

′
k(j)

, 0 ≤ j < k, map in 2 different images in C2. Element α that

is in accord with a condition
2l∑
i=1

sli(α) ≡ 0( mod2) has an image 0 and if

2l∑
i=1

sli(α)) ≡ 1(mod2) its image is 1.

Since words of generators with no equal logarithms to any bases by mod
2 [15] belong to distinct cosets of the commutator, the subgroup G2

k(l) is the
kernel of this mapping. The number of such bases is k because there are k
generators. Hence the homomorphism from Gk/G2

k
onto (C2)

k is injective.

Let us check that the homomorphism φ is surjective. For this goal we
shall indicate preimage of arbitrary generator gl = (0, ..., 0, 1, 0, ..., 0) of (C2)

k,
where 1 1s on l coordinate. This preimage is αl,1 ∈ Gk. As the result we have
Gk/G2

k
≃ C2 × C2 × ...× C2︸ ︷︷ ︸

k

.

Corollary 3.4. The group syl2A2k has a minimal generating set of k gener-
ators.

Proof. Since quotient group of Gk by subgroup of Frattini G2
kG

′
k has minimal

set of generators from k elements because Gk/
G2

kG
′
k
is isomorphic to linear p-

space (p = 2) of dimension k (or elementary abelian group). Then according
to theorems from [18] rk(Gk) = k. Since Gk ≃ A2k it means that A2k is a
group with fixed size of minimal generating set.

Main Theorem. The set Sα is a minimal generating set for a group Gk that
is isomorphic to Sylow 2-subgroup of A2k , rk(syl2A2k) = k.
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The existing of isomorphism between Gk and syl2(A2k) follows from The-
orem 3.2. The minimality of Sβ follows from Lemma 3.7 which says that the
rank of syl2(A2k) is not less than k − 1 and Theorem 3.2. The fact that set
of k elements is enough to generate Gk follows from Corollary 3.3 and from
Theorem 3.2. Hence, we prove that rk(syl2A2k) = k. Another way to prove
the minimality of Sβ is given in Corollary 3.3 because generating set of such
group corresponds to generating sets of 2-abelianisation.

For example a minimal generating set of syl2(A8) may be constructed by
following way, for convenience let us consider the next set:
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Consequently, in such a way we construct the second k-element generating
set for A2k , that is less than in [4], and this set is minimal.

We will call diagonal base (Sd) for syl2S2k ≃ AutX [k] such base that
has the following two properties. First sjx(αi) = 0 iff i ̸= j (for 1 ≤ x ≤ 2j).
Second, every αi (i < k) has odd number of active v.p. This base is the similar
to Sα that described in Theorem for syl2A2k . A number of no trivial v.p. that
can be on Xj is odd, the number of ways to chose a tuple of non trivial v.p. on
Xj for generator from Sd is equal to 22

j
: 2 = 22

j−1. Thus, general cardinality

of Sd for syl2S2k is 22
k−k−1. There is at least one generator of type T in Sd

for syl2A2k . If m1,m2 which are mentioned above in Definition 2 are equal to

1 then this generator can be chosen in C1
2k−2C

1
2k−2 = (2k−2)

2
= 22k−4 ways.

If m1 = m2 = j then this generator can be chosen in Cj
2k−2C

j
2k−2 ways. In

general case m1 ̸= m2 and there are Cm1

2k−2C
m2

2k−2 generators. Thus, general

cardinality of Sd for syl2A2k is not less than 22
k−1−k−2

2k−2−1∑
j=1

(Cj
2k−2)

2. The

total number of Sd for syl2S2k is 22
k−k−1.

Property 1. The total number of minimal generating sets for syl2A2k is

2k(2
k−k−2) · (2k − 1)(2k − 2)(2k − 22)...(2k − 2k−1), for syl2S2k it is 2k(2

k−k−1) ·
(2k − 1)(2k − 2)...(2k − 2k−1).

Proof. Find the total number of minimal generating sets for Gk and analogous
sets for AutX [k]. We take into account, that the number of generating sets for
(C2)

k ≃ Gk/
G2

kG
′
k
equals to (2k−1)(2k−2)(2k−22)...(2k−2k−1) and equals to

the order of the group GL (k,F2). Also take into account that every element

from (C2)
k has |Gk| : 2k inverse images in Gk, because (C2)

k is a factor-group.
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Hence, generating sets of a 2-group Gk correspond to generating sets of 2-
abelization. Since (C2)

k is a quotient group of Gk by Frattini subgroup ϕ(Gk),
any inverse image of quotient group generator is generator of Gk, so preimages
number for each generator of (C2)

k is equal to size of normal subgroup ϕ(Gk).
There are k generators in a minimal generating set of (C2)

k, therefore to
calculate number of preimages of the whole minimal generating set of (C2)

k

the number |ϕ(Gk)| = |Gk| : 2k should be raised to the power of k. So we can

count a number of minimal generating sets of Gk. It equals to (|Gk| : 2k)
k
=

(22
k−2 : 2k)

k
= 2k(2

k−k−2). As a result, we have 2k(2
k−k−2) ·(2k−1)(2k−2)(2k−

22)...(2k−2k−1). In the similar way we obtain a number of minimal generating

sets of Syl2S2k . It equals to 2k(2
k−k−1) ·(2k−1)(2k−2)(2k−22)...(2k−2k−1).

Thus, if we associate generating set with alphabet and choice of generating
set will be a private key, then it can be applied in cryptography [19]. A group
Gk can be used as a platform group G in the key establishment protocol
[31] of generating common secret key (shared secret key). This group Gk

satisfies all six properties from [31]. More over our group Gk has exponential
grows of different generating sets and diagonal bases that can be used for
extention of key space. Diagonal bases and minimal generating sets are useful
for easy constructing of normal form [31] and minimal length form [32] of an
element g ∈ Gk. As a privet key we choose one of generating sets. For every
permutation π from Syl2An we introduce a notion of canonical presentation
in fixed generating set. We consider a classification of permutations in fixed
generating set. For finding canonical presentations we consider a set of words
Λn, k, k ≥ n−2, elements of Λn, k are images of π after defined by us mapping
ϕ and a tuple Vm(−→v ,−→u ), where m > 1, v, u – some vectors with elements
from Z. On base of this notions it was proposed an algorithm of middle incline
for constructing of canonical representation of any permutation. Conjugacy
problem for this subgroup can be used as base in application for designing
braidbased protocols. Also researching of the structure of Syl2An give us
possibility to solving of inclusion problem for set of elements of this subgroup.
As well known this problem is NP hard.

4. STRUCTURE AND PROPERTIES OF SY L2AN

Let us consider an examples of syl2An for a cases n = 4k + r, where r ≤ 3.
The structure of syl2A12 is the same as of the subgroup

H12 < syl2(S8)× syl2(S4), for that [syl2(S8)× syl2(S4) : H12] = 2,
|syl2(A12)| = 2[12/2]+[12/4]+[12/8]−1 = 29.

Also |syl2(S8)| = 27, |syl2(S4)| = 23, so |syl2(S8) × syl2(S4)| = 210 and
|H12| = 29, because its index in syl2(S8)× syl2(S4) is 2.
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The structure of syl2(A6) is the same as of H6 < syl2(S4) × (C2). Here
H6 = {(g, hg)|g ∈ syl2(S4), hg ∈ C2}, where{

hg = e, if g|X2 ∈ syl2(A6),

hg = (5, 6), if g|X2 ∈ syl2(S6) \ syl2A6.
(1)

The structure of syl2(A6) is the same as subgroup H6 : H6 < syl2(S4)× (C2)
where H6 = {(g, h)|g ∈ syl2(S4), h ∈ AutX}. So last bijection determined
by (1) giving us syl2A6 ≃ Syl2S4. As a corollary we have syl2A2k+2 ≃
syl2S2k . The structure of syl2(A7) is the same as of the subgroup H7 :
H7 < syl2(S4) × S2 where H6 = {(g, h)|g ∈ syl2(S4), h ∈ S2} and h depends
of g: {

hg = e, if g|X2 ∈ syl2A7,

hg = (i, j), i, j ∈ {5, 6, 7}, if g|X2 ∈ syl2S7 \ syl2A7.
(2)

The generators of the group H7 have the form (g, h), g ∈ syl2(S4), h ∈ C2,
namely: {β0;β1, τ} ∪ {(5, 6)}. An element hg can’t be a product of two
transpositions of the set: (i, j), (j, k), (i, k), where i, j, k ∈ {5, 6, 7}, because
(i, j)(j, k) = (i, k, j) but ord(i, k, j) = 3, so such element doesn’t belong to
2-subgroup. In general elements of syl2A4k+3 have the structure (2), where
hg = (i, j), i, j ∈ {4k + 1, 4k + 2, 4k + 3} and g ∈ syl2S4k.

Also |syl2(S8)| = 27, |syl2(S4)| = 23, so |syl2(S8) × syl2(S4)| = 210 and
|H12| = 29, because its index in syl2(S8) × syl2(S4) is 2. The structure of
syl2(A6) is the same as of H6 < Syl2(S4)× (C2).
Here H6 = {(g, hg)|g ∈ syl2(S4), hg ∈ C2}.

The orders of this groups are equal. Indeed

|syl2(A7)| = 2[7/2]+[7/4]−1 = 23 = |H7|.

In case g|L2 ∈ S7 \A7 we have C2
3 ways to construct one transposition that

is direct factor in H which complete syl2S4 to H7 by one transposition :
{(5, 6); (6, 7); (5, 7)}.

The structure of syl2(A2k+2l) (k > l) is the same as of the subgroup
H2k+2l < syl2(S2k) × syl2(S2l), for that [syl2(S2k) × syl2(S2l) : H] = 2.

|syl2(A2k+2l)| = 2[(2
k+2l)!/2]+[(2k+2l)!/4]+....−1.

Here H = {(g, hg)|g ∈ syl2(S
k
2 ), hg ∈ syl2(S

l
2}, where{

h ∈ A2l , if g|Xk−1 ∈ A2k ,

h : h|X2 ∈ syl2(S2l) \ syl2A2l , if g|Xk ∈ syl2S2k \ syl2A2k .
(3)

The generators of the group H7 have the form (g, h), g ∈ syl2(S4), h ∈ C2,
namely: β0;β1, τ ∪ (5, 6).

I.e. for element βσ(2i−1) = 2σ(i)−1, βσ(2i) = 2σ(i), σi ∈
{
1, 2, ..., 2k−1

}
.
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Let us present new operation � (similar to that is in [1]) that is an even
subdirect product of sylS2i , n = 2k0 + 2k1 + ...+ 2km , 0 ≤ k0 < k1 < ... < km
and m ≥ 0, i.e.,

syl2S2k1 � syl2S2k2 � ...� syl2S2kl = Par(syl2S2k1 × syl2S2k2 × ...× syl2S2kl ),

where Par(G) – set of all even permutations of G. Note, that � is not asso-
ciated operation, for instance ord(G1 � G2 � G3) = |G1 ×G2 ×G3| : 2 but
ord((G1 �G2)�G3) = |G1 ×G2 ×G3| : 4. For cases n = 4k+ 1, n = 4k+ 3
it follows from Legendre’s formula.

It is well known that the syl2S2ki ≃ ≀kij=1C2. Since Sylow p-subgroup of
direct product is direct product of Sylow p-subgroups and fact that automor-
phism of rooted tree keeps an vertex-edge incidence relation then we have
AutX [k0]×AutX [k1]× ...×AutX [km] ≃ syl2Sn, n = 2k1 +2k2 + ...+2kl , ki ≥ 0,
ki < ki−1. Let us denote a subgroup, that consists of all even substitutions
from syl2Sn as AutX [k0]�AutX [k1]� ...�AutX [km], where a states of v.p. on
Xk0−1 ⊔Xk1−1 ⊔ ... ⊔Xkm−1 are related by congruence:

m∑
i=0

2ki−1∑
j=1

ski−1,j(αi) ≡ 0 (mod2). (4)

Lemma 4.1. If number of active states on a last level of AutX [ki] from
AutX [k0]� ... �AutX [km] is odd, then it is subdirect product of groups AutX [k0],
... , AutX [km].

Proof. It is a quotient group which is a homomorphic image obtained by a
mapping from AutX [k0] ×AutX [k1] × ...×AutX [km] ≃ syl2Sn to this quotient
group. A kernel of φ consists of all automorphisms which satisfy a congru-

ence
m∑
i=0

2ki−1∑
j=1

ski−1,j(αi) ≡ 1 (mod2). At once from definition follows, that if

number of states on last level of AutX [ki] is odd, then a subgroup from the
condition is subdirect product of groups AutX [k0], ... , AutX [km]. Actually
for every state of automorphism α from AutX [ki] on X l, l < ki − 1 we have
that (e, ..., e, αi, e, ..., e) belongs to AutX

[k0] × AutX [k1] × ... × AutX [km]. An
arbitrary state from Xki−1 is included in AutX [k0]�AutX [k1]� ...�AutX [km]

together with even number of states from last levels of X [k0], ... , X [km]. Anal-
ogous fact was proved in [1] for a direct sum of permutations groups and for
their subgroups which consists of all even permutations. Our statement is a
restiction on a syl2Sn.

The Sylow subgroup syl2(An) has index 2 in syl2(Sn) and it’s structure:
syl2S2k1 � syl2S2k2 � ...� Syl2S2kl .
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Lemma 4.2. If n = 4k+2, then the subgroup syl2An is isomorphic to syl2S4k,
where k ∈ N.

Proof. Let us consider the subgroup H4k+2 = {(g, hg)|g ∈ syl2(S4k), hg ∈ S2},
where {

hg = e, if g|Xk ∈ syl2(A4k+2),

hg = (4k + 1, 4k + 2), if g|Xk ∈ syl2(S4k+2) \ syl2(A4k+2).
(5)

For instance the structure of syl2(A6) is the same as subgroup H6 : H6 <
syl2(S4)×(C2), where H6 = {(g, h)|g ∈ syl2(S4), h ∈ AutX}. So last bijection
determined by (5) give us syl2A6 ≃ syl2S4. As a corollary we have syl2A2k+2 ≃
syl2S2k .

Bijection correspondence between set of elements of syl2(An) and syl2(S4k)
we have from (5). Let’s consider a mapping ϕ : syl2(S4k) → syl2(A4k+2)
if σ ∈ syl2(S4k) then ϕ(σ) = σ ◦ (4k + 1, 4k + 2)χ(σ) = (σ, (4k + 1, 4k +
2)χ(σ)), where χ(σ) is number of transposition in σ by module 2. So ϕ(σ) ∈
syl2(A4k+2). If ϕ(σ) ∈ An then χ(σ) = 0, so ϕ(σ) ∈ syl2(An−1). Check that
ϕ is homomorphism. Assume that σ1 ∈ syl2(S4k\A4k), σ2 ∈ syl2(A4k), then
ϕ(σ1)ϕ(σ2) = (σ1, h

χ(σ1))(σ2, e) = (σ1σ2, h) = σ1σ2 ◦ (4k + 1, 4k + 2), where
(σi, h) = σi ◦ hχ(σi) ∈ syl2(A4k+2). If σ1, σ2 ∈ S2k\A2k , then ϕ(σ1)ϕ(σ2) =
(σ1, h

χ(σ1))(σ2, h
χ(σ2)) = (σ1σ2, e) = (a, e), where σ1σ2 = a ∈ A4k+2. So it is

isomorphism.

Let nm = 2k0 + 2k1 + ...+ 2km , where 0 ≤ k0 < k1 < ... < km and m ≥ 0.

Theorem 4.1. If nm = 4k+2, then the minimal set of generators for syl2Anm

has
m∑
i=1

ki elements.

Proof. Actually, according to Lemma 4.2, syl2A4k+2 is isomorphic to syl2S4k.
It is well known (see Chapter 10, especially Section 10.4.) [20] that syl2S4k ≃
syl2S2k1 × ... × syl2S2km , where 4k = 2k1 + ... + 2km , k1 < ... < km. On the

other hand, syl2S2ki ≃ AutX [ki], so there exists the homomorphism φ from

every factor syl2S2ki onto Cki
2 . Such homomorphism was defined in Corollary

3.3 and in [11]. And what is more it is known that AutX [ki] has a minimal
generating set of ki generators [11]. Thus, there exists the homomorphism from

AutX [k1] × ... ×AutX [km] onto Ck1
2 × ... ×Ckm

2 , so the rank of syl2A4k+2 is
m∑
i=1

ki, where k1 = 1.

This result was confirmed by the algebraic system GAP. Actually, it was
founded by GAP that the minimal generating set for syl2A14, syl2A14 ≃
syl2S12 ≃ syl2S22 × Syl2S23 , of 5 elements:
(11, 12)(13, 14), (9, 11)(10, 12), (7, 8)(9, 10), (1, 5)(2, 6)(3, 7)(4, 8), (1, 3)(2, 4).
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Lemma 4.3. If nm ≡ 1(mod2), then there exists a point n from tuple M
of nm points indexed by numbers from 1 to nm, such that Stsyl2Snm

(n) is
isomorphic to syl2Snm acting on a tuple M .

Proof. If Snm acts on M , then one of a Sylow 2-subgroups H < Snm is iso-
morphic to AutX [k0] × AutX [k1] × ... × AutX [km], that acts on tuple of nm
points, where nm = 2k0 + 2k1 + ... + 2km , k0 < k1 < ... < km. By virtue of
the fact that nm ≡ 1(mod2), then k0 = 0. Thus vertex with number n from
X [k0] has a stabilizer StH(n) ≃ syl2Snm , because the group of automorphisms
of such group keeps an vertex-edge incidence relation of X [ki], i ∈ {0, ...,m}.
Thus, action of every Sylow 2-subgroup of Snm , where nm ≡ 1(mod2), fix one
element from {1, 2, ..., nm}.

According to the Sylow theorem all Sylows p-subgroups are conjugated so
their actions are isomorphic. In particular, a Sylow 2-subgroup of S2r is self-
normalizing. The number of Sylow 2-subgroups of S2r is 2r! : 2e where e =
1 + 2 + ...+ 2r−1 [16].

Remark 1. The mentioned in Lemma 4.2 isomorphism may be extended to
syl2A4k+3 ≃ syl2A4k+2 ≃ syl2S4k+1 ≃ syl2S4k.

Proof. Since in accordance with Lemma 4.3 an action of syl2A4k+3 on the
set of 4k + 3 elements fixes one point, then this group as group of action is
isomorphic to syl2A4k+2. For a similar reason syl2A4k+1 ≃ syl2A4k. As well
as it was proved in Lemma 4.2 that syl2A4k+2 ≃ syl2S4k.

Proposition 4.1. If n = 4k, then index syl2(An+3) in An+3 is equal to
[S4k+1 : syl2(A4k+1)](2k + 1)(4k + 3), index syl2(An+1) in An+1 as a sub-
group of index 2m−1, where m is the maximal natural number, for which 4k!
is divisible by 2m.

Proof. For syl2(An+3) its cardinality equal to maximal power of 2 which divide
(4k + 3)!. This power on 1 grater then correspondent power in (4k + 1)!
because (4k + 3)! = (4k + 1)!(4k + 2)(4k + 3) = (4k + 1)!2(2k + 1)(4k + 3) so
| syl2An+3 |= 2m · 2 = 2m+1. As a result of it indexes of An+3 and An+1 are

following: [S4k+1 : syl2(A4k+1)] =
(4k+1)!

2m and [S4k+3 : syl2(A4k+3)] = [S4k+1 :

syl2(A4k+1)](2k + 1)(4k + 3) = (4k+1)!
2m (2k + 1)(4k + 3).

Proposition 4.2. If n = 2k then [syl2(An) : syl2(Sn−1)] = 2m−1 and
syl2(Sn−1) ↪→ syl2(An), where m is the maximal power of 2 in factorization
of n.

Proof. Let t = |syl2(Sn−1)| therefore t is a maximal power of 2 in (n − 1)!.
|syl2(An)| is equal to the maximal power of 2 in (n!/2). Since n = 2k then

(n/2)! = (n− 1)!n2 . Therefore
|syl2(An)|

|syl2(Sn−1)| =
2m−1

2t 2t = 2m−1. Note that for odd
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m = n−1 the group syl2(Sm) ≃ syl2(Sm−1) i.e., syl2(Sn−1) ≃ syl2(Sn−2). The
group syl2(Sn−2) contains the automorphism of correspondent binary subtree
with last level Xn−2 and this automorphism realizes the permutation σ on
Xn−2. For every σ ∈ syl2(Sn−2) let us set in correspondence a permutation
σ(n−1, n)χ(σ) ∈ syl2(An), where χ(σ) – number of transposition in σ bymod 2,
so it is bijection ϕ(σ) 7−→ σ(n−1, n)χ(σ) that has property of homomorphism,
see Lemma 4.2. Thus, we prove that syl2(Sn−1) ↪→ syl2(An) and its index is
2m−1.

Proposition 4.3. The ratio of |syl2(A4k+3)| and |syl2(A4k+1)| is equal to 2
and ratio of indexes [A4k+3 : Syl2(A4k+3)] and [A4k+1 : syl2(A4k+1)] is equal
to (2k + 1)(4k + 3).

Proof. The ratio |syl2(A4k+3)| : |syl2(A4k+1)| = 2 holds because Legendre’s
formula gives us new one power of 2 in (4k + 3)! in compering with (4k + 1)!.
Second part of statement follows from theorem about p-subgroup of H, [G :
H] ̸= kp then one of p-subgroups of H is Sylow p-group of G. In this case
p = 2 but |syl2(A4k+3)| : |syl2(A4k+1)| = 2 so we have to divide ratio of

indexes
(4k+3)!|syl2(A4k+1)|
(4k+1)!|syl2(A4k+3)| on 2. Really it is so because

|syl2(A4k+1)|
|syl2(A4k+3)| =

1
2 .

Let n = 2k0 + 2k1 + ... + 2km , where 0 ≤ k0 < k1 < ... < km and m ≥ 0.
Also recall that syl2Sn = syl2S2k0 × ...× syl2S2km .

Property 2. Relation between sizes of the Sylows subgroup for n = 4k − 2
and n = 4k is given by |Syl2(A4k−2)| = 2i |Syl2(A4k)|, where value i depends
only of power of 2 in decomposition of prime number of k.

Proof. Really |A4k−2| = (4k−2)!
2 , therefore |A4k| = (4k−2)!

2 (4k − 1)4k, it means
that i determines only by k and is not bounded.

Also it can be deduced from Lemma 8, Corollary 3 and Corollary 4 that
derived length of syl2A

k
2 is not always equal to k as it was said in Lemma 3

of [1] because in case A2k if k = 2 its syl2A4 ≃ K4 but K4 is abelian group so
its derived length is 1.

5. SOME APPLICATIONS OF CONSTRUCTED
GENERATING SET

Let us consider a function of Morse [25] f : D2 → R that painted at pict.
2 and graph of Kronrod-Reeb [26] that obtained by contraction every set’s
component of level of f−1(c) in point. Group of automorphism of this graph
is isomorphic to syl2S2k , where k = 2 in general case we have regular binary
rooted tree for arbitrary k ∈ N.

According to investigations of [27] for D2 we have that syl2S2k > Gk ≃
syl2A2k is quotient group of diffeomorphism group that stabilize a function
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and isotopic to identity. Analogously to investigations of [26, 27, 28] there
is the short exact sequence 0 → Zm → π1Of (f) → G → 0, where G is the
group of automorphisms Reeb’s (Kronrod-Reeb) graph [26] that has the main
property

G ≃ syl2S2k

if a function of Morse has 2k points of local maximum, and Of (f) is the orbit
under the action of diffeomorphism group, so it could be way to transfer it for
a group syl2(S2k), where m in Zm is number of inner vertices in Reeb’s graph,
in case for syl2S4 we have m = 3.

Higher half of projection of manifold from pic. 2 can be determed by product
of the quadratic forms −((x+ 4)2+y2)((x+ 3)2+y2)((x− 3)2+y2)((x− 4)2+
y2) = z in points (−4, 0)(−3, 0)(3, 0)(4, 0) it reachs a maximum value 0. Gen-
erally there is −d21d22d23d24 = z.

6. CONCLUSION

The proof of minimality of constructed generating sets was done, also the de-
scription of the structure syl2A2k , syl2A4m+2, syl2A4m+3, syl2S4m, syl2S4m+1

and its properties were founded. The structure of Sylow 2-subgroups syl2A2k ,
syl2An, where n = 4k+2, were founded. The centralizer structures of syl2A2k

and syl2S2k were described.
The total number of minimal generating sets for syl2A2k and syl2S2k was

obtained.
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