ON DEFINITION OF CI-QUASIGROUP

Natalia Didurik¹, Victor Shcherbacov²

¹University of the Academy of Sciences of Moldova, Chişinău, Moldova

² Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chişinău, Moldova

natnikkr83@mail.ru, scerb@math.md

Abstract Groupoid (Q, \cdot) in which equality (xy)Jx = y is true for all $x, y \in Q$, where J is a map of the set Q, is a CI-quasigroup.

Keywords: quasigroup, loop, CI-quasigroup, CI-groupoid, left CI-groupoid. **2010 MSC:** 20N05.

1. INTRODUCTION

Necessary definitions and concepts can be found in [4, 2, 9, 10].

Definition 1.1. Binary groupoid (Q, \circ) is called a left quasigroup if for any ordered pair $(a,b) \in Q^2$ there exists the unique solution $y \in Q$ to the equation $a \circ y = b$ [2, 10].

Definition 1.2. Binary groupoid (Q, \circ) is called a right quasigroup if for any ordered pair $(a, b) \in Q^2$ there exists the unique solution $x \in Q$ to the equations $x \circ a = b$ [2, 10].

Definition 1.3. Binary groupoid (Q, \circ) is called a quasigroup if for any ordered pair $(a, b) \in Q^2$ there exist the unique solutions $x, y \in Q$ to the equations $x \circ a = b$ and $a \circ y = b$ [2, 10].

Definition 1.4. A quasigroup (Q, \cdot) with an element $1 \in Q$, such that $1 \cdot x = x \cdot 1 = x$ for all $x \in Q$, is called a loop.

Definition 1.5. Loop (Q, \cdot) satisfying one of the equivalent identities $x \cdot yJx = y$, $xy \cdot Jx = y$, where J is a bijection of the set Q such that $x \cdot Jx = 1$, is called a CI-loop.

CI-loops are classical objects of quasigroup theory. This loop class was defined by Rafael Artzy [1]. In [1] it is proved that J is an automorphism of loop (Q, \cdot) .

V.D. Belousov and B.V. Tsurkan defined CI-quasigroups in [3]. Some applications of CI-quasigroups in cryptology are presented in [7, 5].

Definition 1.6. Quasigroup (Q, \cdot) with the identity $xy \cdot Jx = y$, where J is a map of the set Q, is called a CI-quasigroup [3].

56 Natalia Didurik, Victor Shcherbacov

Notice, in this case the map J is a permutation of the set Q [3]. In any CI-quasigroup the permutation J is unique [10, Lemma 2.25].

Definition 1.7. Groupoid (Q, \cdot) with the identity

$$xy \cdot J_r x = y,\tag{1}$$

where J_r is a map of the set Q into itself, is called a left CI-groupoid. Groupoid (Q, \cdot) with the identity

$$J_l x \cdot y x = y, \tag{2}$$

where J_l is a map of the set Q into itself, is called a right CI-groupoid. Groupoid (Q, \cdot) with both identities (1) and (2) is called a CI-groupoid.

Definition 1.7 is given in [3]. A groupoid with the equations (1) and (2) is called a CI-groupoid in [6].

In fundamental article [3] the following facts are proved: any CI-groupoid is a quasigroup; in CI-quasigroup the identities (1) and (2) are equivalent; any left CI-groupoid is a left quasigroup.

From the results of Keedwell and Shcherbacov (see, for example, [10, Proposition 3.28]) it follows that the left CI-groupoid in which the map J_r is bijective, is a CI-quasigroup.

Any finite left CI-groupoid is a CI-quasigroup [6].

Example 1.1. The following example of CI-quasigroup is constructed using Mace 4 [8].

	0					
0	3 5 4 2 0 1	4	5	1	0	2
1	5	3	4	$\mathcal{2}$	1	0
\mathcal{Z}	4	5	3	0	$\mathcal{2}$	1
3	2	0	1	\mathcal{S}	5	4
4	0	1	$\mathcal{2}$	5	4	3
5	1	$\mathcal{2}$	0	4	3	5

Constructions of sufficiently large classes of CI-quasigroups are given in [7], [10, Theorem 3.48].

In this note we prove that any right (left) CI-groupoid is a CI-quasigroup.

2. RESULT

Lemma 2.1. Any left CI-groupoid is a left quasigroup [3].

Proof. We prove that in the left CI-groupoid (Q, \cdot) the equation

$$a \cdot x = b \tag{3}$$

has the unique solution. From the equation (3) we have $ax \cdot J_r a = b \cdot J_r a$, $x = b \cdot J_r a$. If we substitute the last expression in (3), then we obtain the following equality:

$$a \cdot bJ_r a = b. \tag{4}$$

Uniqueness. Suppose that there exist two solutions of equation (3), say, x_1 and x_2 . Then $ax_1 = ax_2$, $ax_1 \cdot J_r a = ax_2 \cdot J_r a$ and from the equality (1) we obtain that $x_1 = x_2$.

Therefore any left translation L_x of groupoid (Q, \cdot) is a bijective map.

We denote by the letter \mathcal{L} set of all left translations of a CI-groupoid (Q, \cdot) and by the letter \mathcal{R} we denote set of all translations of the form R_{J_rx} of a CI-groupoid (Q, \cdot) .

Lemma 2.2. There exists a bijection between the set Q and the set \mathbb{R} , the map J_r is bijective and $J_r Q = Q$.

Proof. We can rewrite the identity (1) in the following translation form:

$$R_{J_r x} L_x = \varepsilon. \tag{5}$$

From the equality (5) and Lemma 2.1 it follows that the map $R_{J_{rd}}$ is a bijection of the set Q for any fixed element $d \in Q$.

There exists a bijection between the set Q and the set \mathcal{L} of all left translations of groupoid (Q, \cdot) . Namely $x \leftrightarrow L_x, Q \leftrightarrow \mathcal{L}$.

From the equality (5) we have that there exists a bijection between the set \mathcal{L} and the set \mathcal{R} of all translations (bijections) of the form R_{J_rx} , namely, $L_x \leftrightarrow R_{J_rx}, \mathcal{L} \leftrightarrow \mathcal{R}$.

Therefore there exists a bijection between the set Q and the set \mathcal{R} , the map J_r is bijective and $J_r Q = Q$.

Theorem 2.1. Any left CI-groupoid (Q, \cdot) is a CI-quasigroup.

Proof. Taking into consideration Lemma 2.1 we must only prove that in the left CI-groupoid (Q, \cdot) the equation

$$y \cdot a = b \tag{6}$$

has the unique solution for any fixed elements $a, b \in Q$. Using the language of translations we re-write the equation (6) in the following form: $R_a y = b$. Thus right translation R_a exists for any $a \in Q$. By Lemma 2.2 the map R_a is a bijection. Then $y = R_a^{-1}b$.

Therefore any left CI-groupoid (Q, \cdot) is a CI-quasigroup.

It is clear that the similar theorem is true for any right CI-groupoid.

58 Natalia Didurik, Victor Shcherbacov

Notice, Theorem 2.1 can be proved using Lemmas 2.1, 2.2 and Proposition 3.28 from [10].

3. CONCLUSION

The main result of this paper is Theorem 2.1 in which it is proved that any left CI-groupoid (Q, \cdot) is a CI-quasigroup.

Acknowledgement. The authors thank Referee for valuable suggestions.

References

- [1] R. Artzy, On loops with a special property, Proc. Amer. Math. Soc., 6(1955), 448-453.
- [2] V.D. Belousov, Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967. (in Russian).
- [3] V.D. Belousov, B.V. Tsurkan, Crossed-inverse quasigroups (CI-quasigroups), Izv. Vyssh. Uchebn. Zaved. Mat., 82(3):21-27, 1969. (in Russian).
- [4] R.H. Bruck, A Survey of Binary Systems, Springer Verlag, New York, third printing, corrected edition, 1971.
- [5] J. Dénes, A. D. Keedwell, Some applications of non-associative algebraic systems in cryptology, P.U.M.A., 12(2)(2002), 147–195.
- [6] V. Izbash, N. Labo. Crossed-inverse-property groupoids, Bul. Acad. time Repub. Mold. Mat., (2)(2007), 101–106.
- [7] A.D. Keedwell, Crossed-inverse quasigroups with long inverse cycles and applications to cryptography, Australas. J. Combin., 20(1999), 241–250.
- [8] W. McCune, Mace 4, University of New Mexico, www.cs.unm.edu/mccune/prover9/, 2007.
- [9] H.O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin, 1990.
- [10] Victor Shcherbacov, Elements of Quasigroup Theory and Applications, CRC Press, Boca Raton, 2017.