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IN MEMORIAM –  

ACADEMICIAN MITROFAN M. CHOBAN 

 

 

05.01.1942 – 02.02.2021 

 

President of the Mathematical Society of Republic Moldova (1999-2021). Vice-

President of the Romanian Society of Applied and Industrial Mathematics-  

ROMAI (1995-2021). Founder of the school of general topology in the 

Republic of Moldova. Mathematics professor and researcher at the Tiraspol 

State University for over 50 years. His original contributions to mathematics 

can hardly be fully estimated. 
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Mitrofan Cioban (or Choban – as he chosed to sign his papers) was born on 

January 5, 1942 in Copceac, Tighina county, Moldova, Romania to farmers Mihail 

and Tecla Cioban. He was the fourth of the couple's seven children. His parents, 

encouraged Mitrofan to get as good an education as was possible at the time. They 

sent him to a boarding school in the neighboring village of Volontiri. Then, in 

1959, he finished his high school studies at the high-school from village Volontiri. 

After graduating from high school, he worked for a year in the local agricultural 

cooperative.  

At the age of 17,  M. Choban decided to become a mathematician. 

Because he spoke no Russian at the time, he had to give up on his early dream of 

becoming a ship designer. At the age of 17 he decided to become a mathematician. 

In 1960 he enrolled at the Tiraspol State Pedagogical Institute (Moldova), at the 

Faculty of Physics and Mathematics within the Tiraspol State Pedagogical Institute 

(Tiraspol State University) the first higher education institution in Moldova. Within 

the Faculty of Physics and Mathematics, the young Mitrofan met great university 

professors such as: P. Osmatescu, C. Cozlovschi, M. Cozlovschi, Gh. Gleizer, I. 

Valuta, etc. Soon he joined a seminar in topology led by Professor P. Osmatescu. 

Thus, without initially realizing, the topology seminar cultivated for the young 

student a great passion for research in topology for a lifetime. 

 

The Topology seminar of Pavel Alexandrov. 

After a year of study in Tiraspol, at the initiative of Professor Petru Osmatescu, 

Mitrofan Choban and two other young people were sent to study at Moscow State 

University. Ion Valuță, being at that time the doctoral student of Professor A. 

Kurosh, was invited by the Academician P. S. Alecsandrov, to attend the 

conversation with M. Choban. Professor I. Valuță remembers: “To the question 

asked, by P.S. Alexandrov, M. Choban doesn't answer! Either he didn't understand 

the question well enough, or he couldn't figure out how to answer in Russian. P.S. 

Alexandrov asked the young people to wait and told them that the results would be 

announced very soon. I thought I should go out too, but he told me to stay. The 

academician told me: «You have sent three students to university, but we will 

admit only two for study.» I thanked him, but at the same time I dared to tell him 

that I had a misunderstanding. He asked me what it was. The young man who did 

not answer anything, in my opinion, had special abilities for scientific research. P. 

S. Alexandrov's answer struck me: «If you say so, then we will accept everyone to 

study. We will always be able to expel the weakest in mathematics». In a short 

time, the young mathematician demonstrated his creative potential in 

mathematics.” 

Whithin the  Moscow State University, M. Choban started attending the Topology 

seminar of Academician Pavel Alexandrov. The scientific coordinator during his 

years of study at the University was Professor A. V. Arhangel 'skii. 
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Whithin the Topology seminar he did not hesitate to express his opinion when 

discussing scientific reports of venerable specialists. For example, it was believed 

that one result of the American mathematician Arthur Stone is final and not subject 

to further development. At the end of April 1964, while discussing A. Stone's 

results, unexpectedly, student M. Choban said that this was not the case. And, of 

course, many doubted that he was right. Nevertheless, M. Choban did not back 

down, although many looked with a grin at the insolent student. Pavel Sergeevich 

turned out to be at his best - he invited Mitrofan Choban to present his opinion on 

the development of the idea from the works of A. Stone in a week or, of course, to 

present his apology to everyone for his daring challenge. A week later, surprisingly 

to everyone, Choban presented a wonderful scientific report, which formed the 

basis of his famous scientific article on factorial mappings with separable 

preimages.  

Profesor Stoyan Yordanov Nedev, Bulgaria, remembers: ”Apparently, this report 

put M. Choban on a special position - he was recognized as a highly qualified 

specialist in the field of topology. He finished the third year of study with two 

excellent works, which were soon published in the journal Reports of the Academy 

of Sciences of the USSR. Despite the fact that he did not know Russian, German 

and English, he perfectly knew almost all the works written in these languages over 

the past 70 years.” 

This was a generalization of one of A.H. Stone’s results in the first paper Mitrofan 

had refereed. He has proved the following: 

Theorem 1. If f : X—>Y is a quotient mapping of a metrizable space X onto 

a Tychonoff  first-countable separable space Y, and all fibers under f are 

separable, then Y is metrizable. 

After this case, P.S. Aleksandrov has repeatedly said: „if Mitrofan said this, then 

this is beyond doubt”. P. S. Alexandrov  recommended the first article of Mitrofan 

Choban containing Theorem 1 for publication in Doklady AN SSSR, one of the 

most prestigious Soviet mathematical journals. It had appeared in print in 1966, 

and is his first publication. In fact, his first mathematical result had been obtained 

earlier, in November 1964, but was published later.  

Professor A. V. Arhagel’skii remembers ”Mitrofan became a «star» in the main 

seminar on General topology of P.S. Alexandroff. This made this seminar even 

more attractive to students, more popular with them. Mitrofan was active not only 

in mathematics. He was also a sportsman, participated in Greco-Roman wrestling 

competitions and won the title of the Champion of Moscow University. At the 

MGU the name Mitrofan is quite rare and therefore everyone called Mitrofan 

Choban simply Mitrofan.” 

It is necessary to mention that student M. Choban managed to obtain a series of 

beautiful results in topology. He published a valuable paper in the prestigious 
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journal Sovietic Mathematiceskij Doklady (see Sov. Math. Dokl) . Thus, M. 

Choban’s publications during the student period at Moskow University are: 

1. On the behavior of metrizability under quotient s-mappings. Dokl. Akad. Nauk 

SSSR, 166:3 (1966),  562–565. 

2. Behavior of metrizability under monotone quotient mappings. Dokl. Akad. Nauk 

SSSR, 168:3 (1966),  535–538. 

3. Behavior of metrizability under factorial s-mappings. Abstracts. Moscow. 

International Congress of Mathematicians. Section 8, M. (1966), 30. 

4. Certain metrization theorems for p-spaces, Dokl. Akad. Nauk SSSR, 173:6 

(1967),  1270–1272.   

5. Finite-to-one open maps, Dokl. Akad. Nauk SSSR, 174:1 (1967),  41–44.  

6. Perfect mappings and spaces of countable type, Vestnik Moskov. Univ. Ser. 1. Mat. 

Mekh., 1967, 6,  87–93.   

He brilliantly graduated this Faculty in 1967. Here he attracted the attention of the 

famous and exigent teaching staff. He was recommended to Professor A.V. 

Arhangel’skii, who marked his whole evolution as a mathematician, so that at the 

beginning of year 1967, he was privileged to study and work in the prestigious 

collective of researchers in topology, brilliantly dominated by the great personality 

of A.N. Kolmogorov. A year after his graduation of the faculty he has begun 

preparing his Doctor’s Degree - the chosen specialty being Topology - at the State 

University ”M. Lomonosov” of Moscow. He graduated in 1970 the Ph.D. in 

Mathematics with the thesis ”Relations between classes of topological spaces”, his 

adviser being Professor A.V. Arhangel’skii. 

 

Professional career at Tiraspol State University. 

Academician Mitrofan Choban was a mathematics professor and researcher at the 

Tiraspol State University for over 50 years. Professor Mitrofan Choban started his 

didactic career at the Tiraspol State University (Moldova) in 1970 and continuously 

worked in this university till 2021. He was in succession Senior Lecturer at the 

Department of Geometry and Didactics of Mathematics (1970-1974), Associate 

Professor at the Department of Geometry and Didactics of Mathematics (1975-

1976), the Head of the Department of Geometry and Didactics of Mathematics 

(1976-1983), ViceRector for Science (1983-2002), President of the University 

(2002-2009) and the Head of the Department of Algebra, Geometry and Topology 

(2009-2021). Since 1981, Professor Mitrofan Choban was adviser for PhD Thesis 

as well as for Dr. Sc. Thesis. He advised 22 doctors of sciences and 4 Doctors 

Habilitat in Mathematics. His teaching activity concerned the courses of 

”Geometry” as well as of ”Set Theory and Topology”. He also taught several 

special courses: Functional spaces, Topological groups, Algebraic theory of 

automata, Topological universal algebras, etc. 

 

Scientific performance. 

In 1980, he became Dr. Habilitat in Mathematics with the thesis ”Set-valued 

mappings and their applications” (scientific consultant again being A.V. 

Arhangel’skij). In 1995, he was elected corresponding member of the Academy of 
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Sciences of Moldova. Then, in 2000 he was elected Member of the Academy of 

Moldova, the highest forum of Moldavian spirituality and the highest recognition 

which a scholar may receive. 

His scientific concerns group the following main directions: topology, 

topological algebra, descriptive set theory, functional analysis, topological 

optimization theory, measure theory, etc. He solved a number of well-known 

problems, formulated in the last 100 years by P.S. Alexandrov, A. V. Arhagel’skii, 

WW Comfort, F. Hausdorff, A. N. Kolmogorov, AI Maltsev, E. Michael, I. 

Namioka, B.A. Pasynkov, A. Pelczynski, R. Pheps, Z.Frolik, A. Stone, Z. 

Semadeni etc. 

Mitrofan Cioban published in academic journals from 1966 to 2021, mostly 

under the name of Choban, but also under the name Čoban, and occasionally 

Chobanu, or Coban. 

Thus, Professor Choban authored more than 300 papers and 20 books in 

many branches of Mathematics. He brought important contributions in: 

Hausdorff’s problem on Borelian classes of sets; Alexandroff’s problem about the 

structure of compact subsets of countable pseudocharacter in topological groups; 

Arhangel’skii’s problem on the zero-dimensional representation of topological 

universal algebras; two Maltsev’s problems on free topological universal algebras; 

two Michael’s problems about G -sections of open mappings of compact spaces 

and of the k-coverings of open compact mappings of paracompact spaces; Phelps’ 

problem about the structure of the set of points of Gateaux differentiability of 

convex functionals (with P.Kenderov and J.Revalski); Tichonoff’s problem about 

well-possedness of optimization problems in the Banach spaces of continuous 

functions (with P.Kenderov and J.Revalski); Confort’s problem about Baire 

isomorphism of compact groups; Pasynkov’s problem about Raikov completion of 

topological groups; Arhangel’skii’s problem on metrizability of o-metrizable 

topological groups (with S.Nedev); Pelczinski’s and Semadeni’s problems about 

structure of Banach spaces of continuous functions on special compact subsets of 

quotient spaces of topological groups, etc. 

He attended more then 100 scientific forums: 1) International mathematical 

congresses (Moscow, Zurich, Berlin), conferences (Moscow, New York, Baku, 

Sofia, Pitești, Oradea, Sozopol, București, Timișoara, Brașov, Chișinău, 

Novosibirsk, Tbilisi, Lecce, Iași, Constanța, Sicilia, Livov, Varna, Borovets, 

Ohrid), 2) Symposiums (Prague, Eger, Burgas, Genova, Marseille), 3) All-Union 

mathematical conferences and symposiums (Minsk, Moscow, Tiraspol, Chișinău, 

Livov, Sankt-Petersburg, Novosibirsk, Tobolsk, Tartu), 4) several national 

conferences. Having a great prestige in the world of Mathematics, Professor 

Mitrofan Choban has been invited to lecture by the well-known institutions: 

Institute of Mathematics and Informatics of the Academy of Science of Bulgaria, 

the Universities of Oradea, Tartu, Tbilisi, Tashkent, Tsukuba, Bishkek, North Bay 

(Canada). Moreover, he was invited speaker of the forums: V-th Prague Topol. 

Symp. (1981), Topological Colloq., Eger, Ungary (1983), International Moscow 

Topological Conference (1979), Soviet-Japan Topological Symposium, Niigata 
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(1991), Workshop on General Topology and Geometric Topology, Tsukuba 

(1991), Workshop ”Well-Posedness in Optimization, Margarita di Liguri”, Italy 

(1991), International Conference on group theory, Timișoara, Romania (1991), 

Workshop ”Well-Posedness in Stability and Optimization”, Sozopol, Bulgaria 

(1993), Conferences on Applied and Industrial Mathematics, Romania (1994-

2019), International Congress of Mathematical Society of South Europe, Borovets, 

Bulgaria (2003), International Conference ”Geometric Topology, Discrete 

Geometry and Set Theory” in celebration of the centennial of Ljumila V.Keldysh, 

Moscow (2004), International Conference ”Quality in Formal and non Formal 

Education”, Iași, Romania (2010), Centennial Conference ”Alexandru Myller” 

Mathematical Seminar”, Iași, Romania (2010), ICTA Islamabad, Pakistan (2011), 

8-th International Conference on Applied Mathematics, Baia Mare, Romania 

(2011), etc. 

Due to his prestige in the world of Mathematics he became: 1. Member of the 

Editorial Boards of: - Buletinul Academiei de Științe a Moldovei, Matematica, 

ROMAI Journal, Scientific Annals of Oradea University, Qusigroups and related 

systems; 2. President of the Mathematical Society of Republic Moldova (1999-

2021); 3. Vice-President of the Romanian Society of Applied and Industrial 

Mathematics (ROMAI) (1995-2021); 4. Member of the Moscow Mathematical 

Society; 5. Member of the Romanian Mathematical Society.  

The special appreciation of his scientific work brought him several prizes, titles and 

orders, namely: prize of the All-Union Presidium of the ScientificTechnical 

Societies (1968); prize ”Boris Glăvan” of the Komsomol of Moldova, in 

Mathematics (1974); title Excellent of the High Education of the USSR (1980); 

order ”Gloria Muncii” (Glory of Labor) of the Republic of Moldova (2000); State 

Prize of the Republic of Moldova (2002); Honorary citizen of the Ștefan Vodă 

county, Republic of Moldova (2005); prize ”Academician Constantin Sibirschi” 

(2006); Doctor Honorius Causa of the Oradea University (2006); order ”Honor” of 

the Republic of Moldova (2010); Medal “Dmitrie Cantemir” (2007), Medal 

”Nicolae Milescu Spataru” (2012); 70 years since the creation of the first Research 

Institutions and 55 of the ASM (2016); Researcher of the Year Award (2016); 

Order of the Republic of Moldova (2020). 

The activity within ROMAI. 

A few more words should be told about Academician’s Choban relation with 

ROMAI. In 1992 The Romanian Society for Applied and Industrial Mathematics - 

ROMAI was founded by Professor Adelina Georgescu, and soon after, with a 

visionary intuition, Professor Georgescu tried to establish professional relationships 

with the mathematicians from Republic of Moldova. Soon she succeeded to bring 

into the Society a number of good and important mathematicians from the sister 

country. One of them was Academician Mitrofan Choban. In those years that were 

after the fall of the communism, a vivid relationship was born between the 

mathematicians from the two sides of the river Prut. It was a period of hope in a 
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better future, a period when the creative activity of the ROMAI members was 

effervescent. The Romanian and the Moldavian members of ROMAI met each 

others with joy at the conferences CAIM (Conferences on Applied and Industrial 

Mathematics) held each year, either in Romania or in Republic of Moldavia. It was 

the great pleasure of Professor Adelina Georgescu to organize, at the end of 

CAIMs, beautiful trips in several zones of Romania, so that the Moldavian 

colleagues can meet the rich nature and historical relics as well as the 

contemporary realities of Romania. Also, with great hospitality, the Moldavian 

members of ROMAI received the Romanian colleagues in Chișinău, at some 

editions of CAIM, and also shared with them the beauties and the history (with 

common roots with the Romanian history) of Republic of Moldova. In all the 

period 1993-2019 Academician Choban was present at CAIMs, with invited 

lectures. As asserted above, în 1995, he was elected Vice-President of ROMAI. 

The activity of our Society benefitted a lot from his presence in its Board. He 

realized the connection between the two main wings of ROMAI. He was always 

glad to give an advice, to solve any organizing problem, each year delivering high-

quality invited lectures in CAIMs, always being a leader of the Moldavian „team” 

of mathematicians that came in Romania. As a member of the Editorial Board of 

ROMAI Journal, Academician Choban was very involved either in reviewing or in 

finding the proper reviewers for the papers received at ROMAI Journal. 

We shall always remember him as a kind, gentle, and very pacient person, having a 

good sense of humour, a person that used his remarquable intelligence in 

Mathematics as well as in the inter-human relationships.  

Academician Mitrofan Choban was a strong pillar of ROMAI, and his departure 

from this world meant a great loss for our Society. May his soul rest in peace! 

Appreciations and recognitions from the academic world. 

  “For me there is no doubt that Professor Mitrofan M. Choban is a world-class 

scholar” - Professor P. Kenderov, Members of Bulgarian Academy of Sciences. 

  

 ”М.М. Choban is a most talented mathematician, with a great creative  force”- 

Professor A. Arhangel’skii, Moscow State University. 

 

 ”The results of M. M. Choban gave rise to a whole series of publications in many 

countries ...” - Academician A. Fomenko, Russia. 

 

 ”Many experts in the field of topology consider it an honor to carry out scientific 

research together with M. M. Choban” - Professor O. Lupanov and Professor V. 

Fedorchuk, Moscow State University. 

 

 ”Professor M. M. Choban is one of the most famous and recognized topologists in 

the world. Well known are his substantive research on the theory of multivalued 

mappings, topological algebras, descriptive theory of sets and function spaces, as 

well as their numerous applications to other areas of mathematics.” - M. Abel, 

Professor of the Tartu University, President of the Estonian Mathematical Society 
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 ”Mitrofan Choban is in a possesion of an incredible knowledge of the topological 

phenomena and strong and sophisticated techniques.” - Professor G. Skordev, 

Corresponding Member Of the Bulgarian Academy of Sciences 

 

 "Academician Mitrofan Chobanu is part of the elite of Moldovan scientists. His 

mathematical, educational and civic work is overwhelming in the field of 

mathematics and has addressed new and difficult problems in topology, modern 

algebra and its applications.” - Academician Radu Miron, ”Alexandru Ioan Cuza” 

University od Iași. 

 

 ”Academician Mitrofan Chobanu was and remains a star in the world of 

mathematicians.” - Professor Larențiu Calmuțchi, Tiraspol State University. 

 

 "It is natural to ask: how does academician Mitrofan Choban conceive 

mathematics? Of course, he sees it in all its complexity, with one small exception - 

in no way does he perceive it as a form of snobbery. Who but him has tried all the 

facets: research, teaching, leadership. And every time he succeeded brilliantly, 

obtaining valuable results, being a talented professor and loved by students, leading 

the University of Tiraspol and the Mathematical Society.”- Professor C. Gaindric, 

Corresponding member of the Moldovan Academy of Sciences, Professor S. 

Cojocaru, Corresponding member of the Moldovan Academy of Sciences. 

 

 "I have very many memories of his reign and I am very grateful to him for 

everything he has done for our countries, for ROMAI, for CAIMs and for me." -  

Professor Adelina Georgescu, Romania 

 

 From whom did Mitrofan M. Choban learn?  

M. Choban: „Alexandr Arhangel’skii served me at that time as a model of 

professionalism and exemplary conduct ... Many other teachers ... contributed to 

my training as a specialist. For example, I learned from Vladimir Andrunachievich 

and Pavel Alexandrov the management of the organization of scientific research, 

from Otto Schmidt, Andrei Kolmogorov and Andrei Tikhonov - the organization of 

mathematical applications in various fields, from Anatol Maltsev and Alexandr 

Curosh - universal methods of examining things in depth and at the same time, 

simple and clear etc. ” 

 

Directory Committee of the  

Romanian Society of Applied and Industrial Mathematics – ROMAI 
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130 YEARS OF EFFORT FOR SOLVING THE
POINCARÉ’S CENTER-FOCUS PROBLEM

ROMAI J., v.17, no.1(2021), 1–16

Mitrofan Choban1 , Tatiana Rotaru2

1Sciences Academy of Moldova, Chişinău, Republic of Moldova,
1Tiraspol State University, Chişinău, Republic of Moldova,
2National Council for Accreditation and Attestation, Chişinău, Republic of Moldova

Abstract It is well known that many mathematical models use differential equation sys-
tems and apply the qualitative theory of differential equations, introduced by
Poincaré and Lyapunov. One of the problems that persists in order to control
the behavior of systems of this type, is to distinguish between a focus or a
center (the Center and Focus Problem).

The solving of this problem goes through the computation of the Poincaré-
Lyapunov constants. In the case of polynomial right-hand sides it follows
from Hilbert’s theorem on the finiteness of bases of polynomial ideals that in
this sequence only finitely many are essential and that the remaining ones are
consequences of them. Hence, this problem is divided in two parts: in the first,
to estimate the number of essential constants; in the second, to determine
the minimal upper border of the indexes of a complete system of essential
constants. The first part is called the Weak Center and Focus Problem.

The problem of estimation the maximal number of algebraically indepen-
dent essential constants is called the Generalized Center and Focus Problem.
Recently M.N. Popa and V.V. Pricop have solved the Generalized Center and
Focus Problem. The present article contains: some moments related to the
history of the Center and Focus Problem; the contribution of the Sibirsky’s
school in the solving of the Center and Focus Problem; methodological aspects
of the Popa - Pricop solution of the Generalized Center and Focus Problem.

The problem of the estimation of the minimal upper border of the indexes
of a complete system of algebraically independent essential constants is open.
Another open problem consists on determining what differential systems are
integrable.

Keywords: Poincaré-Lyapunov constants, center and focus problem, generalized center and

focus problem.

2020 MSC: 34C60, 37G15.

Editor’s Note
The article ”130 years of the effort the solving of the Poincaré’s center-focus problem“,

signed by academician Mitrofan Choban and journalist Tatiana Rotaru, was published in
Romanian in Journal of Science and Innovation, Culture and Arts of the Academy of Sciences
of Moldova ”Akademos“, 3(30), 2013, pp. 13-21. The work remains current today and had
continuity. Based on the examined problem, have been published two monographs by M.N.

1



2 Mitrofan Choban , Tatiana Rotaru

Popa V.V. Pricop - one in Russian (2018) and recent - in English: Popa M.N., Pricop V.V.
The Center and Focus Problem: Algebraic Solutions and Hypoteheses. Ed. Taylor&Frances
Group, 2021, 215 p. The cited above article is reproduced in English in this number of
ROMAI Journal to follow the beginning and the stages of solving an old mathematical problem
that a troubled the minds of mathematicians for more than a century. The publication of the
English version is done with the accord of the Editorial Board of ”Akademos“.

The much regretted academician Mitrofan Choban (05.01.1942-02.02.2021) was an illus-
trious international mathematician, patriot and patriarch of science and education in the
Republic of Moldova, a great friend and activist of ROMAI, who would have turned 80 in
February 2022, if a relentless illness wouldn’t have take him from our ranks.

We shall always miss him.

1. FROM THE HISTORY OF MATHEMATICS

Talking about mathematics or mathematicians is a challenge with the risk
of being misunderstood or even rejected from the start. Gone are the days
when research disciplines were not built strictly, and dialogue between their
representatives was a normal way of existence and collaboration. But the
nineteenth century brought many surprising discoveries to human civilization.
Many of them are the result of logical analysis of phenomena or the math-
ematical one: Gauss discovered by calculation the asteroids Ceres, Palass,
Vesta, Juno; Galle also based on calculations of the identity of the planet
Neptune (1846); Mendeleev, starting from the atomic mass, he systematized
the chemical elements and anticipated the existence of many new ones; Schlie-
mann, based on Homer’s descriptions, determined the location of Troy, etc. It
is mathematical research that has helped to solve a number of problems that
have plagued the minds of scientists for nearly 2500 years, beginning with Pla-
ton, Aristotle, Euclid, Archimedes, as well as the creation of new disciplines
in the field.

At the beginning of the twentieth century, mathematics proliferated so much
that it became, figuratively speaking, a Kingdom of the Universe of Science,
although this word in Greek means ”learning”, ”study”, ”science”. We consider
indisputably the fact that science is also an art, an art of human depth and
strength of thought. A little earlier, in the 19th century, the brilliant French
mathematician Henri Poincaré (1854-1912) created new fields of research, as
topology, qualitative theory of dynamical systems, etc.

The development of mathematics in Romania was deeply connected with
Poincaré’s work and activity: he was a member of the Commission for the
defense of doctoral theses for many high-performance mathematicians and
physicists such as Nicolae Coculescu, Gheorghe Ţiţeica, Anton Davidoglu,
Dragomir Hurmuzescu, Dimitrie Pompeiu, Constantin Nicolau and others.
By quantitative methods, Spiru Haret had demonstrated the instability of
the Solar System. The qualitative approach, as well as in a much broader
framework, led Poincaré to confirm this fact. The results of the KAM the-
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ory (Kolmogorov-Arnold-Moser) showed that the Solar System is in a state of
relative stability. As a result of this fruitful cooperation with Romanian re-
searchers, Henri Poincaré was awarded the honorary titles of Doctor Honoris
Causa of Kolosvar University (Cluj) and Honorary Member of the Romanian
Academy (1909).

Henri Poincaré [16] formulated a series of problems, the solution of which
determines the further development of science. A sensational news, in this
sense, was in the first years of this millennium the solution of the Poincaré
Conjecture by the enigmatic Russian mathematician Grigori Perelman. His
2002 demonstration ranked first in the top of the most important scientific
discoveries in decades. Poincaré’s conjecture or Poincaré’s hypothesis, first
stated by Poincaré in 1904, states that if S is a compact 3-dimensional va-
riety (a closed, bordered or borderless 3-dimensional surface, immersed in a
4-dimensional space), in which any circle can be continuously deformed until
it becomes a point, then this space S is equivalent, from a topological point
of view (homeomorphic), to a 3-dimensional sphere. Solving a big problem
generates the formulation of other new problems, which determine the further
development of science. It is hoped that this famous result of Perelman’s will
help solve the problem of classifying three-dimensional varieties - another im-
portant problem stated by Poincaré in 1904, and especially the study of the
Universe.

One of the famous problems of the qualitative theory of differential equa-
tions is the Center and Focus Problem, formulated by Poincaré 130 years ago
([15]. In 1881-1899 he studied the periodic and asymptotic solutions of differ-
ential equations, developed the method of the small parameter, the method of
fixed points, the method of integral invariants, which became classical methods
of research not only in mechanics and astronomy, but also in static physics,
quantum mechanics. Working on the problems of celestial mechanics, he si-
multaneously laid the foundation of a new science - topology, which he called
”Analysis situs”.

2. THE CENTER AND FOCUS PROBLEM

Let

ẋ = X(x, y), ẏ = Y (x, y) (1)

be an autonomous system of differential equations. We admit that the func-
tions X(x, y) and Y (x, y) are analytical. The solutions of this system of equa-
tions are called integral curves. The qualitative theory has as its starting point
the stability theory and the problem of the movement of three and more bodies
in the celestial mechanics. Henri Poincaré would say that even if the differen-
tial equation is not solved explicitly, it is possible to determine the character
of the behavior of the solutions (integral curves) and proposed a classification



4 Mitrofan Choban , Tatiana Rotaru

of the singular points of the solutions: saddle, focus, center, node.

a) saddle b) node
Fig. 1. Singular points of the first type

c) center d) focus
Fig. 2. Singular points of the second type

It is known that if the roots of the characteristic equation of the singular
point O(0, 0) are imaginary, then it can be center or focus (singular point of
the second type). In the case of a center the singular point is surrounded by
the closed trajectories and in the case of a focus it is surrounded by spirals.
The Center and Focus Problem is to determine the condition under which
a singular point is a center. In general case the Center Problem is algebraically
unsolvable [9, 1, 19].

The Center and Focus Problem has deep ties to David Hilbert’s 16th
problem. In 1900, at the Second International Congress of Mathematicians,
Hilbert posed 23 important problems for the further development of science.
The 16th problem, which remains unsolved at present, concerned algebraic
curves and surfaces. Today, this problem is divided into two parts related
to different areas. The maximal number of closed branches of an n-order
algebraic curves was set by Harnack. The first part of 16th problem is to
determine the position of these branches relative to each other. For n = 6
are obtained 11 branches and Hilbert assumed that there is one branch that
contains another branch, and outside it there are the other nine branches or
inverse. However, in 1970 D. A. Gudkov determined that there were cases
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when five branches fell outside and inside the curve. This has shown that the
first part of the problem is much more complicated. Various properties and
extraordinary examples have been described by I. G. Petrovski, O. A. Oleinic,
V. I. Arnold, V. A. Rohlin, O. Ya. Viro and others. This part of the problem
now refers to algebraic geometry (see [15]).

In the second part of 16th problem, which also remains unsolved and com-
pletes the Center and Focus Problem, for a polynomial vector field of order
n it is required to determine the upper bound H(n) of the number of cycles
and their relative position. It is well known that the number of limit cycles is
always finite. The number H(n) is called the Hilbert’s number.

Researches on the 16th problem has been quite dramatic. In 1923 Henri
Dulac [5] proposed a demonstration that the number H(n, v) is finite for any
polynomial vector field v of order n. In 1955 Ivan G. Petrovski and Evgeny M.
Landis announced the complete solution of the second part of 16th problem,
but in 1960 it was determined that their demonstration had serious shortcom-
ings. A great surprise was the work of Yulii Ilyashenko in 1981, in which it
was established that the work of Dulac in 1923 also contains gaps, which with
great efforts were removed over 10 years by Yulii Ilyashenko and Jean Ecalle
(see [6, 8, 15]).

These results have boosted the researches of the polynomial vector fields v
of order n. In this case, the second part of 16th problem is a particular case of
the Problem of Global Finiteness: In any analytically finite-parametrized
family of analytic vector fields on the sphere with the compact parameter space
B (from the K-dimensional Euclidean space) the number H(n, p) of limit cy-
cle is uniformly bounded for all values p of the parameter in B. This problem
was formulated by Yu. Ilyashenko in 1994 and is called the Hilbert-Arnold
Problem (see [8]). In 1986 V. I. Arnold (see [1, 8]), for a smooth vector field
denoted on a sphere, introduced the notions of polycycle, the bifurcation num-
ber B(k) of maximal cycling of non - trivial polycycle of field, of elementary
singular point, of elementary polycycle and of elementary bifurcation number
E(k) of maximal cycling of non-trivial elementary polycycle. Thus, Hilbert-
Arnold’s Local Problem was formulated: to prove that the number B(k)
is finite and to estimate this number from above. The positive solution of the
global problem is a consequence of positive answer to the local problem. It
is established that B(1) = 1 and B(2) = 2. For B(3) there is currently only
one calculation strategy. V. Yu. Kaloshin established that E(k) < 25k (see
[8,9,10,11]).

We examine the case when the functions X(x, y) and Y (x, y) are polynomi-
als. For the Center and Focus Problem to be algebraically solvable, the linear
parts of the polynomials X(x, y) and Y (x, y) must not be zero. Under these
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conditions the system (1) can be written in the form

dx

dt
=

ℓ∑
i=0

Pmi(x, y),
dy

dt
=

ℓ∑
i=0

Qmi(x, y) (2)

where Pmi(x, y) and Qmi(x, y) are homogeneous polynomials of degree mi ≥ 1
in x, y, and m0 = 1. The set {1,m1,m2, ...,mℓ} consists of a finite number
(ℓ <∞) of distinct natural numbers. The coefficients and variables in polyno-
mials Pmi(x, y) and Qmi(x, y) take values from the fields of real numbers R.
Hereafter we denote system (2) by s(1,m1,m2, ...,mℓ).

The fundamental results on the Center and Focus Pproblem were obtained
by A.M. Lyapunov (1857-1918) [12]. Henri Poincaré and Aleksandr Lya-
punov laid the foundations of methods of the qualitative theory of differential
equations.

As established, the conditions of a center consists of an infinite sequence of
polynomials is equal to zero (focus quantities, Lyapunov’s constants, Poincaré-
Lyapunov constants)

L1, L2, ..., Lk, ... (3)

which depend on the coefficients of the polynomials on the right sides of system
s(1,m1, ...,mℓ).

If at least one of quantities (3) is not zero, then origin of coordinates O(0, 0)
for system s(1,m1, ...,mℓ) is a focus. These conditions are necessary and
sufficient.

From Hilbert’s Theorem on the finiteness of basis of polynomial ideals it
follows that the essential center conditions, which imply vanishing of an infinite
sequence of polynomials (3), consist of a finite number of polynomials, the rest
ones are the consequences of them.

Taking into account this result, the Center and Focus Problem can be for-
mulated in the following way: what finite number of polynomials (essential
center conditions)

Ln1 , Ln2 , ..., Lnω (ni ∈ {1, 2, ..., k, ...}; i = 1, ω; ω <∞) (4)

is necessary for their equality to zero annuls all polynomials from (3)?
Hence the Center and Focus Problem consists of two parts.
The first part relates to finding the number ω that determines the upper

bound of the number of focus quantities which constitute the essential center
conditions.

The second part consists in finding the set Ω = {n1, n2, ..., nω} of indices of
essential conditions.

We will consider the first part as the Weak Center and Focus Problem.
The Generalized Center and Focus Problem is to determine the upper bound

of the number λ of algebraically independent elements from Π = {Li : i ∈ Ω}.
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The problem of determining essential center conditions (4) with number ω
is a rather complicated problem and it is completely solved only for systems
s(1, 2) and s(1, 3), for which we have ω = 3 and ω = 5, respectively (see [3,
23]).

Until now it is not known the number ω for a system s(1, 2, 3), which seems
to be not a complicated system.

There exists a hypothesis formulated by Professor H. Żo la̧dek (Poland),
mostly based on intuition, that for system s(1, 2, 3) the number ω ≤ 13. Till
now this hypothesis has not been disproved, but there is a recent paper from
2010, which confirms that 12 focus quantities is not enough for solving the
Center and Focus Problem in the complex plane for system s(1, 2, 3) [7].

Lie algebra method and Sibirsky’s graded algebras allow us to solve the
Generalized Center and Focus Problem.

If the Center and Focus Problem is solved negatively for system (2), having
at the origin a singular point of second type (center or focus), then solution
of the Generalized Center and Focus Problem can be considered as the final
solution of this problem.

3. THE EFFORT OF RESEARCHES BETWEEN
CENTER AND FOCUS

Until we move to the basic topic - The Center and Focus Problem - we will
mention some theories that, in one way or another, contributed to its appear-
ance and formulation 130 years ago by Poincaré and finding a solution (until
its generalized form) only now, in Chişinău. From Artur Cayley (1821-1895),
Cambridge, England, he started an invariants theory. Marius Sophus Lie
(1842-1899), Christiania, Norway, developed the theory of Lie groups and al-
gebras - a new kind of algebraic structure that bears his name - both being
applied in various fields of real science, including geometry and study differ-
ential equations. Constantin Sibirsky (1928-1990), Chişinău, Republic of
Moldova, founded the theory of algebraic invariants, which is applied in the
qualitative theory of equations knowing that this has to do with Lie’s theory.

But who and how established this connection? In 1976, acad. Constantin
Sibirsky, head of laboratory at the Institute of Mathematics and Informatics
of ASM, founder of the scientific school of differential equations in the Repub-
lic of Moldova, published the monograph Algebraic invariants of differential
equations and matrices (see [21]), which had a great resonance in the world
of mathematicians. Three years later, in 1979, the American professor C. S.
Coleman published a review of this scientific paper, in which he specified
that it was written in the spirit of the research of the Norwegian mathemati-
cian Marius Sophus Lie. What these investigations consisted of it was not
clear to Moldavian mathematicians. They only knew that the Norwegian had
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created a new direction in mathematical research, but the tangent between it
and Moldavian research and how Lie’s methods could be applied in practice
was unknown.

Four years ago, one of the undersigned of this paper (journalist T. Rotaru:
n.r.) wrote and prepared for print an article of memoirs, entitled A troubled
life between center and focus, signed by Ana Sibirsky, wife of the regretted
mathematician, acad. Constantin Sibirsky (see [20]). Then, from the first
source, she learned about the troubles and researches of a scientist in identify-
ing the scientific truth. At that time, the founder of the Moldavian scientific
school in the field of the qualitative theory of differential equations was pre-
occupied with the elaboration of the theory of algebraic invariants for their
application to the solution of the problems related to the qualitative theory of
differential equations. The respective theory, elaborated by Poincaré in the
years 1880-1882, allows to determine the character of the behavior of the so-
lutions (integral curves) in case of differential equation is not solved explicitly.
As mentioned above, Poincaré proposed a classification of the singular points
of the solutions. But the problem of distinguishing them without explicit
knowledge of the solutions proved to be very complicated.

Remembering those time, Prof. Mihail Popa confessed: ”I never thought
that I would ever deal with the Center and Focus Problem. But, after estab-
lishing the connection between Lie algebras and the Sibirsky graded algebras of
invariants, I understand that the way is open to solve this problem, formulated
by Henri Poincaré 130 years ago”.

It should be noted that a large number of works in scientific centers of
France, Russia, Belarus, China, Great Britain, Spain, Poland, Slovenia, Canada,
USA, etc. are dedicated to the Center and Focus Problem and published in the
world literature. Only in the Republic of Moldova their number is more than
100. At different stages the disciples of the academician C. S. Sibirsky (c.m.
Nicolae Vulpe, prof. Alexandru Suba, dr. Iurie Calin, dr. Valeriu Baltag,
dr. Dumitru Cozma and others), examined various issues of this problem and
obtained important results. Some aspects of the development of mathematics
in the Republic of Moldova are described in the book [5].

The mathematician Mihail Popa went his own way, starting from establish-
ing the connection between Lie algebras and the Sibirsky graded algebras of
invariants - a working tool in further searches. In this context, we will make
some clarifications: the way to solve the Center and Focus Problem was ini-
tially determined by the Russian mathematician Alexander Lyapunov. But
applying this method even for the simplest differential systems, you were faced
with some enormous calculations, which could not be overcome even with the
help of the most modern computers. That is why the Moldavian researcher
took as a basis the Generalized Center and Focus Problem for the mentioned
differential systems, avoiding the calculation of the Poincaré-Lyapunov quan-
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tities for each system. The Poincaré-Lyapunov quantities sequence (3) was
replaced by a series of Lie algebras and a series of linear subspaces of Sibirsky
graded algebras of invariants. To estimating the maximal number of alge-
braically independent focus quantities he applied these algebras. As a result,
a finite numerical estimation was obtained for algebraically independent focal
quantities that participate in solving the Center and Focus Problem for any
system of polynomial differential equations (2). An analysis of the activity of
Professor Mihail Popa is contained in the recently published article [4].

Lie algebra of the group GL(2,R) and graded algebra of unimod-
ular comitants and invariants of system s(1,m1, ...,mℓ)

It is known that the system s(1,m1, ...,mℓ) admits the group GL(2,R),
to which the reductive Lie algebra L4 = ⟨X1, X2, X3, X4⟩ corresponds, that
consists of operators of linear representation of this group in the space of phase
variables and coefficients of polynomials of this system [17].

This algebra generates a graded Sibirsky algebra of invariant polynomials
with respect to the unimodular group SL(2,R) ⊂ GL(2,R) [16], which we
write in the form

S1,m1,...,mℓ
=
∑
(d)

S
(d)
1,m1,...,mℓ

, (5)

where (d) is called a type of the space S
(d)
1,m1,...,mℓ

and has the form [22, 17]

(d) = (δ, d0, d1, ..., dℓ), (6)

and

S
(d)
1,m1,...,mℓ

(7)

is a finite-dimensional linear space of invariant polynomials (homogeneous
comitants, invariants) of degree δ with respect to the phase variables x, y
and of degree di with respect to the coefficients of the polynomials Pmi(x, y)
and Qmi(x, y) (i = 0, ℓ) of system (2).

It is known that this algebra is finitely determined.
Using Lie algebra L4 it can be shown that the maximal number of alge-

braically independent elements (Krull dimension) of algebra [18] is

ϱ(S1,m1,...,mℓ
) = 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3. (8)

It is obvious that if Krull’s dimension of algebra S1,m1,...,mℓ
is ϱ(S1,m1,...,mℓ

)
then for any invariant variety V = {i1 = 0, i2 < 0; i1, i2 ∈ S1,m1,...,mℓ

} where
i1 is the trace of the matrix of the linear part of the system (2), (i2 does not
influence variety [18]) in this algebra S1,m1,...,mℓ

no more than ϱ(S1,m1,...,mℓ
)

algebraically independent elements will be found.
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4. SOLVING THE GENERALIZED CENTER AND
FOCUS PROBLEM

Remember that the focal quantities of system s(1,m1, ...,mℓ) which has at
origin of coordinates a singular point of the second type (center or focus), forms
an infinite series of polynomials from the coefficients of this system which was
written in the form (3).

It can be shown that to each focus quantity Lk (k = 1,∞) one can asso-
ciate a finite-dimensional linear spaces of invariant polynomials (unimodular
comitants) [18]

S
(d(k))
1,m1,...,mℓ

(k = 1, 2, ...), (9)

where
(d(k)) = (δ(k), d

(k)
0 , d

(k)
1 , ..., d

(k)
ℓ ) (10)

is a type of a space (9) which was defined above.
The spaces (9) are characterized by the following fact [18]: they contain

at least one homogeneous polynomial with respect to x and y (comitant), in
which the coefficients are some quantities, named generalized focus pseudo-
quantities. They are characterized by the fact that on the invariant variety
V = {i1 = 0, i2 < 0; i1, i2 ∈ S1,m1,...,mℓ

} some of these focus pseudo-quantities,
except for a numerical constant, go to the corresponding focus quantity Lk,
and the others go to zero. Invariant polynomials i1 and i2 does not depend on
variables x and y, and i1 which we will call null focus pseudo-quantity, belongs

to the space S
(0,1,...,0)
1,m1,...,mℓ

. Thus we obtain the sequence of spaces R = S
(0,0,...,0)
1,m1,...,mℓ

,

S
(0,1,...,0)
1,m1,...,mℓ

,..., S
(δ(k),d

(k)
0 ,d

(k)
1 ,...,d

(k)
ℓ )

1,m1,...,mℓ
,... from S1,m1,...,mℓ

. Using them, we form a

graded subalgebra S′
1,m1,...,mℓ

of algebra S1,m1,...,mℓ
i.e. S′

1,m1,...,mℓ
⊂ S1,m1,...,mℓ

(see [18]). From this inclusion it follows that between their Krull dimensions
the following inequality holds ϱ(S′

1,m1,...,mℓ
) ≤ ϱ(S1,m1,...,mℓ

). With the help of
this inequality and the above formula for Krull’s dimension ϱ(S1,m1,...,mℓ

) it
can be shown that the following is true:

Lemma 1 [18]. The maximal number of algebraically independent invari-
ants and comitants, which contain as coefficients null and generalized focus
pseudo-quantities of system

s(1,m1, ...,mℓ), does not exceed the numerical upper bound 2

(
ℓ∑
i=1

mi + ℓ

)
+3.

Taking into account properties of these comitants from algebra S′
1,m1,...,mℓ

which are related to focal quantities on the variety V = {i1 = 0, i2 < 0; i1, i2 ∈
S1,m1,...,mℓ

} and Lemma 1, we obtain that there takes place:

Theorem 1 [18]. The maximal number of algebraically independent fo-
cus quantities λ of system s(1,m1, ...,mℓ) on the variety V = {i1 = 0, i2 <
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0; i1, i2 ∈ S1,m1,...,mℓ
}, that take part in solving the Center and Focus Problem,

does not exceed the the numerical upper bound 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3.

Recall that for the differential systems s(1, 2) and s(1, 3) the number of es-
sential conditions of center is ω = 3 and 5, respectively, and for the differential
system s(1, 2, 3) according to one hypothesis it is ω ≤ 13. From Theorem 1
we have that maximal number of algebraically independent focus quantities
of the differential system s(1, 2) does not exceed 9, for the differential system
s(1, 3) does not exceed 11, and for the differential system s(1, 2, 3) does not
exceed 17.

These arguments, as well as the fact that the system s(1,m1, ...,mℓ) on
variety V has at the origin of coordinates a singular point of second type
(center or focus), allow us to conclude that the following can be true

General Hypothesis [18]. If the system s(1,m1, ...,mℓ) has at the origin
of coordinates a singular point of the second type (center or focus), then the
number of essential conditions of center ω for this system does not exceed the

the numerical upper bound 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3.

Remark. The expression 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3 is equal to maximal num-

ber of all possible nonzero coefficients of the right-hand sides of the system
s(1,m1, ...,mℓ) minus one.

5. METHODOLOGICAL CONCLUSIONS

The question arises: how can it be explained that till now we do not have
a solution to the Center and Focus Problem for any system s(1,m1, ...,mℓ).

First of all, it is obvious that the Center and Focus Problem is a difficult
one.

Till now, no general methods have been found for studying the Poincaré-
Lyapunov constants in the sequence (3). In particular, there is no general
solution strategy. However, the specified way in solving the Center and Focus
Problem for system s(1, 2, 3) is connected with cumbersome computations with
application of supercomputers. These difficulties are also insurmountable for
other more complicated systems.

From a psychological point of view, there are also impediments in terms
of human conservatism to research problems in the traditional, classical way.
History confirms that new, unusual methods with great difficulty are approved
and appreciated at their fair value. However, according to Kurt Gödel (1906-
1978) incompleteness theorem, the resources created so far are not sufficient for
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further studies. Therefore, it is undeniable that subsequent success depends
largely on the new means created.

Solving the Center and Focus Problem: traditional aspect is equivalent to
determining the essential conditions of the center

Ln1 , Ln2 , ..., Lnω (ni ∈ {1, 2, ..., k, ...}; i = 1, ω; ω <∞)

which involves knowing the number ω and the set Ω = {n1, n2, ..., nω} the
finiteness of which results from Hilbert’s Theorem on the finiteness of basis of
polynomial ideals. This is similar to finiteness theorem of Hilbert’s number
H(n) in the second part of 16th Problem.

The problem of determining a finite number ω or obtaining for it an argued
numerical upper bound (even in the form of a hypothesis), which until now
is not known for any system s(1,m1, ...,mℓ) is important for the complete
solution of the Center and Focus Problem.

Formally the Center and Focus Problem consists in determining the condi-
tions that guarantee that a singular point of the second type is a center.

Through counterweights, for example, matter and antimatter, the world
and anti-world, we penetrate the essence of the universe, constituting amaz-
ing symmetries in the world of known phenomenas. From a mathematical
point of view, such symmetries are constructed using the principle of duality.
To construct a duality - means to determine a correspondence between certain
types of objects, to which each property of the initial object corresponds a
certain property of the respective object to this correspondence. In any du-
ality, objects and some of their properties have dual objects and properties.
This method, which is its reasoning by anti-analogy, it determines that many
objects, different in form and content, are constructed, from the point of view
of formal logic, in one and the same way. Any duality between two theories
establishes at a certain level an isomorphism between these theories.

Let A and B be two theories, and β : A→ B an application to which each
object a ∈ A and properties of objects from A correspond to object β(a) and
property β(w), respectively. It is assumed that this application is logically
continuous in the sense: that if the object a possessed the property w, then
the object β(a) possessed the property β(w). The application β can also have
a symmetry for certain properties: the properties w and β(w) are symmetric
(dual), if the object a possessed the property w only and only if object β(a)
possessed property β(w). Under these conditions, for each problem π in theory
A is corresponded to a certain problem β(π) of theory B. From the logical
continuity of the application β we obtain:

- If the problem π is solved positively, then the problem β(π) is solved
positively;

- If the problem β(π) is solved negatively, then the problem π is not solved
positively;
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- If the properties in the problem π are symmetric, then the problems π and
β(π) are equivalent.

We note that the problem β(π) is a generalized form of the original problem
π. Solving the generalized forms is important if for the initial problem, for a
long time, no solutions are found. Moreover, the solutions to the generalized
problem propose strategies and hypotheses for solving the initial problem. Some
estimates from the solution of the generalized problem can serve as working
hypotheses for the initial problem.

The study of a new problem or an unsolved problem, applying the meth-
ods of solving a known problem is done by various methods: the method of
substituting variables; border crossing method etc. They are well known since
ancient times. With the boundary crossing method, Hopf, for example, built
the solutions of the quasi-linear equations.

Amazing constructions have been proposed by V. I. Arnold in the study
of the critical points of the functions defined on varieties with the help of
semi-simple Lie groups [2].

In the second half of the last century, the famous Russian mathematician
Victor P. Maslov proposed a new theory - Idempotent Analysis - based on
changing the usual operations {+,×} with two other operations (see [13,14]).
By this exceptional method succeeded:

- reduction of Bellman and Hamilton-Jacobi equation theory to linear equa-
tion theory;

- studying Fourier transforms using the Legendre transformations;
- research with known methods of many problems in quantum physics, ther-

modynamics, superconductivity, etc.
Any constructed duality is a valuable event for those theories. The dualities

of projective geometry, the Pontryagin duality in the theory of locally com-
pact abelian groups, the Kolmogorov-Gelfand dualism of compact spaces and
functional Banach algebras, the dualities of Serre and Alexander in topology,
the Radu Miron duality of Cartan and Finsler spaces, the De Morgan duality
are well known in sets theory, Stone duality between zero-dimensional com-
pact spaces and Boolean rings, wave-corpuscle duality in theoretical physics,
Kramers-Wannier dualism in statistical physics, etc.

All these examples have a simple explanation: many problems, different in
form and content, can be studied with a single mathematical method and from
a single point of view.

Now let’s fix two polynomials P = P (x, y) and Q = Q(x, y) with non-zero
linear parts. Then

P =

ℓ∑
i=0

Pmi(x, y), Q =

ℓ∑
i=0

Qmi(x, y) (11)
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where Pmi(x, y) and Qmi(x, y) are homogeneous polynomials of degree m1 ≥ 1
in x, y, and m0 = 1. The set {1,m1, ...,mℓ} determine a system s(1,m1, ...,mℓ)
of the form (2). An infinite series of polynomials (Poincaré-Lyapunov con-
stants) p = {Lk : k = 1, 2, 3, ...} of the form (3) were constructed for this sys-
tem. For each focal quantities Lk (k = 1,∞)) it can be corresponded to a finite-
dimensional linear spaces of invariant polynomials, unimodular (comitants)

S
(d(k))
1,m1,...,mℓ

of the form (9), that forming a sequence of the type a. In this way,
a correspondence is constructed between the sequence p of polynomials (3) and
the sequence of linear spaces of the form (9). The first type of sequences form
the P class, and the second type of sequences form class A. Therefore, we have
built a correspondence f : P → A. Probably this correspondence is a functor
(a symmetry) in some sense. For each sequence p ∈ P is determined the num-
ber E(p) of the essential conditions of center and the set Ω = {ni : i = 1, ω},
and for each sequence a ∈ A is determined the number gE(a) of algebraically
independent focal quantities, i.e. the number of generalized essential condi-
tions of the center and the set gΩ = {mi : i = 1, λ}, respectively. Consider
a = f(p), if p = φ(s(1,m1, ...,mℓ), P,Q) and a = ψ(s(1,m1, ...,mℓ), P,Q) are
respectively determined by system s(1,m1, ...,mℓ) ) and the polynomials P,Q
with the respective decompositions.

Theorem 1 says that

gE(a) ≤ 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3, ifa = ψ(s(1,m1, ...,mℓ), P,Q).

This inequality is the solution of the Generalized Center and Focus Prob-

lem. The General Hypothesis assumes that E(p) ≤ 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3 for

p = φ(s(1,m1, ...,mℓ), P,Q).
There are simple examples for which inequality E(p) > gE(f(p)) holds, but

for all known examples E(p) ≤ 2

(
ℓ∑
i=1

mi + ℓ

)
+ 3. This was the basis for

launching the General Hypothesis. Probably, the truth about this inequality
is contained in the functor properties of the correspondence f . But to solve
the Weak Center and Focus Problem is sufficient a numeric function h : N → N
defined on the sequence of natural numbers N and set to E(p) ≤ h(gE(f(p))).
In this context, there is another unresolved problem: to study, from a general
point of view, the second part of the Center and Focus Problem, that is, to
determine the subset of gΩ = {mi : i = 1, λ} of the set Ω = {n1, n2, ..., nω} of
indices of algebraically independent focal quantities.

Let’s admit that at some point the Center and Focus Problem is solved
positively. In this situation, will the study of particular cases be of interest?
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We think so. Whether for some system ω = 3 and 10001000 ∈ Ω. Who and by
what means will determine the type of the singular point? It is well known that
the simplex method, proposed by George Dantzig in 1947, is a general method
of solving the linear programming problem formulated by L. V. Kantorovich
in 1939. But research in this area continues.

Therefore, the general solution of the initial or generalized problem reflects
the ways of examining the different particular cases. Moreover, because the
sequence of form (3) is infinite, the solutions of the initial problem and the
generalized problem allow to discover effectively particular cases for which the
number ω and those of Ω are accessible for a deeper study of the properties of
integral curves of certain types. Therefore, the role of generalized solutions is
enormous in the deep study of different classes of differential systems (1).
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Buletinul AŞM, Matematica, 1(71), (2013), pp. 3 - 10.
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2Bǎlţi State University, Republic of Moldova

mmchoban@gmail.com, rndumbraveanu@gmail.com

Abstract In the present article the space Cp(X,E) of continuous mappings into a metriz-
able space E is considered. The conditions for which Cp(X,E) is Fréchet-
Urysohn and k-space are determined. Some similar assertions for Cp(X,R)
were proved in [9, 2] and for Cp(X,Z) were proved in [5].
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1. INTRODUCTION

Any space is considered to be a completely regular T1-space. We use the
terminology from [2, 6]. Denote by R the field of the reals in the usual topology,
by Z the discrete ring of integers, by N the discrete space of positive integers,
by clXB or clB the closure of the set B in the space X, by |L| the cardinality
of the set L, by w(X) the weight of the space X.

A space X is called Fréchet-Urysohn if for any non-empty subset A ⊆ X
and any x ∈ cl(A) there exists a sequence in A which converges to x. A
space is called a k-space if A ⊆ X is closed provided A ∩ K is closed in
K for any compact subset K of X. A space is called a sequential space if
A ⊆ X is closed provided A ∩ K is closed in K for any metrizable compact
subset K of X.The Fréchet-Urysohn property implies the sequentiality and
the sequentiality implies the k-property.

A family A of subsets of X is called an ω-cover (cover for finite subsets
[2, 9]) of X if for any finite subset F ⊆ X there exists U ∈ A such that
F ⊆ U . If ξ = {An : n ∈ } is a sequence of subsets of X, then the set
lim inf ξ = ∪{∩{Ak : k ≥ n} : n ∈ N} is called the lower limit of the sequence
ξ.

By EX we will denote the space of all E-valued mappings on X equipped
with the product topology. By Cp(X,E) we will denote the space of all E-
valued continuous mappings equipped with the pointwise convergence topol-
ogy, i.e. the topology with standard basic open sets of the form

17
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W (x1, ..., xk, U1, ..., Uk) = {f ∈ C(X,E) : f(xi) = Ui, i ≤ k},

where xi ∈ X, Ui are open subsets from the base of the topology on E and
k ∈ N. In particular, if E is a metric space then the standard basic open
neighbourhoods of a mapping f ∈ Cp(X,E) are of the form

W (f, x1, ..., xk, n) = {g ∈ Cp(X,E) : d(g(xi), f(xi)) <
1
n , i ≤ k},

where n ∈ N.

2. GENERAL CONDITIONS FOR
SEQUENTIALITY AND K-PROPERTY

The following result for E = R was proved by R. A. McCoy and A. V.
Arhangel’skii (see [9], Theorem 1; [2], Theorem II.3.2). A similar result for
E = Z was proved by K. M. Drees (see [5], Theorem 4.2.4). We will follow
closely the proof scheme from [9, Theorem 1] and [2, Theorem II.3.2].

Proposition 2.1. Let E be a metrizable space, |E| ≥ 2 and a space X has
the property γ1: for any sequence {ηn : n ∈ N} of open ω-covers of X there
are Un ∈ ηn, n ∈ N, such that lim inf ξ = X, where ξ = {Un : n ∈ N}. Then
Cp(X,E) is a Fréchet-Urysohn space;

Proof. There exists a metrizable Banach algebra F such that E is a subspace
og F , 0 is the neutral element and 1 is the unity of the algebra F . Since
Cp(X,E) is a subspace of the topological algebra Cp(X,F ) it is sufficient to
prove that Cp(X,F ) is a Fréchet-Urysohn space.

Fix a subset A ⊆ Cp(X,F ) and a function g ∈ clA \A. Since Cp(X,F ) is a
topological group, we can assume that g(X) = {0}.

Fix an open base {On : n ∈ N} for the space F at the point 0 such that
clOn+1 ⊆ On. Then the family {W (g,K,On) = {f ∈ C(X,F ) : f(K) ⊆ On} :
n ∈ N,K is a finite subset of X} is an open base for Cp(X,F ) at the point g.

For each n ∈ N we put ηn = {f−1(On) : f ∈ A}. We affirm that ηn is an ω-
cover ofX. LetK be a finite non-empty subset ofX. Then the setW (g,K,On)
is open in Cp(X,F ) and g ∈ W (g,K,On). Then the set A ∩W (g,K,On) is
non-empty. Fix f ∈ A ∩W (g,K,On). Then K ⊆ f−1(On) ∈ ηn.

By virtue of condition γ1, there exists a sequence {fn ∈ A : n ∈ N} such
that lim inf ξ = X, where ξ = {f−1

n (On) : n ∈ N}. Obviously, g = limfn. The
proof is complete.

Proposition 2.2. Let E be a non pseudocompact space, a space X is non-
empty, indX = 0 and Cp(X,E) is a k-space. Then the space X has the
property γ1.

Proof. We can assume that the ring of integers Z is a closed discrete subspace
of the space E. Since Cp(X,Z) is a closed subspace of the space Cp(X,E),
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Cp(X,Z) is a k-space and a topological commutative ring with unity. Ana-
logicaly as in Lemma II.3.8 from [2] one can prove that the space X has the
property γ1. This fact was realized by K. M. Drees in [5].

Corollary 2.1. Let E be a non compact metric space, X be a non-empty space
and indX = 0. Then the following conditions are equivalent:

(i) Cp(X,E) is a Fréchet-Urysohn space;
(ii) Cp(X,E) is a sequential space;
(iii) Cp(X,E) is a k-space;
(iv) X has the property γ1;
(v) Cp(X,E)N is a Fréchet-Urysohn space.

Proof. The implications (i) → (ii) → (iii) and (i) → (v) → (i) are obvi-
ous. The implication (iv) → (i) follows from the above Proposition 2.1. The
implication (iii) → (iv) follows from the above Proposition 2.2.

Proposition 2.3. Let E and X be non-empty spaces and the space of reals R
be a closed subspace of E. If Cp(X,E) is a k-space, then the space X has the
property γ1.

Proof. We can assume that the ring of integers Z is a closed discrete subspace
of the space E. Since Cp(X,R) is a closed subspace of the space Cp(X,E),
Cp(X,R) is a k-space and a topological commutative ring with unity. By
virtue of Theorem II.3.2 from [2], the space X has the property γ1.

Corollary 2.2. Let E be a non trivial metrizable linear space and X be a
non-empty space. Then the following conditions are equivalent:

(i) Cp(X,E) is a Fréchet-Urysohn space;
(ii) Cp(X,E) is a sequential space;
(iii) Cp(X,E) is a k-space;
(iv) X has the property γ1;
(v) Cp(X,E)N is a Fréchet-Urysohn space.

Proof. The implications (i) → (ii) → (iii) and (i) → (v) → (i) are obvi-
ous. The implication (iv) → (i) follows from the above Proposition 2.1. The
implication (iii) → (iv) follows from the above Proposition 2.3.

Corollary 2.3. Let X be a non-empty space. Then the following conditions
are equivalent:

(i) Cp(X,E) is a Fréchet-Urysohn space for any metrizable space E.
(ii) Cp(X,E) is a sequential space for any metrizable space E.
(iii) Cp(X,E) is a k-space for some non-trivial linear space E.
(iv) X has the property γ1.
(v) Cp(X,E)N is a Fréchet-Urysohn space for any metrizable space E.
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Corollary 2.4. Let X be a non-empty space and indX = 0. Then the follow-
ing conditions are equivalent:

(i) Cp(X,E) is a Fréchet-Urysohn space for any metrizable space E;
(ii) Cp(X,E) is a sequential space for any metrizable space E;
(iii) Cp(X,E) is a k-space for some non-pseudocompact space E;
(iv) X has the property γ1;
(v) Cp(X,E)N is a Fréchet-Urysohn space for any metrizable space E;.

The conditions give on E and X in Corollaries 2.1 and 2.2 are essential.

Example 2.1. Let E be a compact space, |E| ≥ 2 and X be an uncountable
discrete space. Then Cp(X,E) = EX is a compact space and is non sequential
space. Any compact space is a k-space. The space X has not the property γ1.

Example 2.2. Let E be an infinite discrete space and X be an uncountable
connected space. Then Cp(X,E) = E is a discrete space. Any discrete space
is a Fréchet-Urysohn space. If the space X has not the property γ1, then
indX = 0 (see [2, 9]). Hence the space X has not the property γ1.

3. TIGHTNESS OF FUNCTIONAL SPACES AND
LINDELÖF NUMBER OF SPACES

A tightness t(X) of a space X is the minimal infinite cardinal τ such that
for any non-empty set B ⊆ X and any point x ∈ clXA there exists a subset
C ⊆ B such that |C| ≤ τ and x ∈ clXC (see [2]). Obviously, t(X) ≤ |X|.
Any sequential space has the countable tightness [2]. Let D = {0, 1} be the
discrete two-point space.

A Lindelöf number l(X) of a space X is the minimal infinite cardinal τ such
that any open cover of X contains a subcover of the cardinality ≤ τ .

Proposition 3.1. Let X be non-empty spaces, indX = 0, E be a space,
|E| ≥ 2, τ be an infinite cardinal and t(Cp(X,E)) ≤ τ . Then l(Xn) ≤ τ for
any n ∈ N.

Proof. We can assume that E = D = {0, 1}. Fix n ∈ N and an open cover
γ of the space Xn. The family ξ of open-and-closed subsets of X is called
(γ, n)-small if for any U1, U2, ..., Un ∈ ξ there exists G ∈ γ such that Π{Vi :
i ≤ n} ⊆ G. By µ we denote the family of all (γ, n)-small finite families of
open-and-closed subsets of X. For any ξ ∈ µ we fix fξ ∈ Cp(X,E) such that
f(X \ ∪ξ) = 0 and f(∪ξ) = 1 . Let A = {fξ : ξ ∈ µ}.

We affirm that the set A is dense in Cp(X,E). Let g ∈ Cp(x,E), W is
open in Cp(X,E) and g ∈W . There exists a finite subset K = {x1, x2, ..., xm}
of X such that m ≥ n and W (x1, ..., xm, {g(x1)}, ..., {g(x)}) ={f ∈ C(X,E) :
f(xi) = g(xi), i ≤ m} ⊆W . There exists a finite family ν = {U1, U2, ..., Um} ∈
µ of open-and-closed subsets of X such that xi ∈ Ui and g(Ui) = {g(xi)} for
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each i ≤ m. Let ξ = {U ∈ ν : g(U) = 1}. Then fξ ∈ {f ∈ C(X,E) : f(xi) =
g(xi), i ≤ m} ⊆W . Hence the set A is dense in Cp(X,E).

Assume that g(X) = 1. If g ∈ A, then γ contains a finite subcover. Suppose
that g ̸∈ A. Then there exists a subset B ⊆ A such that g ∈ clB and |B| ≤ τ .
For each ξ ∈ µ we put ηξ = {U1 × U2 × ... × Un : U1, U2, ..., Un ∈ ξ}. Any
family ηξ is finite and for each V ∈ ηξ there exists G ∈ γ such that V ⊆ G.
Now we put η = ∪{ηξ : ξ ∈ µ, fξ ∈ B}. By construction, |η| ≤ τ . Fix a point
(x1, x2, ..., xn) ∈ Xn. The set H = {f ∈ Cp(X,E) : f(xi) = 1, i ≤ n} is open
in Cp(X,E) and g ∈ H. Fix fξ ∈ H ∩ B. For each i ≤ n fix Ui ∈ ξ such that
xi ∈ Ui. Then (x1, x2, ..., xn) ∈ U1 × U2 × ... × Un ∈ ηξ ⊆ η. Therefore η is a
cover of Xn and a refinement of γ. The proof is complete.

Corollary 3.1. Let X be non-empty spaces, indX = 0, E be a metrizable
space and |E| ≥ 2. Then t(Cp(X,E)) = sup{l(Xn) : n ∈ N}.

Proof. From Proposition 3.1 it follows that t(Cp(X,E)) ≥ sup{l(Xn) : n ∈ N}.
In [9], Corollary 1, was proved that t(Cp(X,E)) ≤ sup{l(Xn) : n ∈ N}.

Corollary 3.2. Let X be non-empty spaces, indX = 0 and τ be an infinite
cardinal. The following assertions are equivalent:

1. l(Xn) ≤ τ for any n ∈ N.
2. t(Cp(X,E)) ≤ τ for each metrizable space E.
3. t(Cp(X,D)) ≤ τ .

4. SPECIAL CONDITIONS FOR
SEQUENTIALITY AND K-PROPERTY

Let X be a space. Denote by PX the set X with the topology generated
by the Gδ-subsets of X. The topology of the space PX is called the Baire
topology or the Gδ-topology of the space X. If X = PX, then X is called a
P -space.

A space X is functionally countable if for any continuous mapping f of
X into a metrizable space Y the image f(X) is countable (see [7, 3]). Any
Lindelöf P -space is functionally countable. Moreover, if X is a Lindelöf P -
space, then the space Xn is Lindelöf for each n ∈ N.

A space X is scattered if any non-empty subspace A ⊆ X contains an
isolated point in A. If X is a Lindelöf scattered space, then:

- PX is a Lindelöf scattered P -space (see [7, 2]);
- the space Xn is Lindelöf for each n ∈ N.
A Lindelöf Čech-complete space is functionally countable if and only if X

is scattered (see [4]).

Lemma 4.1. Let K be the Cantor perfect set. Then the space Cp(K,D) con-
tains a non-discrete subspace Y with properties:
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- the space Y has a unique non-isolated point;
- the space Y is countable and closed in Cp(K,D);
- any compact subset of Y is finite and Y is not a k-space.
In particular, Cp(K,D) is not a k-space.

Proof. We can assume that K = DN. For each n ∈ N and i1, i2, ..., in ∈ D
we put O(i1, i2, ..., in) = {j = (j1, j2, ...) ∈ K : j1 = i1, j2 = i2, ..., jn = in}.
The sets O(i1, i2, ..., in) are open-and-closed and forms an open base of the
compact K.

On K there exists a σ-additive measure µ with the followin properties:
1. µ(K) = 1 and µ(O(i1, i2, ..., in)) = 2−n for each n ∈ N and i1, i2, ..., in ∈

D.
2. µ(U) > 0 for each non-empty open subset U of K.
3. µ(L) = 0 for each finite subset L of K.
Now we mention that on K there exists an open base B = {Vn : n ∈ N} of

open-and-closed subsets of K such that:
4. µ(Vn+1) ≤ µ(Vn) for each n ∈ N.
5. limn→∞µ(Vn) = 0.
6. For any finite subset L ⊆ K, any open subset U which contains L and

for each n ∈ N there exists m ∈ N for which m ≥ n and L ⊆ Vm ⊆ U .

Let B = {bn : n ∈ N} be a dense subset of the space K. Now for each n ∈ N
fix a continuous function fn ∈ Cp(K,D) such that Vn ∪ {b1, ..., bn} ⊆ f−1

n (0)
and µ(f−1

n (0)) ≤ µ(Vn) + 2−n.
Let g(x) = 0 for each x ∈ K. We put Y = {g} ∪ {fn : n ∈ N}.

Claim 1. Y is a closed subspace of the space Cp(K,D).
Assume that f ∈ clY \ Y . Then f(bn) = 0 for each n ∈ N. Since f is

continuous and B is a dense subset of K, we have f(x) = g(x) = 0 for each
x ∈ K. Hence f = g, a contradiction.

Claim 2. g is not an isolated point of Y .
Let W be an open subset of Cp(K,D) and g ∈ W . Then for some finite

subset L of K we have g ∈ {f ∈ Cp(K,D) : f(L) = 0} ⊆W . There exists n ∈
N such that L ⊆ Vn. By construction, fn ∈ {f ∈ Cp(K,D) : f(L) = 0} ⊆ W .
Thus g ∈ cl(Y \ {g}).

Claim 3. g is the unique non-isolated point of Y .
If f ∈ cl(Y \ {f}), then f(bn) = 0 for each n ∈ N. Hence f = g.

Claim 4. Any compact subset of Y is finite.
Assume that F is an infinite compact subset of Y . Since the compact F is

countable, F is metrizable. From Claim 3 it follows that g ∈ F and F \ {g}
is a convergent sequence. Then in F there exists a convergent to g sequence
{gi = fni : i ∈ N} such that:
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- g = limi→∞gi;
- µ(g−1

i (0) ≤ 2−i−1 for each i ∈ N.

Let V = {g−1
i (0) : i ∈ N}. By construction, µ(V ) ≤ Σ{2−i−1 : i ∈ N} =

2−1. Hence µ(K \ V ) ≥ 2−1 and gi(x) = 1 for all x ∈ K \ V and i ∈ N, a
contradiction.

The proof is complete.

Theorem 4.1. Let X be a functionally countable space and the space Xn is
Lindelöf for each n ∈ N. Then Cp(X,E) is a Fréchet-Urysohn space for any
metrizable space E.

Proof. Since X is a functionally countable space, we have indX = 0. Fix a
metrizable space E. From Corollary 3.2 it follows that t(Cp(X,E)) = ℵ0.

Let A ⊆ Cp(X,E) and g ∈ clA \ A. Since t(Cp(X,E)) = ℵ0, there ex-
ists a countable subset B1 ⊆ A such that g ∈ clB1. Let B = {g} ∪ B1. By
construction, the set B is countable, the space EB is metrizable and the map-
ping φ : X −→ M ⊆ EB = Π{Ef = E : f ∈ B}, where M = φ(X) and
φ(x) = (f(x) : f ∈ B) ∈ EB for each x ∈ X, is continuous. Obviously, the
space M is countable. Hence Cp(M,E) is a metrizable subspace of the space
EM . For each f ∈ B consider the projection pf : M −→ Ef = E. Then
f = pf ◦ φ for each f ∈ B. Let C1 = {pf : f ∈ B1}. By construction,
pg, pf ∈ Cp(M,E) for any f ∈ B1 and pg ∈ clC1. Since Cp(M,E) is metriz-
able, there exists a sequence {pfn : n ∈ N} which converge to pg. Therefore
g = limn→∞fn. The proof is complete.

Corollary 4.1. Let X be a Lindelöf P -space. Then Cp(X,E) is a Fréchet-
Urysohn space for any metrizable space E.

Corollary 4.2. Let X be a Lindelöf scattered space. Then Cp(X,E) is a
Fréchet-Urysohn space for any metrizable space E.

Corollary 4.3. Let X be a Lindelöf Čech-complete space, indX = 0, E be a
metrizable space and |E| ≥ 2. The following assertions are equivalent:

1. Cp(X,E) is a Fréchet-Urysohn space.
2. Cp(X,E) is a sequential space.
3. Cp(X,E) is a k-space.
4. X is a scattered space.

Proof. Implications 1 → 2 → 3 are obvious. Implication 4 → 1 follows from
Corollary 4.2.

Assume that Cp(X,E) is a k-space and X is not scattered. Then X contains
a compact Gδ-subset Y and a continuous mapping φ : Y −→ K of Y onto
the Cantor perfect set K. Since indX = 0 there exists a continuous mapping
ψ : X −→ Y such that φ = ψ|Y . Then, since ψ is a quotient mapping,
the dual mapping Ψ : Cp(K,E) −→ Cp(X,E), where Ψ(f) = f ◦ ψ for each
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f ∈ Cp(K,E), is a closed embedding of Cp(K,E) in Cp(X,E). By virtue of
Lemma 4.1, Cp(K,E) is not a k-space. Since Ψ(Cp(K,E)) is a closed subspace
of the space Cp(X,E), Cp(X,E) is not a k-space, a contradiction. Implication
3 → 4 is proved. The proof is complete.

5. ON SEQUENTIALITY OF FUNCTIONAL
SPACES INTO FIRST-COUNTABLE SPACES

Proposition 5.1. Let E be a first-countable space and a space X has the
property γ1. Assume that the set f(X) is countable for each function f ∈
Cp(X,E). Then Cp(X,E) is a Fréchet-Urysohn space.

Proof. Since X has the property γ1, indX = 0 and the space Xn is Lindelöf
for each n ∈ N (see [2]).

The assertion of Proposition follows from Proposition 2.1 for a metrizable
space E. Assume that the space E is not metrizable.

Claim 1. Let Y be a subspace of E, φ : E −→ F be a continuous mapping
of E onto a metrizable space F , B be an open base for E at each point x ∈ Y ,
the set φ(V ) is open in F and V = φ−1(φ(V )) for any V ∈ B. Then if
A ⊆ Cp(X,E), g ∈ clA and g(X) ⊆ Y , then there exists a sequence {fn ∈ A :
n ∈ N} such that g = limn→∞fn, i. e. g is a Fréchet-Urysohn point of the
space Cp(X,E).

Consider the continuous mapping Φ : Cp(X,E) −→ Cp(X,F ), where Φ(f) =
φ ◦ f for each f ∈ Cp(X,E). Fix a subset A ⊆ Cp(X,E) and a function
g ∈ clA \ A such that g(X) ⊆ Y . Then Φ(g) ∈ clΦ(A). Since F is metriz-
able, by virtue of Proposition 2.1, there exists a sequence {fn ∈ A : n ∈ N}
such that Φ(g) = limn→∞Φ(fn). Since B is an open base for E at each point
x ∈ Y , the set φ(V ) is open in F and V = φ−1(φ(V )) for any V ∈ B, we have
g = limn→∞fn.

Claim 2. For any countable subspace Y of E there exist a metric space
F , a continuous mapping φ of E onto F , an open base B for E at each point
x ∈ Y such that the set φ(V ) is open in F and V = φ−1(φ(V )) for any V ∈ B.

Since the space E is first-countable, for each point a ∈ E there exist a
continuous function ha : E −→ Ia = [0, 1] such that ha(a) = 0 and B(a) =
{h−1

a ([0, 2−n)) : n ∈ N} is an open base for E at the point a. Consider the
mapping φ : E −→ F , where F = φ(E) is a subspace of the Cartesian product
Π{Iy : y ∈ Y } and φ(x) = (hy(x) : y ∈ Y ) for each x ∈ E. The open family B

= ∪B(y) : y ∈ Y }, the space F and the mapping φ are constructed.

Now, the assertion of Proposition follows from Claims 1 and 2. The proof
is complete.
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From Corollary 2.1 and Proposition 5.1 it follows;

Corollary 5.1. Let E be a non compact metric space, X be a non-empty
space, f(X) is countable for each function f ∈ Cp(X,E) and indX = 0. Then
the following conditions are equivalent:

(i) Cp(X,E) is a Fréchet-Urysohn space;
(ii) Cp(X,E) is a sequential space;
(iii) Cp(X,E) is a k-space;
(iv) X has the property γ1.

Corollary 5.2. Let X be a non-empty Lindelöf P -space. Then Cp(X,E) and
Cp(X,E)N are Fréchet-Urysohn spaces for each first-countable space E.

Proof. From Corollaries 2.4 and 4.2 the space X has property γ1. We have
Cp(X,E

N) = Cp(X,E)N and EN is a first-countable space. Let f ∈ Cp(X,E
N.

Since X is a P -space and any point of EN is a Gδ-subset, the set f−1(y) is
open-and-closed for each y ∈ EN. Hence {f−1(y) : y ∈ EN} is a countable
discrete cover of the Lindelöf space X. Therefore the set f(X) is countable.
Proposition 5.1 completes the proof.

Corollary 5.3. Let X be a non-empty Lindelöf scattered space. Then Cp(X,E)
and Cp(X,E)N are Fréchet-Urysohn spaces for each first-countable space E.

Proof. Since PX is a Lindelöf P -space and Cp(X,E) is a subspace of the space
Cp(PX,E), Corollary 5.2 completes the proof.

In the distinct topological constructions apear the Σ-product of spaces.
Moreover, is important the problem of classification of the compact subspaces
and their subspaces of Σ-product of metrizable spaces (see [2, 6, 8, 10]).

Example 5.1. Fix an uncountable cardinal τ and a discrete space D(τ). By
L(τ) = D(τ) ∪ {c} we demote the one-point lindelöfication of D(τ), where
c ̸∈ D(τ), D(τ) is an open discrete subspace of L(τ) and {D(τ) \ H : H ⊆
D(τ), |H| ≤ ℵ0} is a base for L(τ) at the point c.

Let {Eµ : µ ∈ D(τ)} be a non-empty family of topological first-countable
spaces and B = {bµ ∈ Eµ : µ ∈ D(τ)} be a fixed set.

By ΣB{Eµ : µ ∈ D(τ)} or ΣB denote the subspace of the Cartesian product
Π{Eµ : µ ∈ D(τ)} consisting of all points x = (xµ : µ ∈ D(τ)) ∈ Π{Eµ : µ ∈
D(τ)} such that the set Dx(τ) = {µ ∈ D(τ) : xµ ̸= bµ} is countable (see [6]).

For each µ ∈ D(τ) fix an open base {Un(µ) : n ∈ N} for a space Eµ at
the point bµ. Assume that the sets Un+1(µ) and Eµ \ Un(µ) are functionally
separated for all n ∈ N and µ ∈ D(τ). If in the discrete sum E = ⊕{Eµ :
µ ∈ D(τ)} we identify the closed discrete set B, then we obtain the set F =
⊕B{Eµ : µ ∈ M} and the natural projection πB : E −→ F . Assume that
πB(B) = b ∈ F . On F we consider the topology relatively to which:
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- πλ = πB|Eµ is an embedding of Eµ into F for each µ ∈ D(τ);
- {Un = ∪{Un(µ) : µ ∈ D(τ)} : n ∈ N} is a base for F at the point b.
We identify Eµ with πB(Eµ) ⊆ F . By construction, F is a completely

regular first-countable space. If any space is (complete) metrizable, then the
spaces E and F are (complete) metrizable.

Property 1. The Cartesian product Π{Eµ : µ ∈ D(τ)} is a closed subspace

of the τ power FD(τ) of the space F .
By Σ(b,τ)F denote the subspace of the τ power FD(τ) consisting of all points

y = (yµ : µ ∈ D(τ)) ∈ FD(τ)} such that the set Dy(τ) = {µ ∈ D(τ) : yµ ̸= b} is
countable.

From Property 1 it follows:

Property 2. The Σ-product ΣB{Eµ : µ ∈ D(τ)} is a closed subspace of the
τ -Σ-power Σ(b,τ)F .

Now, as in Example IV.2.15 from [2], we mention the following property:

Property 3. There exists a closed embedding Φ of the τ -Σ-power Σ(b,τ)F
in the space Cp(L(τ), F ).

Realy, for each point y = (yµ : µ ∈ D(τ)) ∈ Σ(b,τ)F} we consider the
function hy : L(τ) −→ F , where hy(c) = b and hy(µ) = yµ for each µ ∈ D(τ).
The mapping Φ is an embedding and the set Φ(Σ(b,τ)F ) = {f ∈ Cp(L(τ), F ) :
f(c) = b} is a closed subset of the space Cp(L(τ), F ).

Property 4. (N. Noble, [10]). The τ -Σ-power Σ(b,τ)F and the Σ-product
ΣB{Eµ : µ ∈ D(τ)} are Fréchet-Urysohn spaces.

Since L(τ) is a Lindelöf scattered P -space and F is a first-countable space,
from Corollary 5.2 it follows that Cp(L(τ), F ) is a Fréchet-Urysohn space.
By virtue of Property 3, Σ(b,τ)F is a Fréchet-Urysohn space too. Property 2
completes the proof.
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Abstract (Résumé) On introduit la notion de couples de souscatégories bisemiréflexives,
on construit des exemples, et on étudie certaines de leurs propriétés.
Toute théorie de torsion relative est un couple de souscatégories bisemiréflexives,
Sont indiquées les conditions quand un couple de souscatégories bisemiréflexives
est une théorie de torsion relative.
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1. INTRODUCTION

Dans la catégorie C2V des espaces localement convexes topologiques vectori-
aux Hansdorff, on introduit la notion des couples de souscatégories bisemiréflexives.
Le Théorème 2.2 permet de construire de tels couples, et toute théorie de tor-
sion relative (TTR) est un tel couple (Proposition 2.5). Cette Proposition et
sa duale soulignent certaines propriétés de ces couples.

Le Théorème 2.7 décrit les couples bisemiréflexifs dans le cas où le second
component est une souscatégorie c-réflective.

Dans ce cas tout couple de souscatégories bisemiréflexives est une TTR.
On utilise dans l’article les notions suivantes:
Les structures de factorisation:
(Epi,Mf ) = (la classe des épimorphismes, la classe des noyaux) = (la classe

de tous les épimorphismes, la classe de toutes les inclusions topologiques avec
l’image fermée);

(Eu,Mp)=(la classe des épimorphismes universaux, la classe des monomor-
phismes précis)=(la classe des morphismes surjectifs, la classe des inclusions
topologiques);

(Ep,Mu) = la classe des epimorhismes précis, la classe de monomorphismes
universaux) [7];

(P′′(R), I′′(R)) = ((εR) ◦ Ep, ((εR) ◦ Ep)⌞),R ∈ R (voir [3]);
(E′(K),M′(K)) = ((Mp ◦ (µK))⌝,Mp ◦ (µK)),K ∈ K (voir [3]);

29
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R(K) = la classe de toutes les souscatégories réflectives (coréflectives) non
nulles.

M̃ = la souscatégorie coréflective des espaces avec la topologie Mackey;
S = la souscatégorie réflective des espaces avec la topologie faible;
Π = la souscatégorie réflective des espaces complets avec la topologie faible;
Γ0 = la souscatégorie réflective des espaces complets.
lΓ0 = la souscatégorie des espaces localement complets (vor [9]);
qΓ0 = la souscatégorie des espaces quasicomplets;
sR = la souscatégorie des espaces semiréflexifs;
iR = la souscatégorie des espaces inductivement semiréflexifs [1];
B-iR = la souscatégorie des espaces B-inductivement semiréflexifs [11];
Sh = la souscatégorie des espaces Schwartz (voir [5]);
uN = la souscatégorie des espaces ultranucléaires (voir [8]);
Dans la catégorie C2V sont vraies les relations (voir [3]):
R ⊂ R(Epi ∩Mu),
K ⊂ K(Eu ∩Mono).

Si A est une souscatégorie et B ⊂ Epi∩Mono, alors SB(A) (respectivement:
QB(A)) est la souscatégorie pleine de tous les B-sousobjets (respectivement:
B-facteurbjets) des objets de la catégorie A.

1.1. Soit R(K) une souscatégorie réflective (coréflective) de la catégorie C2V

avec le foncteur réflectif r : C2V → R (coréflectif k : C2V → K). Notons

εR = {e ∈ Epi|r(e) ∈ Iso} µK = {m ∈ Mono|k(m) ∈ Iso}.

Soit b : X → Y ∈ C2V, r
X : X → rX R-réplique de X, b ∈ εR, alors et

seulement alors quand b ∈ Epi et

lX = f · b (1)

pour un f (voir[4]).

1.2. Les couples de souscatégories (K,L) qui verifient la condition µK = εL
s’appellent les couples de souscatégories conjuguées et forment la classe Pc, les
soucatégories réflectives (coréflectives) s’appellent c-réflectives (c-coréflectives)
et forment la classe Rc(Kc).

Si (K,L) ∈ Pc, alors chaque componente est de manière unique définie.

(C2V,C2V) est le plus grand élément de la classe Pc et (M̃, S) le plus petit
élément. A la classe Rc appartiennent la souscatégorie Sh des espaces Schwartz
(voir [5]), uN des espaces ultranucléaires (voir [8]), les souscatégories générées
des objets injectifs (voir [5]).

1.3. Définition [4]. Soit L ∈ R. La classe des souscatégories réflectives
fermées par rapport à (εL)-sousobjets (respectivement: (εL)-facteurobjets) est
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noté Rs(εL) (respectivement: Rf (εL)), et Rsf (εL) = Rs(εL) ∩ Rf (εL). Les

éléments de la classe Rsf (εL) s’appellent souscatégories L-semiréflexives.

Pour T ∈ K dualement, on définit les classes Ks(µT), Kf (µT) et la classe
de souscatégories T-semicoréflexives Ks

f (µT).

1.4. Définition [4]. Soit A une souscatégorie, et L une souscatégorie
réflective de la catégorie C2V. L’objet X se nomme (L,A)-semiŕéfleexifs, si sa
réplique appartient à la souscatégorie A. La souscatégorie pleine de tous les
objets (L,A)-semiréflexifs se nomme produit semiréflexif des souscatégories L
et A, notée

R = L ∗sr A.

1.5. Corollaire ([6], Corollaire 2.5). Soit L ∈ Rc et A ∈ R. Alors
L ∗sr A ∈ Rsf (εL).

1.6. Lemme ([4], Lemme 1.8). Soit R ∈ R, et K ∈ K. Les affirmations
suivantes sont équivalentes:

1. r(K) ⊂ K.
2. k(R) ⊂ R.

1.7. Foncteurs commutatifs. On examinera deux foncteurs t1, t2, tous
les deux coréflecteurs, tous les deux réflecteurs, ou l’un coréflecteur et l’autre
réflecteur. Dans la catégorie C2V si t1t2A ∼ t2t1A pour tout A ∈ |C2V|, alors
on peut facilement vérifier que les t1 · t2 et t2 · t1 sont isomorphes.

1.8. Définition [2]. Soit K ∈ K, et R ∈ R.(K,R) est nommée une théorie
de torsion relative (TTR), si les foncteurs k et r commutent: k · r = r · k, et
pour tout objet X ∈ |C2V| le carré

rX · kX = krX · rkX

est cartésien et aussi cocartésien.
Une TTR (K,R) est relative en rapport avec la souscatégorie K ∩ R. Une

théorie de torsion dans une catégorie abélienne est relative en rapport avec la
souscatégorie nulle (voir [2]).

1.9. Définition [6]. Soit K ∈ K et R ∈ R. La souscatégorie QεR(K) se
nomme le produit de gauche des souscatégories K et R, et est noté W = K∗sR.

Soit X ∈ |C2V|, kX : kX → X K-coréplique de X et rX : X → rX
rkX : kX → rkX R-réplique des objets respectifs. Alors

rX · wX = r(kX) · rkX . (1)

Soit

rX · wX = krX · fX (2)
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le carré cartésien construit sur les morphismes rX et rkX . Alors

kX = wX · vX , (3)

rkX = fX · vX (4)

pour un vX : kX → wX,

rkX=krX=trX

P=rXX

wX

kX
r �ÎeR

ÎmK

f �
X

X

X

v �X

k �X

w �
X

kX

rX

X

rX
h =k  =t �

p  =r �

Notion duale: le produit de droite V = K ∗d R des catégories K et R.

1.10. Mentionnons les propriétés suivantes du produit de gauche (voir [6]).
1. vX ∈ εR et wX ∈ |W|.
2. La correspondance X 7→ (wX,wX) indique W comme une souscatégorie

faiblement coréflective (tout morphisme f : Y → X avec X ∈ |W| est fac-
teurisé par wX , mais en général pas uniquement).

3. wX est W-coréplique de X dans les cas suivants:
a) S ⊂ R; b) M̃ ⊂ K.
4. L’egalité

uX = wX · vX

est (εR, (εR)⊤)-factorisation du morphisme kX .

2. Couples de souscatégories bisemiréflexives

2.1. Definition. Soit K ∈ K et R ∈ R. (K,R) se nomme un couple
de souscatégories bisemiréflexives, si K ∈ Ks

f (εR), et R ∈ Rsf (µK), c’est-à-
dire K est une souscatégorie R-semicoréflexive, et R est une souscatégorie
K-semiréflexive.

2.2. Théorème. 1. Soit R une souscatégorie K-semiréflexive. Alors
(SεR(K),R) est un couple de souscatégories bisemiréflexives.

1*. Soit K une souscatégorie R-semiréflexive. Alors (K,QµK(R)) est un
couple de souscatégories bisemiréflexives.

↓ Notons SεR(K) par T.
T ∈ K. Vérifions que T est fermé par rapport avec les sommes. Soit Ai ∈

|K|, bi : Xi → Ai ∈ εR, X = ⊔Xi.A = ⊔Ai et b = ⊔bi, i ∈ I. Alors A ∈ |K| et
b ∈ εR, puisque (εR, (εR)⊥) est une structure de factorisation de droite. Ainsi
X ∈ |T|.
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X A

X A
b �ÎeR

i i
i

b � ÎeR=���b
i i

P

Vérifions que T est fermé par rapport à Ef -facteurobjets. Soit A ∈ |K|, b :
X → A ∈ εR et p : X → Y ∈ Ef . Examinons le carré cocartésien

p′ · b = b′ · p (1)

construit sur les morphismes p et b. Alors p′ ∈ Ef et b′ ∈ εR. Donc P ∈ |K| et
Y ∈ |T|. Ainsi on a démontré que T ∈ K.

T ∈ Ks(εR). Evidemment.
T ∈ Kf (εR). Soit A ∈ |K|, b : X → A ∈ εR et b1 : X → Y ∈ εR. Soit encore

rY : Y → rY R-réplique de Y. Alors rY · b1 : X → rY est R-réplique de X et

rY · b1 = u · b (2)

pour un u. Ainsi u · b ∈ εR et b ∈ εR. Donc u ∈ εR et u est R-réplique de
A : u = rA.

Y rY=rX=rA

X A
b �ÎeR

b �ÎeR
1

u r= �A

r �Y
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Comme R ∈ Rsf (µK), on déduit que k(R) ⊂ R, et en vertu du Lemme 1.6

r(K) ⊂ K. Ainsi rA = |K|, c’est-à-dire rY ∈ |K|, ou Y ∈ |T|.
R ∈ Rsf (µT). Puisque K ⊂ T, il résulte que µT ⊂ µK. Ainsi R ∈ Rsf (µT).

2.3. Corollaire. Soit K,P ∈ K,K ⊂ P,R ∈ R et R ∈ Rsf (µK). Alors

(SεR(P),R) est un couple de souscatégories bisemiréflexives.

2.4. Examinons certains exemples.
1. Puisque lΓ0 ∈ Rsf (εS) et µM̃ = εS, déduisons que pour tout K ∈ K, si

M̃ ⊂ K, alors (SεlΓ0(K), lΓ0) est un couple de souscatégories bisemiréflexives.
2. La souscatégorie des espaces semiréflexifs Sr est S-semiréflexive, Sr =

S ∗sr qΓ0. Ainsi pour K ∈ K et M̃ ⊂ K (SεSr(K), Sr) est un couple de sous-
catégories bisemiréflexives, et t(iR) ⊂ qΓ0, où t : C2V → SεiR(K) est le foncteur
coréflecteur.

3. La souscatégorie des espaces inductivement semiréflexifs iR est Sh-
semiréflexive, où Sh est la souscatégorie des espaces Schwartz, et iR = Sh∗srΓ0.
(Ch, Sh) forment un couple de souscatégories conjuguées. Ainsi si P ∈ K et
Ch ⊂ P, alors (SεR(P), iR) est un couple de souscatégories bisemiréflxives, et
t(iR) ⊂ Γ0, où t : C2V → SεiR(P) est le foncteur coréflecteur.

2.5 Proposition. Soit (T,R) une TTR. Alors (T,R) est un couple de
souscatégories bisemiréflexives.

↓ T ∈ Ks(εR). Soit X ∈ |T| et b : Y → X ∈ εR. Puisque X ∈ |T| et (T,R)
est une TTR, alors tX ∈ Iso et trX ∈ Iso. Ainsi rX ∈ |T|. Et rX = rY, et
tY ∈ Iso.

T ∈ Kf (εR). Soit X ∈ |T| et b : X → Y ∈ εR. Alors rX = rY ∈ |T| et
Y ∈ |T| en vertu de précédentes démonstrations: T ∈ Rs(εR).

R ∈ Rsf (µT). Démonstration duale. ↑

2.6 Proposition. Soit K ∈ K,R ∈ Rsf (µK) et T = SεR(K). Les affirma-
tions suivantes sont vraies:

1. Si X ∈ |R|, alors kX = tX.
2. T = SεR(K ∩ R).
3. QεR(K) ⊂ SεR(K).

4. Soit M̃ ⊂ K, X ∈ |C2V| et

kX = pX · bX (1)

(P′′(R), I′′(R))-factorisation de la K-coréplique kX : kX → X.
Alors pX : pX → X est T-coréplique de l’objet X.
5. Soit S ⊂ R, X ∈ |C2V| et

kX = pX · bX

(εR, (εR)⊥)-factorisation kX . Alors pX : pX → X est T-coréplique de l’objet
X.
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↓ 1. Soit X ∈ |R|, kX : kX → X et tX : tX → X K- et T-corépliques. Il
existe A ∈ |K| et b : tX → A ∈ εR. Alors

tX = f · b (2)

pour un f, et on a le diagramme suivant commutatif

A

kX tX X

b � f �

k � t �

k �

tX X

X

Ainsi X ∈ |R| et tX ∈ µK. Donc tX ∈ |R| et b ∈ Iso, ou tX ∈ |K|. Il résulte
que tX = kX.

2. Vérifions l’inclusion T ⊂ SεR(K ∩ R). Soit X ∈ |T|. Il existe A ∈ |K| et
b : X → A ∈ εR. Si rA : A → rA est R-réplique de A, alors rX · b : X → rX
est R-réplique de X et rA · b ∈ εR. Ainsi rX = rA ∈ |K| ou rX ∈ |K ∩ R|.
Donc, X ∈ |SεR(K ∩ R)|.

X A rA=rX
b � r �

r �

A

X

3. Soit A ∈ |K|, et b : A → X ∈ εR. Si rX : X → rX est R-réplique
de X, alors rX · b : A → rX est R-réplique de A. Donc rA = rA ∈ |K|, et
X ∈ |SεR(K)|.

XA rX=rA
b �

r �

r �

Y

X

4. Puisque pX ∈ I
′′
(R) et pX ∈ Eu, il résulte que kX , pX ∈ Eu ∩Mono. Soit

M̃ ⊂ K. Alors kX , bX ∈ Mu. Ainsi bX ∈ P
′′
(R)∩Mu = ((εR) ◦ Ep)∩Mu = εR

et pX ∈ |T|.
Soit Y ∈ |T| et f : Y → X ∈ C2V. Il existe l’objet A ∈ |K| et le morphisme

b : A→ Y ∈ εR. Alors
f · b = kX · g (3)
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pour un g. Ou
f · b = pX(bX · g) (4)

avec b ∈ εR ⊂ P
′′
(R) et pX ∈ I

′′
(R). Ainsi b ⊥ pX et

bX · g = h · b, (5)

f = pX · h (6)

pour un h. Donc f se factorise par pX

Y

pX

XkX

A
b �ÎeR

p �

k �

b �
X X

X

g � f �h �

5. Puisque S ⊂ R, il résulte que kX , pX ∈ Eu∩Mono. Donc pX ∈ Eu∩Mono
et pX ∈ |T|. Et on répète la démonstration p.4 ↑

2.6*. Proposition. Soit R ∈ R, K ∈ Ks
f (εR)) et F = QµK(R). Les

affirmations suivantes sont vraies:
1. Si X ∈ |K|, alors rX = fX.
2. F = QµK(K ∩ R).
3. SµK(R) ⊂ QµK(R).
4. Soit S ⊂ R, X ∈ |C2V| et

rX = pX · bX

(E′(K),M′(K))-factorisation de la R-coréplique de l’objet X. Alors bX : X →
pX est F-réplique de l’objet X.

5. Soit M̃ ⊂ K, X ∈ |C2V| et

rX = pX · bX

est ((µK)⊤, µK)-factorisation de la R-réplique de rX : X → rX. Alors bX :
X → pX est F-réplique de l’objet X. ↑

2.7. Théorème. Soit (K,L) ∈ Pc,R ∈ Rsf (µK) et T = SεR(K). Alors:

1. (T,R) est une TTR.En particulier, (T,R) est un couple de souscatégories
bisemiréflexives.
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2. SεR(K) = QεR(K) .
3. t · r = r · t = k · r = r · k.
↓ 1. Soit X ∈ |C2V|, kX : kX → X K-coréplique, et rkX : kX → rkX R-

réplique des objets respectifs. Sur le morphisme kX et rkXon construit le carré
cocartésien

pX · kX = hX · rkX . (1)

Puisque rkX ∈ εR, il résulte que pX ∈ εR. De même kX ∈ µK, donc hX ∈ µK.
De plus, rkX ∈ |K|. Ainsi hX : rkX → P est K-coréplique de P et P ∈ |R|.
Donc pX : X → P ∈ εR et P ∈ |R|. Donc pX est R-réplique de X. On a
krX = kP = rkX, et les foncteurs k et r commutent.

Soit

rX · wX = krX · fX (2)

le carré cartésien construit sur les morphismes rX(= pX), et krX(= hX). Alors

kX = wX · vX , (3)

rkX = fX · vX (4)

pour un vX , qui appartient à la classe εR. Donc fX ∈ εR et wX ∈ |T|. De
plus, vX ∈ Epi, et le carré (1) est cocartésien, de même le carré (2) est aussi
cocartésien.

rkX=krX=trX

P=rXX

wX

kX
r �ÎeR

ÎmK

f �
X

X

X

v �X

k �X

w �
X

kX

rX

X

rX
h =k  =t �

p  =r �

On vérifie facilement que l’égalité (3) est (εR, (εR)⊥)-factorisations du mor-
phisme kX En vertu de la Proposition 2.6 p.5 wX : wX → X est T-coréplique
de l’objet X.

Et krX : rkX → rX ∈ (εR)⊥. Ainsi krX est T-coréplique de l’objet rX et
fX : wX → rkX est R-réplique de l’objet wX.

Soit w : C2V → T foncteur coréflecteur. Alors rwX = rkX,wrX = rkX.
Ainsi les foncteurs w et r commutent, et (T,R) est une TTR.

2. En vertu du p.3 de la Proposition 2.6, il est suffisant de vérifier que
SεR(K) ⊂ QεR(K). Soit A ∈ |K| et b : X → A ∈ εR. Alors

rX = f · b (8)
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pour un f,

f = krX · g (9)

pour un g. On a

krX · g · b = f · b = rX (10)

i.e.

krX · g · b = rX · 1. (11)

Il existe h : X → wX ainsi que

1 = wX · h, (12)

g · b = fX · h, (13)

d’où il résulte que wX = h−1. Donc vX , kX ∈ εR et X ∈ |QεR(K)|.

rkX=krX

rXX

A

wX

kX r �

f �

f �

g �h �

X
v �X

k �X

w �
X

kX

rX
k

Xr �

b �ÎeR

Puisque rkX ∈ |K∩R| ⊂ T| et hX ∈ µK, on déduit que hX est T-coréplique
de rX : hX = trX . Et fX ∈ εR et rkX ∈ |K|, donc X ∼ wX ∈ |T|.

Il résulte 3 du p.1. ↑
2.7*. Théorème. Soit (K,L) ∈ Pc,T ∈ Ks

f (µK) et T = QµT(L). Alors:

1. (T,F) est une TTR. En particulier, (T,QµT(L)) est un couple des sous-
catégories bisemiréflexives.

2. F = SµT(L).
3. f · t = t · f = l · t = t · l. ↑
2.8. Soit R ∈ R. Notons B(R) la classe des souscatégories coréflectives K

pour qui R ∈ Rsf (µK). Alors:

1. C2V ⊂ B(R).
2. Si K1, K2 ∈ K, K1 ⊂ K2 et K1 ∈ B(R), alors et K2 ∈ B(R).
3. Soit KR = ∩{T|T ∈ B(R)}. Alors KR ∈ B(R).
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4. Soit KR = SεR(KR). Alors (KR,R) est une paire des souscatégories
bisemiréflexives et KR est le plus petite souscatégorie coréflective avec cette
propriété.

2.9. Problèmes. 1. Examinons le couple de souscatégories conjuguées
(M̃, S) et R une des souscatégories S-semiréflexives: B-iR, sR ou lΓ0.

Décrire les souscatégories SεR(M̃),K(R) et K(R).
2. Pour le couple des souscatégories conjugées (Ch, Sh) el faut décrire les

souscatégories SεiR(Ch),K(R) et K(R), où iR est la souscatégorie des espaces
inductivement semiréflexifs [1].
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ivan.budanaev@gmail.com

Abstract Each day an abundance of new data is generated. With that comes the ne-
cessity of a data deduplication process within each data project. This need
arises due to multiple reasons, some stronger than others: storage efficiency,
data linkage, information representation, etc. This article describes the appli-
cation of distance functions in the process of data deduplication which covers
the aforementioned uses cases.
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1. INTRODUCTION

Every data related project be it in data science, data engineering or data
analysis project, sooner or later faces the problem of duplicated data - it is
to no surprise, in the year of 2020, the units of data generated has reached
measures in the quintillions (1018 bytes). In many cases the duplications gen-
erated are exact duplicates, i.e. they have a one-to-one match with previously
observed data. This happens, for example, during batch or real time data
processing when the source generates data repetitively or when a failed ETL
process appends duplicates after re-run. In many other cases the duplication
is not so obvious and the reasons behind this are specific to each use case.
For instance, the records generated by a faulty sensor are identical in a long
sequence of measures but the timestamp when generated is different. Another
frequent use case is human error, for example a typo in client’s name during
data entry process.

Data duplication can lead to unpredictable results - from insignificant like
extra server logs to dangerous errors in financial or healthcare records. To
avoid these issues, data deduplication comes to the rescue - a process of de-
tecting and/or removing duplicates from a data set. The benefits it brings
to the table are numerous. The first benefit is storage efficiency. It used to
be a very important aspect decades ago but nowadays with low storage prices
it is more and more an afterthought. The second benefit is data linkage - a
process by which you create a logical link between similar or almost identical
data. This is important for many domains, one being US political campaign
donations analysis. In the USA, data on individual contributions for political
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campaigns is publicly accessible, and contains information like the contribu-
tor’s name, occupation, city, state, address, date of transaction, amount of
contribution, and name of committee disclosing the contribution. Over the
years, contributors change their occupation, address and even name. Nev-
ertheless, a thorough analysis of contributions requires the linkage of these
data points which are slightly distinct records but attributable to one person
or organization. Another benefit of deduplication is information representa-
tion. For example, having dozens of contributions’ information from a single
person, you may want to select the most descriptive information representing
that cluster of contributions - maybe based on the most recent transaction or
maybe recovered information in case there was a typo in that record. There
might be other reasons but they all serve one goal - retrieve one record that
best describes the cluster it resides in.

The next chapter introduces the notion of distance functions, one of the
fundamental building blocks in information theory. I would like to express
a special note of gratitude to my doctorate advisor who left us this year -
professor, academician Mitrofan M. Cioban. Unbounded knowledge, wisdom
and patience with which he introduced me to the wonderful world of metrics
spaces and distance function deserve deepest admiration and gratitude.

2. DISTANCE FUNCTIONS

Let X be a non-empty set and d : X ×X → R be a mapping such that for
all x, y ∈ X we have:

(im) d(x, y) ≥ 0;
(iim) d(x, y) + d(y, x) = 0 if and only if x = y,
(iiim) d(x, z) ≤ d(x, y) + d(y, z).

Then (X, d) is called a quasimetric space and d is called a quasimetric on
X. A function d with properties (im) and (iim) is called a distance on X. If
d is a quasimetric on X with property (ivm) d(x, y) = d(y, x), then (X, d) is
called a metric space and d is called a metric.

For a more in-depth description of distance and metric spaces properties
please consult [3, 4, 5, 6].

The symmetry property (ivm) plays an important role in information the-
ory as the invariance of distance between records is more important than their
order. The following metrics are most popular distances used in data dedu-
plication and they all satisfy the symmetry condition.

We begin with the Hamming Distance [10, 12] - if not the most important
information distance then without any doubts one of the most important:

dH(a1a2 · · · an, b1b2 · · · bn) = |{i ≤ n : ai ̸= bi}|
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is the Hamming distance two strings a = a1a2 · · · an and b = b1b2 · · · bm,
i.e. the number of distinct characters with the same index. Usually, the
Hamming distance is calculated over the strings of the same length, but it can
be generalized on strings of any length by padding the shortest one with special
characters to meet the length of the longest string. Since a character here can
be a digit or a letter, Hamming distance can be used on both numerical and
text columns [2].

The Levenshtein distance [11] (also known as the Edit distance) between
two strings a and b is defined as the minimum number of insertions, deletions,
and substitutions required to transform one string to the other. A formal
definition of Levenshtein’s distance dL(a, b) is given by the following recurrent
formula:

dL(a1 · · · ai, b1 · · · bj)=



i, if j=0,

j, if i=0,

min


dL(a1 · · · ai−1, b1 · · · bj) + 1

dL(a1 · · · ai, b1 · · · bj−1) + 1

dL(a1 · · · ai−1, b1 · · · bj−1) + 1(ai ̸=bj),

where 1(ai ̸=bj) equals to 0 if ai = bj and to 1 otherwise. We can see that
by default Levenshtein distance expects a pair of strings of any length as its
input. Although these strings can be numbers as well, a standard usage of
edit distance is on text type columns. Additionally, the above definition can
be generalize to the Weighted Levenshtein distance when distance between dif-
ferent characters takes different values - some predefined vocabulary distance
matrix 1(ai ̸=bj) = dvocabulary(ai, bj).

Next on our list is the Jaccard Index distance, also known as the Jaccard
similarity coefficient. This distance measures the similarity between finite
sets and can be used on strings as the ratio between the number of characters
simultaneously appearing in both strings (intersection) over the total number
of distinct characters appearing in the concatenation of these strings(union):

J(A,B) =
|A ∩B|
|A ∪B|

where A and B are sets of characters appearing in strings a and b. It is
noticeable that this metric does not take into account the position of the
symbols in strings, thus it is less penalizing in cases when data is erroneously
permutated during write/update operation.

The presented metrics are some of the more popular and frequently used in
data deduplication. Additional distances worth mentioning are Jaro Winkler,
Longest Common Substring, QGram, Cosine Similarity and Soundex. For an
exhaustive list please consult [7, 8]. For some data types standard metrics are
not as useful as expected. For example calculating the distance between two
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US zip codes is not a trivial task, and such problems are tackled with third
party tools.

It is worth mentioning that when we have a measure of similarity, to obtain
a measure of dissimilarity, we subtract its value from 1.

3. DATA DEDUPLICATION

Deduplication is the process of of identifying extra copies or similar versions
of data. There are many deduplication tools available online - some are open
source, others are commercial software. The approach behind all of them
heavily relies on distance functions described in the previous chapter.

A typical deduplication project setup looks like the following - given an
input dataset it is required to detect all pairs of duplicates, preferably along
with a metric value describing their similarity. The input is usually a tabu-
lar dataset of shape (n,m) - n rows of records, each having m fields. These
fields can be of different data types but usually they contain text data like a
person’s name, address, city, and numerical data like phone number, zip code,
contribution amount. Usually, the text data is passed though a pre-processing
step where it is cleaned and transformed to a desired format. For example,
an address string is first cleaned from redundant spacing or punctuation sym-
bols and then the information is transformed to a structured data with city
name, street name, house number and zip code. Usually these types of oper-
ations generate additional columns of distinct data types making the process
of deduplication more accurate. This is achieved by using different distance
functions on different field data types in contrast to using a single metric on
all concatenated fields.

Once all data cleaning and pre-processing is finished, deduplication can
start. The main idea behind deduplication is finding pairs of strings that
have a very high similarity coefficient, usually higher than a given threshold.
The similarity of two records is the complementary of dissimilarity of those
records, which is the same concept as the distance between them. Therefore,
the problem of deduplication can be reduced to the task of finding the distance
between a pair of records.

Given two records x = (x1, x2, ..., xm) and y = (y1, y2, ..., ym), the distance
between them can be calculated using the formula:

d(x, y) =

∑m
i di(xi, yi)

m

where di is the distance function of choice for the specific data types of fields
xi and yi. For instance, if the field are zip code values, then the metric should
be used as the distance between US zip codes. If the field however is of text
type, the most feasible distance function of use would be Levenshtein distance.
In certain cases a combination of various distance functions can be used on
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the same data types. In practice it is shown that many inconsistencies in data
entry occur due to typos or other human error. In such cases, for example
with zip code values, both numerical and text distance functions can be used.
For ease of use when comparing distance values, all values must be in range
[0, 1]. To achieve this, each distance function di goes through the normalization
process when its value is greater than 1. For example the Levenshtein distance
can be normalized if divided by the length of the string.

Special attention must be paid to missing values during data deduplication.
There are different approaches to tackling such scenarios and the best practices
depend from case to case. The method used most often is to drop these fields.
Other approaches impute data with most common element in the group thus
reducing the error during distance calculation.

Calculating the distance between each pair x and y out of n records has
a computational complexity of O(n2), not mentioning the space complexity.
This is usually a heavy processing task, even with today’s cloud computing
resources. To improve the performance of data deduplication process, indexing
and caching tools can be used. One such tool is Apache Lucene [1]. An
example of an open source deduplication software that successfully applied
Apache Lucene is Duke [9].

Once the distance matrix for the entire dataset is calculated, the duplicates
are easily identified - pairs x and y for which the distance is above a certain
threshold. This threshold varies from case to case, but a value within the
range [0, 0.1] is usually a good candidate.

In conclusion, there are many automated deduplication software and ser-
vices available today. Each of them have their advantages and disadvantages.
However, if the context of the project your team is working on, requires to
build an in-house solution, the above described methodology can confidently
be taken as starting points for the deduplication system.
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1. INTRODUCTION

Any space is considered to be a Hausdorff space. We use the terminology
from [3]. For any completely regular space X denote by βX the Stone-Čech
compactification of the space X.

Fix a space X. A space eX is an extension of the space X if X is a dense
subspace of eX. If eX is a compact space, then eX is called a compactification
of the space X. The subspace eX \X is called a remainder of the extension
eX.

Denote by Ext(X) the family of all extensions of the space X. If X is a
completely regular space, then by Extρ(X) we the family of all completely
regular extensions of the space X. Obviously, Extρ(X) ⊂ Ext(X). Let Y,Z ∈
Ext(X) be two extensions of the space X. We consider that Z ≤ Y if there
exists a continuous mapping f : Y −→ Z such that f(x) = x for each x ∈ X.
If Z ≤ Y and Y ≤ Z, then we say that extensions Y and Z are equivalent
and there exists a unique homeomorphism f : Y −→ Z of Y onto Z such that
f(x) = x for each x ∈ X. We identify the equivalent extensions. In this case
Ext(X) and Extρ are partial ordered sets.

Let τ be an infinite cardinal.
Denote by O(τ) the set of all ordinal numbers of cardinality < τ . We

consider that τ is the first ordinal number of the cardinality τ . For any α ∈
O(τ) we put O(α) = {β ∈ O(τ) : β < α}. In this case O(τ) is well ordered set
such that |O(τ)| = τ and |O(α)| < τ for every α ∈ O(τ).

A point x ∈ X is called a P (τ)-point of the space X if for any non-empty
family γ of open subsets of X for which x ∈ ∩γ and |γ| < τ there exists an
open subset U of X such that x ∈ U ⊂ ∩γ. If any point of X is a P (τ)-point,
then we say that P (τ)-space.
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Any point is an ℵ0-point. If τ = ℵ1, then the P (τ)-point is called the
P -point.

2. HAUSDORFF EXTENSIONS OF DISCRETE
SPACES

Let τ be an infinite cardinal. Let E be a discrete space of the cardinality
≥ τ .

A family η of subsets of E is called a τ -centered if the family η is non-empty,
∩η = ∅, ∅ ̸∈ η and any subfamily ζ ⊂ η, with cardinality |ζ| < τ , there exists
l ∈ η such that L ⊂ ∩ζ.

Two families η and ζ of subsets of the space E are almost disjoint if there
exist L ∈ η and Z ∈ ζ such that L ∩ Z = ∅.

Any family of subsets is ordered by the following order: L ⪯ H if and only
if H ⊂ L. Relatively to this oder some families of sets are well-ordered.

Proposition 2.1. Let k = |E| ≥ τ and Σ{km : m < τ} = k. Then on E there
exists a set Ω of well-ordered almost disjoint τ -centered families such that |Ω
= kτ and |η| = τ for each η ∈ Ω.

Proof. We fix an element 0 ∈ E. For every α ∈ O(τ) we put Eα = E and
0α = 0. Then Eτ = Π{Eα : α ∈ O(τ)}. For each x = (xα : α ∈ O(τ)) ∈ Eτ

we put ϕ(x) = sup{0, α : xα ̸= 0α}. Obviously, 0 ≤ ϕ(x) ≤ τ . Let D =
{x = (xα : α ∈ O(τ)) ∈ Eτ : ϕ(x) < τ}. By construction, |D| = Σ{km : m <
τ} = k and |Eτ | = kτ . Since |E| = |D|, we can fix a one-to-one mapping
f : E −→ D. Fix a point x = (xα : α ∈ O(τ)) ∈ Eτ . For any β ∈ O(τ) we
put V (x, β) = {y = (yα : α ∈ O(τ)) ∈ Eτ : yα = xα for every α ≤ β} and ηx
= {L(x, β) = f−1(D ∩ V (x, β) : β ∈ 0(τ)}. Then Ω = {ηx : x ∈ Eτ} is the
desired set of τ -centered families.

Remark 2.1. Let |E| = k ≥ τ . Since on E there exists k mutually disjoint
subsets of cardinality τ , on E there exists a set Φ of well-ordered almost disjoint
τ -centered families such that |Φ| ≥ k and |η| = τ for each η ∈ Φ.

Fix a set Φ of almost disjoint τ -centered families of subsets of the set E.
We put eΦE = E ∪ Φ. On eΦE we construct two topologies.

Topology T s(Φ). The basis of the topology T s(Φ) is the family Bs(Φ) =
{UL = L ∪ {η ∈ Φ : H ⊂ L for some H ∈ η} : L ⊂ E}.

Topology Tm(Φ). For each x ∈ E we put Bm(x) = {{x}}. For every η ∈ Φ
we put Bm(η) = {V(η,L) = {η} ∪ L : L ∈ η}. The basis of the topology Tm(Φ)
is the family Bm(Φ) = ∪{Bm(x) : x ∈ eΦE}.
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Theorem 2.1. The spaces (eΦE, T
s(Φ)) and (eΦE, Tm(Φ)) are Hausdorff

zero-dimensional extensions of the discrete space E, and T s(Φ) ⊂ Tm(Φ)).
In particular, (eΦE, T

s(Φ)) ≤ (eΦE, Tm(Φ)).

Proof. The inclusion T s(Φ) ⊂ Tm(Φ)) follows from the constructions of the
topologies T s(Φ) and Tm(Φ)). If L ∈ η ∈ Φ, then η ∈ clL. Hence the set E is
dense in the spaces (eΦE, T

s(Φ)) and (eΦE, Tm(Φ)). If the families η, ζ ∈ Φ
are distinct, then there exist L ∈ η and Z ∈ ζ such that L ∩ Z = ∅. Then
UL ∩ UZ = ∅. If L ⊂ E and |L| < τ , then L is an open-and-closed subset of
the spaces (eΦE, T

s(Φ)) and (eΦE, Tm(Φ)). Hence the topologies T s(Φ) and
Tm(Φ) are discrete on E and the spaces (eΦE, T

s(Φ)) and (eΦE, Tm(Φ)) are
Hausdorff extensions of the discrete space E. Since the sets UL and V(η,L) are
open-and-closed in the topologies T s(Φ) and Tm(Φ)), respectively, the spaces
(eΦE, T

s(Φ)) and (eΦE, Tm(Φ)) are zero-dimensional.

Theorem 2.2. The spaces (eΦE, T
s(Φ)) and (eΦE, Tm(Φ)) are P (τ)-spaces.

Proof. Fix η ∈ Φ. If ζ ⊂ η and |ζ| < τ , then there exists L(ζ) ∈ η such
that L(ζ) ⊂ ∩ζ. From this fact immediately follows that (eΦE, Tm(Φ)) is a
P (τ)-space. Assume that {Lµ : µ ∈ M} is a family of subsets of E, |M | < τ ,
η ∈ Φ and η ∈ ∩{Lµ : µ ∈M}. Then there exists L ∈ η such that L ⊂ ∩{Lµ :
µ ∈M}. Thus η ∈ UL ∈ ∩{ULµ : µ ∈M}. From this fact immediately follows
that (eΦE, T

s(Φ)) is a P (τ)-space.

Corollary 2.1. If T s(Φ) ⊂ T ⊂ Tm(Φ)), then (eΦE,T) is a Hausdorff exten-
sion of the discrete space E, and (eΦE, T

s(Φ)) ≤ (eΦE,T) ≤ (eΦE, Tm(Φ)).

Theorem 2.3. The space (eΩE, T
s(Ω)), where Ω is the set of well-ordered

almost disjoint τ -centered families from Proposition 2.1, is a zero-dimensional
paracompact space with character χ(eΩE, T

s(Ω)) = τ and weight Σ{|E|m :
m < τ}.
Proof. We consider that E = D. The family B = {{x} : x ∈ D} ∪ {V (x, β) :
x ∈ Eτ , β ∈ O(τ)} is a base of the topology T s(Ω). If U, V ∈ B, then or
U ⊂ V , or V ⊂ U , or U ∩ V = ∅. From the A. V. Arhangel’skii theorem [1] it
follows that (eΩE, T

s(Ω)) is a zero-dimensional paracompact space.

3. CONSTRUCTION OF HAUSDORFF
EXTENSIONS

Let τ be an infinite cardinal. Fix a P (τ)-space X. Let γ = {Hµ : µ ∈ M}
be a discrete family of non-empty open subsets of the space X and τ ≤ |M |.
For any µ ∈M we fix a point eµ ∈ Uµ and a family ξµ = {H(µ,α) : α ∈ O(τ)}
of open subsets of X such that eµ ∈ ∩ξµ and H(µ,β) ⊂ H(µ,α) ⊂ Hµ for all
α ∈ O(τ) and β ∈ O(α). Then E = {eµ : µ ∈M} is a discrete closed subspace
of the space X.
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Consider the Hausdorff extension rE of the space E. We put erEX =
X∪(rE \E). In erEX we construct the topology T = T (γ,E, ξµ, τ) as follows:

- we consider X as an open subspace of e(E,Y )X;
- let TX be the topology of X and TrE be the topology of the space rE;
- if V ∈ TrE , then eαV = V ∪ (∪{H(µ,α) : eµ ∈ V };
- B = TX ∪ (∪{eαV : V ∈ TrE} is an open base of the topology T =

T (γ,E, ξµ, τ).

Theorem 3.1. The space (e(E,Y )X,T (γ,E, ξµ, τ)) is a Hausdorff extension
of the space X.

Proof. If V,W ∈ TrE , then:
- eαW ⊂ eαV if and only if W ⊂ V ;
- eαW ∩ eαV = ∅ if and only if W ∩ tV = ∅;
- eαV ∩ rE = V .
This facts and Theorem 2.3 completes the proof.

Theorem 3.2. If rE is a P (τ)-space, then (e(E,Y )X,T (γ,E, ξµ, τ)) is a P (τ)-
space too. Moreover,

χ(e(E,Y )X,T (γ,E, ξµ, τ)) = χ(X) + χ(rE)

and

w(e(E,Y )X,T (γ,E, ξµ, τ)) = w(X) + w(rE).

Proof. Follows immediately from the construction of the sets eαV .

Theorem 3.3. Assume that the spaces rE and X are zero-dimensional, and
the sets H(µ,α) are open-and-closed in X. Then: 1. (e(E,Y )X,T (γ,E, ξµ, τ))
is a zero-dimensional space.

2. The space (e(E,Y )X,T (γ,E, ξµ, τ)) is paracompact if and only if the
spaces rE and X are paracompact.

Proof. If the set V is open-and-closed in rE and the sets H(µ,α) are open-and-
closed in X, then the sets eαV are open-and-closed in (e(E,Y )X,T (γ,E, ξµ, τ)).
If {Vλ : λ ∈ L} is a discrete cover of rE, and α(λ) ∈ O(τ), then {eα(λ)Vλ :
λ ∈ L} is a discrete family of open-and-closed sets. This fact completes the
proof.
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paramedial quasigroups. We proved some characterizations of the abelian
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1. INTRODUCTION

The results of this paper can be summarized as follows. In Section 3 we
show some characterizations of the abelian groups as paramedial groupoids,
inclusive by using the notion of a center associative element. Thus, we prove
that if in paramedial groupoid G there is some center associative element a
such that, for every b ∈ G, the equations ax = b, ya = b and bz = a soluble
in G, then the groupoid G is a commutative group. Section 4 presents some
results and constructions which can be used to produce examples of medial
and paramedial quasigroups that are not associative. Finally, in Section 5,
using the concept of the (n,m)-identities, we show that if (G, ·) is a locally
compact paramedial quasigroup, then there exists a unique invariant Haar
measure on G. In order to facilitate the study of topological quasigroups with
(n,m)-identities, we expand on the notions of multiple identities and (n,m)-
homogeneous isotopies. The concept of (n,m)-identities was introduced by
M.M. Choban and L.L. Chiriac in [1, 2].

We dedicate this paper to the memory of Professor Mitrofan Choban who
brought many important contributions to general topology and topological
algebra.

53



54 Liubomir Chiriac, Natalia Bobeică

2. BASIC NOTIONS

In this section we recall some fundamental definitions and notations.
A non-empty setG is said to be a groupoid with respect to a binary operation

denoted by {·}, if for every ordered pair (a, b) of elements of G there is a unique
element ab ∈ G.

If the groupoid G is a topological space and the multiplication operation
(a, b) → a · b is continuous, then G is called a topological groupoid.

A groupoid G is called a primitive groupoid with divisions, if there exist
two binary operation l : G × G → G, r : G × G → G such that l(a, b) · a =
b, a · r(a, b) = b for all a, b ∈ G. Thus a primitive groupoid with divisions is a
universal algebra with three binary operations.

A primitive groupoid G with divisions is called a quasigroup if the equations
ax = b and ya = b have unique solutions. In a quasigroup G the divisions
l, r are unique. If the multiplication operation in a quasigroup (G, ·) with a
topology is continuous, then G is called a semitopoligical quasigroup. If in a
semitopological quasigroup G the divisions l and r are continuous, then G is
called a topological quasigroup.

An element e ∈ G is called an identity if ex = xe = x every x ∈ X.
A quasigroup with an identity is called a loop. A groupoid G is called medial

if it satisfies the law xy · zt = xz · yt for all x, y, z, t ∈ G.
A groupoid G is called paramedial if it satisfies the law xy · zt = ty · zx for

all x, y, z, t ∈ G.
A groupoid G is called bicommutative if it satisfies the law xy · zt = tz · yx

for all x, y, z, t ∈ G.
If a paramedial guasigroup G contains an element e such that e·x = x(x·e =

x) for all x in G, then e is called a left (right) identity element of G and G is
called a left (right) paramedial loop.

A groupoid G is called a groupoid Abel-Grassmann or AG-groupoid if it
satisfies the left invertive law (a · b) · c = (c · b) · a for all a, b, c ∈ G.

A groupoid G is called GA-groupoid if it satisfies the law xy · z = z · yx for
all x, y, z, t ∈ G.

A groupoid G is called AD-groupoid if it satisfies the law x · yz = z · yx for
all x, y, z, t ∈ G.

Let N = {1, 2, ...} and Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}. We shall use the
notations and terminology from [1, 2, 3, 4, 5].

3. CHARACTERIZATION OF THE ABELIAN
GROUPS AS PARAMEDIAL GROUPOIDS

In this Section we proved some characterizations of the abelian groups as
paramedial groupoids.
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Theorem 3.1. Let G be a paramedial groupoid satisfying the following con-
ditions:

1 For two any elements x, y ∈ G, there are elements e, f ∈ G such that
ex = x = xf and ey = y = yf ;

2 For each element x ∈ G and each element e ∈ G such that ex = x, there
is an element x′e such that x′e · x = e.

Then G is an abelian group.

Proof. Let x, y ∈ G and let e, f be elements of G satisfying condition (1). By
paramedial law and condition (1) we have xy = xf · ey = yf · ex = yx. Hence,
groupoid G is commutative.

If t denotes any element of G such that tx = x and tz = z, then by com-
mutativity and paramedial law we obtain

xy · z = xy · tz = zy · tx = zy · x = x · zy = x · yz.

Therefore, every paramedial groupoids satisfying condition (1) is associative
and commutative.

Now, we show that, under the condition of the theorem, for each element
x ∈ G, there is only one local identity, e ∈ G such that ex = xe = x.

Let e and f be elements of G such that ex = fx = x. We consider two
elements x′e and x′f from G such that x′e · x = e and x′f · x = f . Since G is
commutative and associative we have

e = x′ex = x′e · fx = x′ef · x = fx′e · x = f · x′ex = fe = x′fx · e = e · x′fx =

= e · xx′f = ex · x′f = xx′f = x′fx = f.

From condition (1) and by the fact above f = e we have that ey = ye = y
for every y ∈ G. Hence e is an identity element of G.

By conditions (2) and commutativity we obtain that every element of G has
an inverse element and G is an abelian group.

Conversely, ifG is an abelian group thenG is paramedial groupoid satisfying
the conditions (1) and (2). Thus an abelian group may be characterized as an
paramedial groupoid satisfying these conditions. The proof is complete.

Using the notion of a center associative element we can obtain another
characterization of the commutative groups as paramedial groupoids.

Definition 3.1. An element a of the groupoid G is said to be a center asso-
ciative element, if and only if x · ay = xa · y for all x, y ∈ G [6].

Theorem 3.2. Let G be a paramedial groupoid. If in G there is some center
associative element a such that, for every b ∈ G the equation ax = b and
ya = b are soluble in G, then the groupoid G is a commutative monoid.
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Proof. Examine the equation ax = a. Let e be a solution of this equation and
ae = a (3).

Let b, a ∈ G and a is center associative element. For some y ∈ G we have
b = ya (4). Using (3) and (4) we obtain that be = ya · e = y · ae = ya = b.
Hence, e is a right identity of the groupoid G.

Now, examine the equation ya = a. Let e′ be a solution of the equation and
e′a = a (5).

Let b, a ∈ G and a is a center associative element. For some x ∈ G we
obtain that b = ax (6).

Using (5) and (6) we have e′b = e′ · ax = e′a · x = ax = b. Hence, e′ is a left
identity of G. From e = e′e = e′ one concludes that e is an identity element
in G.

Since G is a paramedial groupoid, it results xy = xe · ey = ye · ex = yx.
Therefore G is paramedial commutative groupoid. On the other hand, we
have

x · yz = xe · yz = ze · yx = z · xy = xy · z.

Hence, G is a commutative monoid. The proof is complete.

From Theorem 3.2 it follows the next Proposition.

Proposition 3.1. If in groupoid G there is some center associative element
a such that, for every b ∈ G the equations ax = b and ya = b are soluble in
G, then G has an identity element.

Theorem 3.3. Let G be a paramedial groupoid. If in G there is some center
associative element a such that, for every b ∈ G, the equations ax = b, ya = b
and bz = a soluble in G, then the groupoid G is a commutative group.

Proof. By Theorem 3.2 paramedial groupoid G is a commutative monoid. To
prove that G is an abelian group it is suffices to show that for each b ∈ G,
there is in G some element b′ such that b′b = e or bb′ = e, where e is the
identity element.

Examine the equation y · ba = a. Let b′ be a solution of the equation and
a = b′ · ba = b′e · ba = ae · bb′ = a · bb′.

Now, we examine the equation ax = e. If a′ is a solution of the equation,
then

e = aa′ = (a·bb′)·a′ = (a·bb′)·(a′·e) = (e·bb′)·(a′·a) = (bb′)·(aa′) = (bb′)·e = bb′.

Hence bb′ = e and G is an abelian group. The proof is complete.

Some Theorems about characterizations of the commutative groups as me-
dial groupoids were proved in [7].
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4. ON A METHOD OF CONSTRUCTING
PARAMEDIAL AND MEDIAL TOPOLOGICAL
QUASIGROUPS

In Section 4 we prove a new method of constructing non-associative para-
medial and medial topological quasigroups.

Theorem 4.1. Let (G,+, τ) be a commutative topological group. For (x1, y1)
and (x2, y2) in G×G define

(x1, y1) ◦ (x2, y2) = (x1 − y2 − x2,−x1 + y2 − y1).

Then (G × G, ◦, τG), relative to the product topology τG, is a paramedial,
non-medial and non-associative topological quasigroup. Moreover, if (G, τ) is
Ti − space, then (G×G, τG) is Ti − space too, where i = 1, 2, 3, 3.5.

Proof. We will prove that (G×G, ◦) is a quasigroup. To this end, we will show
that the equations y ◦ a = b and x ◦ a = b have unique solutions in (G×G, ◦).
Let y = (y1, y2), x = (x1, x2), a = (a1, a2) and b = (b1, b2). Since y ◦ a = b we
have

(y1, y2) ◦ (a1, a1) = (b1, b2). (7)

According to the conditions of the Theorem

(y1, y2) ◦ (a1, a2) = (y1 − a1 − a2, a2 − y1 − y2). (8)

From (7) and (8) obtain that y1 = b1 + a1 + a2 and y2 = −b1 − b2 − a1.
In this case

l((a1, a2), (b1, b2)) = (b1 + a1 + a2,−b1 − b2 − a1)

and l((a1, a2), (b1, b2)) ◦ (a1, a2) = (b1, b2).
It is easy to show that any other solutions of that equation coincide with

y1 and y2.
Similarly it is shown that the equation a ◦ x = b or

(a1, a2) ◦ (x1, x2) = (b1, b2) (9)

has a unique solution x1 = −b2 − b1 − a2 and x2 = a1 − a2 − b1.
It is clear that

r((a1, a2), (b1, b2)) = (−b2 − b1 − a2, a1 − a2 − b1)

and (a1, a2) ◦ r((a1, a2), (b1, b2)) = (b1, b2).
Any other solution of the equation a◦x = b coincides with x1 and x2. Thus

(G×G, ◦) is a quasigroup.
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We now prove that (G × G, ◦) is a paramedial quasigroup, that is, the
property (x ◦ y) ◦ (z ◦ t) = (t ◦ y) ◦ (z ◦ x) holds. Let x = (x1, y1), y =
(x2, y2), z = (x3, y3), t = (x4, y4) be in (G×G, ◦), then

((x1, y1)◦(x2, y2))◦((x3, y3)◦(x4, y4)) = ((x4, y4)◦(x2, y2))◦((x3, y3)◦(x1, y1))
(10).

Simplifying relation (10) we obtain that both sides are equal to

(x1 + y3 − x2 − y2 + x4, x2 + y4 − x3 − y3 + y1).

Therefore, the quasigroup (G×G, ◦) is paramedial.
Similarly, it is shown that associativity ((x1, y1)◦(x2, y2))◦(x3, y3) = (x1, y1)◦
((x2, y2) ◦ (x3, y3)) does not hold in (G × G, ◦). Indeed, ((x1, y1) ◦ (x2, y2)) ◦
(x3, y3) = (x1−y2−x2−y3−x3, x2 +y3 +y1) and (x1, y1)◦ ((x2, y2)◦ (x3, y3))
= (x3 + y2 + x1,−x1 − x2 − y1 − y2 + y3). The same applies for mediality.

Multiplication (◦) and divisions l(a, b) and r(a, b) are jointly continuous
relative to the product topology. Consequently, (G×G, ◦, τG) is a topological
paramedial quasigroup.

If (G, τ) is Ti-space, then according to Theorem 2.3.11 in [4], a product of
Ti-spaces is a Ti-spaces, where i = 1, 2, 3, 3.5. The proof is complete.

Theorem 4.2. Let (G,+, τ) be a commutative topological group. For (x1, y1)
and (x2, y2) in G×G define

(x1, y1) ◦ (x2, y2) = (x1 − y1 + x2 − y2, y1 + y2).

Then (G×G, ◦, τG), relative to the product topology τG, is a non-associative,
medial, paramedial, bicommutative and GA-topological quasigroup. Moreover,
if (G, τ) is Ti−space, then (G×G, τG) is Ti−space too, where i = 1, 2, 3, 3.5.

Proof. The proof is analogous to that of Theorem 4.1.

Example 4.1. Let G = {0, 1, 2}. We define the binary operation ” + ”.

(+) 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Then (G,+) is a commutative group. Define a binary operation (◦) on
the set G × G by (x1, y1) ◦ (x2, y2) = (x1 − y2 − x2,−x1 + y2 − y1), for all
x1, y1, x2, y2 ∈ G×G .If we label the elements as follows (0, 0) ↔ 0, (0, 1) ↔ 1,
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(0, 2) ↔ 2, (1, 0) ↔ 3, (1, 1) ↔ 4, (1, 2) ↔ 5, (2, 0) ↔ 6, (2, 1) ↔ 7, (2, 2) ↔ 8,
then obtain:

(◦) 0 1 2 3 4 5 6 7 8

0 0 7 5 6 4 2 3 1 8

1 2 6 4 8 3 1 5 0 7

2 1 8 3 7 5 0 4 2 6

3 5 0 7 2 6 4 8 3 1

4 4 2 6 1 8 3 7 5 0

5 3 1 8 0 7 5 6 4 2

6 7 5 0 4 2 6 1 8 3

7 6 4 2 3 1 8 0 7 5

8 8 3 1 5 0 7 2 6 4

Then (G×G, ◦) is a non-associative, non-medial, paramedial quasigroup.

5. TOPOLOGICAL PARAMEDIAL
QUASIGROUPS WITH HAAR MEASURES

In this section, using the concept of the (n,m)-identities, we prove that if
(G, ·) is a locally compact paramedial quasigroup, then there exists a unique
invariant Haar measure on G.

We recall some important definitions and notations.
Consider a groupoid (G,+). For every two elements a, b from (G,+) we

denote:

1(a, b,+) = (a, b,+)1 = a+ b, and n(a, b,+) = a+ (n− 1)(a, b,+),
(a, b,+)n = (a, b,+)(n− 1) + b

for all n ≥ 2.
If a binary operation (+) is given on a set G, then we shall use the symbols

n(a, b) and (a, b)n instead of n(a, b,+) and (a, b,+)n.

Definition 5.1. Let (G,+) be a groupoid and let n,m ≥ 1. The element e of
the groupoid (G,+) is called:

- an (n,m)-zero of G if e+e = e and n(e, x) = (x, e)m = x for every x ∈ G;
- an (n,∝)-zero if e+ e = e and n(e, x) = x for every x ∈ G;
- an (∝,m)-zero if e+ e = e and (x, e)m = x for every x ∈ G.
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Clearly, if e ∈ G is both an (n,∝)-zero and an (∝,m)-zero, then it is also an
(n,m)-zero. If (G, ·) is a multiplicative groupoid, then the element e is called
an (n,m)-identity.

Example 5.1. Let (G, ·) be a paramedial groupoid, e ∈ G and xe = x for
every x ∈ G. Then (G, ·) is a paramedial groupoid with (2, 1)-identity e in G.
Indeed, if x ∈ G, then e · ex = ee · ex = xe · ee = xe · e = x · e = x.

Definition 5.2. Let (G,+) be a topological groupoid. A groupoid (G, ·) is
called a homogeneous isotope of the topological groupoid (G,+) if there exist
two topological automorphisms φ,ψ : (G,+) → (G,+) such that x ·y = φ(x) +
ψ(y), for all x, y ∈ G.

For every mapping f : X → X we denote f1(x) = f(x) and fn+1(x) =
f(fn(x)) for any n ≥ 1.

Definition 5.3. Let n,m ≤ ∞. A groupoid (G, ·) is called an (n,m)-homogeneous
isotope of a topological groupoid (G,+) if there exist two topological automor-
phisms φ,ψ : (G,+) → (G,+) such that:

1. x · y = φ(x) + ψ(y) for all x, y ∈ G;
2. φφ = ψψ;
3. If n <∞, then φn(x) = x for all x ∈ G;
4. If m <∞, then ψm(x) = x for all x ∈ G.

Definition 5.4. A groupoid (G, ·) is called an isotope of a topological groupoid
(G,+), if there exist two homeomorphisms φ,ψ : (G,+) → (G,+) such that
x · y = φ(x) + ψ(y) for all x, y ∈ G.

Under the conditions of Definition 5.4 we shall say that the isotope (G, ·)
is generated by the homeomorphisms φ,ψ of the topological groupoids (G,+)
and write (G, ·) = g(G,+, φ, ψ).

Example 5.2. Denote by Zp = Z/pZ = {0, 1, ..., p − 1} the cyclic group of
order p. Let (G,+) = (Z7,+), φ(x) = 6x, ψ(x) = x and x · y = 6x + y.
Then (G, ·) = g(G,+, φ, ψ) is a medial, paramedial, bicommutative and AG-
quasigroup and the zero of (G,+) is a (1, 2)-identity in (G, ·).

Example 5.3. Denote by Zp = Z/pZ = {0, 1, ..., p − 1} the cyclic group of
order p. Let (G,+) = (Z11,+), φ(x) = x, ψ(x) = 10x and x · y = x + 10y.
Then (G, ·) = g(G,+, φ, ψ) is a medial, paramedial, bicommutative and AD-
quasigroup and the zero of (G,+) is a (2, 1)-identity in (G, ·).

Example 5.4. Denote by Zp = Z/pZ = {0, 1, ..., p − 1} the cyclic group of
order p. Let (G,+) = (Z11,+), φ(x) = 10x, ψ(x) = x and x · y = 10x + y.
Then (G, ·) = g(G,+, φ, ψ) is a medial, paramedial, bicommutative and AG-
quasigroup and the zero of (G,+) is a (1, 2)-identity in (G, ·).



On Topological Paramedial Quasigroups 61

Example 5.5. Let (G,+) = (Z11,+), φ(x) = 9x, ψ(x) = 2x and x · y =
9x+2y. Then (G, ·) = g(G,+, φ, ψ) is a medial, paramedial and bicommutative
quasigroup and the zero of (G,+) is a (10, 5)-identity in (G, ·).

Let (G, ·) be a topological medial or paramedial quasigroup. A theorem
of Toyoda [8, 9] asserts that there exist a binary operation (+) on G, two
elements 0, a ∈ G and two topological automorphisms φ,ψ : (G,+) → (G,+),
such that

x · y = φ(x) + ψ(y) + a

for all x, y ∈ G such that (G,+) is a topological commutative group, 0 is
the zero of (G,+), and (G, ·) = g(G,+, φ, ψ, 0, a) is a homogeneous isotope
of (G,+). Moreover, φφ = ψψ for paramedial quasigroups and φψ = ψφ for
medial quasigroups.

By B(X) denote the family of Borel subsets of the space X. A non-negative
real-valued function µ defined on the family B(X) of Borel subsets of a space
X is said to be a Radon measure on X if it has the following properties:

- µ(H) = sup{µ(F ) : F ⊆ H, F is a compact subset of H} for every
H ∈ B(X);

- for every point x ∈ X there exists an open subset Vx such that x ∈ Vx
and µ(Vx) <∞.

Definition 5.5. Let (A, ·) be a topological quasigroup with the divisions r, l.
A Radon measure µ on A is called:

- a left invariant Haar measure if µ(U) > 0 and µ(xH) = µ(H) for
every non-empty open set U ⊆ A, a point x ∈ A and a Borel set H ∈ B(A);

- a right invariant Haar measure if µ(U) > 0 and µ(Hx) = µ(H) for
every non-empty open set U ⊆ A, a point x ∈ A and a Borel set H ∈ B(A);

- an invariant Haar measure, if µ(U) > 0 and µ(xH) = µ(Hx) =
µ(l(x,H)) = µ(r(H,x)) = µ(H) for every non-empty open set U ⊆ A, a point
x ∈ A and a Borel set H ∈ B(A).

Definition 5.6. We say that on a topological quasigroup (A, ·) there exists
a unique left(right) invariant Haar measure, if for every two left (right)
unvariant Haar measures µ1, µ2 on A there exists a constant c > 0 such that
µ2 (H) = c · µ1 (H) for every Borel set H ∈ B(A).

If (G,+) is a locally compact commutative group, then on G there exists a
unique invariant Haar measure µG [5]. We will follow closely the proof scheme
from [1] to prove the next Theorems.

We consider on the abelian topological group (G,+) the invariant measure
µG.

Theorem 5.1. Let (G, ·) be a locally compact paramedial quasigroup. Then:
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1. There is a commutative topological group (G,+) and φ,ψ : G → G con-
tinuous automorphism of (G,+), a ∈ G, φ2 = ψ2 and (G, ·) = g(G,+, φ, ψ, 0, a);

2. If on the Abelian topological group (G,+) consider the invariant Haar
measure µG, then on (G, ·) the right (left) invariant Haar measure is unique;

3. If µ is a left (right) measure on (G, ·), then µ is a left (right) invariant
Haar measure on (G,+) too;

4. On (G, ·) there exists some left (right) invariant Haar measure if and
only if µG(ψ(H)) = µG(H) (µG(φ(H)) = µG(H)) for every H ∈ B(A);

5. If n < +∞, and on G there exists some (n,+∞)-identity, then on (G, ·)
the measure µG is a unique right invariant Haar measure;

6. If m < +∞, and on G there exists some (+∞,m)-identity, then on (G, ·)
the measure µG is a unique left invariant Haar measure;

7. If n,m < +∞, and on G there exists some (n,m)-identity, then on (G, ·)
the measure µG is a unique invariant Haar measure.

Proof. The assertion 1 follows from Toyoda’s Theorem for paramedial topo-
logical quasigroups [8, 9]. Let µ be a left invariant Haar measure on (G, ·). As
x · y = φ(x) + ψ(y) + a for all x, y ∈ G follows that xH = φ(H) + ψ(H) + a.
Therefore µ is an invariant Haar measure on Abelian topological group (G,+).
Since on the loccally compact commutative group (G,+) we have the invariant
measure µG there exist a constant c > 0 such that µ (H) = c · µG (H). Hence
µG is a left invariant Haar measure on (G, ·). The assertion 2, 3 and 4 are
proved.
Consider some topological automorhism r : (G,+) → (G,+). Hence µr(H) =
µG(r(H)) is an invariant Haar measure on (G,+). Then there exists a con-
stant cr > 0 such that µr(H) = µG(r(H)) = cr · µG(H) for every Borel subset
H ∈ B(G). In particular, µG(rk(H)) = ckr · µG(H) for every k ∈ N . If
m < +∞ and 0 is an (+∞,m)-identity, then ψn = x for every x ∈ G and
cnψ = 1. Thus cψ = 1, µG(H) = µG(r(H)) and µG is a left invariant measure

on (G, ·) Similarly we can prove that µG is a right invariant measure on (G, ·).
The assertions 5, 6 and 7 are proved. The proof is complete.

In this way we can prove the following result.

Theorem 5.2. On a compact paramedial quasigroup G there exists a unique
Haar measure µ for which µ(G) = 1.

Theorem 5.1 and 5.2 for topological medial quasigroups were proved in
[1]. Other properties of topological paramedial quaisgroups were proved in
[10, 11, 12].

Example 5.6. Let (R,+) be the topological Abelian group of real numbers.
1. If φ(x) = x, ψ(x) = −x and x · y = x− y, then (R, ·) = g(R,+, φ, ψ) is

a commutative locally compact paramedial quasigroup. By Theorem 5.1 there
exists a left and a right invariant Haar measure on (R, ·).
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2. If φ(x) = x, ψ(x) = 7x and x · y = x + 7y, then (R, ·) = g(R,+, φ, ψ)
is a commutative locally compact medial quasigroup. By Theorem 7 from [1]
there exists a left (but no right) invariant Haar measure on (R, ·).

3. If φ(x) = 3x, ψ(x) = 3x and x ·y = 3x+3y, then (R, ·) = g(R,+, φ, ψ) is
a commutative locally compact paramedial quasigroup and on (R, ·). As above,
by Theorem 5.1, there does not exist any left or right invariant Haar measure.

Example 5.7. Consider the commutative group (G,+) = (Z,+), φ(x) = x,
ψ(x) = x−1 and x ·y = x+y−1. Then (G, ·) = g(G,+, φ, ψ, 0, 1) is a medial
and paramedial quasigroup and (G, ·) does not contain (n,m)-identities. There
exists an invariant Haar measure on (G, ·) .
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1. INTRODUCTION

We consider the cubic system of differential equations

ẋ = y + p2(x, y) + p3(x, y) ≡ P (x, y),

ẏ = −x+ q2(x, y) + q3(x, y) ≡ Q(x, y),
(1)

where pj(x, y), qj(x, y) are real homogeneous polynomials of degree j and
P (x, y), Q(x, y) are coprime polynomials. The origin O(0, 0) is a singular
point for (1) with purely imaginary eigenvalues, i.e. a focus or a center.

Although the problem of the center dates from the end of the 19th century,
it is completely solved only for: quadratic systems ẋ = y + p2(x, y), ẏ =
−x + q2(x, y); cubic symmetric systems ẋ = y + p3(x, y), ẏ = −x + q3(x, y);
Kukles system ẋ = y, ẏ = −x+ q2(x, y) + q3(x, y) and a few particular cases
in families of polynomial systems of higher degree.

If the cubic system (1) contains both quadratic and cubic nonlinearities,
then the problem of finding a finite number of necessary and sufficient condi-
tions for the center is still open. An approach to the problem of the center
for cubic system (1) is to study the local integrability of the system in some
neighborhood of the singular point O(0, 0).

The integrability conditions for some families of cubic differential systems
having invariant algebraic curves were found in [4], [9], [8], [16], [20], [22].

Darboux integrability conditions for a cubic differential system (1) having
at least two parallel invariant straight lines were obtained in [5], for some

65
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reversible cubic differential systems in [2] and for a few families of the complex
cubic system in [15].

The goal of this paper is to obtain the center conditions for a cubic differen-
tial system (1) with two algebraic solutions by using the method of Darboux
integrability. The paper is organized as follows. In Section 2 we present
the known results concerning relation between invariant algebraic curves and
Darboux integrability. In Section 3 we find twenty eight sets of conditions
for the existence of one invariant straight line and one irreducible invariant
cubic curve. In Section 4 we determine the integrability conditions for cubic
differential system (1) with one invariant straight line and one invariant cubic
by constructing Darboux integrating factors. Finally we obtain twenty sets of
conditions for a singular point O(0, 0) to be a center.

2. INVARIANT ALGEBRAIC CURVES AND
INTEGRATING FACTORS

We study the problem of integrability for cubic system (1) assuming that
the system has irreducible invariant algebraic curves.

Definition 2.1. An algebraic curve Φ(x, y) = 0 in C2 with Φ ∈ C[x, y] is said
to be an invariant algebraic curve of system (1) if

∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = Φ(x, y)K(x, y), (2)

for some polynomial K(x, y) ∈ C[x, y] called the cofactor of the invariant
algebraic curve Φ(x, y) = 0.

It is a very hard problem to calculate the invariant algebraic curves for a
given differential system because, in general, we do not have any evidence on
the number of invariant algebraic curves and on the degree of a curve.

The problem of the existence for cubic system (1) of invariant algebraic
curves was studied when the curves are: straight lines [13]; straight lines and
conics [7],[8]; straight lines and cubic curves [10], [11]; cubic curves [12].

We are interested in the algebraic integrability of cubic differential system
(1), called the Darboux integrability [3]. It consists in constructing of a first
integral or an integrating factor of the form

Φα1
1 Φα2

2 · · ·Φαq
q , (3)

where Φj = 0, j = 1, q are invariant algebraic curves of (1) and Φj ∈ C[x, y],
αj ∈ C.

Definition 2.2. An integrating factor for system (1) on some open set U of
R2 is a C1 function µ defined on U , not identically zero on U such that

P (x, y)
∂µ

∂x
+Q(x, y)

∂µ

∂y
+ µ

(
∂P

∂x
+
∂Q

∂y

)
≡ 0. (4)
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Conditions for the existence of an integrating factor of the form µ = Φβ for
system (1), where Φ = 0 is an invariant cubic were obtained in [12]. In this
paper we find the conditions under which the cubic differential system (1) has
a Darboux integrating factor of the form

µ = lα1
1 Φα2 (5)

composed of one invariant straight line l1 ≡ 1+a1x+b1y = 0 and one invariant
cubic Φ(x, y) ≡ x2 + y2 + a30x

3 + a21x
2y + a12xy

2 + a03y
3 = 0.

It is known from Poincaré and Lyapunov [1], [18], [19] that a singular point
O(0, 0) is a center for (1) if and only if the system has a nonconstant ana-
lytic first integral F (x, y) = C in the neighborhood of O(0, 0) or an analytic
integrating factor of the form

µ(x, y) = 1 +

∞∑
k=1

µk(x, y),

where Fk and µk are homogeneous polynomials of degree k.
The conditions for a singular point O(0, 0) of a center or a focus type to be

a center in a cubic differential system (1) with two distinct invariant straight
lines were obtained in [9] and with two parallel invariant straight lines were
determined in [20]. The problem of the center was solved for system (1) with:
four invariant straight lines [14], [17]; three invariant straight lines [8], [21]; two
invariant straight lines and one irreducible invariant conic [6], [8]; two invariant
straight lines and one irreducible invariant cubic [10]. The presence of a center
in these papers was proved by using the method of Darboux integrability and
the rational reversibility.

3. CUBIC SYSTEMS WITH TWO ALGEBRAIC
SOLUTIONS

We consider the cubic differential system (1) in the form

ẋ = y + ax2 + cxy + fy2 + kx3 +mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),
(6)

where P (x, y), Q(x, y) are coprime polynomials in R[x, y]. The origin O(0, 0)
is a singular point which is a center or a focus (a fine focus) for (6).

Let the cubic system (6) have a real invariant straight line 1+a1x+b1y = 0,
(a1, b1) ̸= 0. Then by rotating the system of coordinates (x → x cosφ −
y sinφ, y → x sinφ + y cosφ) and rescaling the axes of coordinates (x →
αx, y → αy), we can make the line to be 1 − x = 0.

Lemma 3.1. The cubic system (6) has an invariant straight line 1− x = 0 if
and only if the following set of conditions holds

k = −a, m = −c− 1, p = −f, r = 0. (7)
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Proof. By Definition 2.1, a straight line 1 − x = 0 is an invariant line for
system (6) if there exist numbers c20, c11, c02, c10, c01 ∈ R such that

P (x, y) ≡ (x− 1)(c20x
2 + c11xy + c02y

2 + c10x+ c01y). (8)

Identifying the coefficients of the monomials xiyj in (8), we find that c10 = 0,
c01 = −1, c20 = −a, c11 = −c − 1, c02 = −f and k = −a, m = −c − 1, p =
−f, r = 0. We obtain the conditions (7) and the straight line 1 − x = 0 has
the cofactor K(x, y) = −(ax2 + cxy + fy2 + xy + y).

Suppose the set of conditions (7) is fulfilled. We shall find the conditions on
the coefficients of system (6) under which the system has one real irreducible
invariant cubic curve of the form

Φ(x, y) ≡ x2 + y2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 = 0, (9)

where aij ∈ R and (a30, a21, a12, a03) ̸= 0.

Theorem 3.1. The cubic system (6) has the straight line 1 − x = 0 and the
cubic curve (9) as invariant curves if and only if one of the following sets of
conditions holds:

(c1) d = 2a, k = −a, l = [f(2b− c− 1)]/3, m = −c− 1, n = [(2b− c− 2)(c+
1)]/2, p = −f , q = (2b−c−3)a, r = 0, s = [(2g+3+c−2b)(2b−c−4)]/6;

(c2) c = [
√

3(5f−3a)−12]/6, d = f−a, g = [6b−
√

3(a+f)−12]/6, k = −a,
l = [4(3bf+f+a−ab)+

√
3(a+f)(a−3f)]/16, m = [

√
3(3a−5f)+6]/6,

n = [4
√

3(4f + 9bf − 3ab) + 9a2 − 18af − 48b − 27f2]/48, p = −f ,
q = [(a− 3f)(4− 4b+

√
3(a+ f)) + 16a]/16, r = 0, s = [4

√
3(6f + 3bf +

10a− ab) + 3a2 − 6af − 144b− 9f2 + 144]/144;

(c3) c = [
√

3(3a − 5f) − 12]/6, d = f − a, g = [6b +
√

3(a + f) − 12]/6,
k = −a, l = [4(3bf + f +a−ab)−

√
3(a+ f)(a−3f)]/16, m = [

√
3(5f −

3a) + 6]/6, n = [9a2 − 18af − 48b − 27f2 + 4
√

3(3ab − 9bf − 4f)]/48,
p = −f , q = [4(3bf − 3f − ab + 5a) +

√
3(a + f)(3f − a)]/16, r = 0,

s = [4
√

3(ab− 6f − 3bf − 10a) + 3a2 − 6af − 144b− 9f2 + 144]/144;

(c4) a = [16(a12+1)2−3u2+24fu]/(8u), d = 2a−8f+u, c = [2(12u−4fa12−
4f)]/u, g = (16a312 + 48a212 − 16fua12 + a12u

2 + 48a12 + 2bu2 − 16fu −
3u2 + 16)/(2u2), k = −a, l = (bu − 12fa12 + a12u)/12, m = −c − 1,
n = (a212u − 12fa212 + a12bu − 20fa12 + 2a12u − 8f + u)/u, p = −f ,
q = [32a312(u − 12f) + 16a212(2bu − 72f + 5u) + 64a12(bu − 18f + u) +
32bu + 24fu2 − 384f − 3u3 + 16u]/(8u2), r = 0, s = [(16a312 + 48a212 +
48a12 − 3u2 + 16)(bu− 12fa12 + a12u− 12f)]/(3u3);
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(c5) a = [16a212−3u2+24fu]/(8u), d = 2a−8f+u, c = (2ua12−8fa12−u)/u,
g = (16a312 − 16fua12 + a12u

2 + 2bu2 − 2u2)/(2u2), k = −a, l = (bu −
12fa12+a12u)/12, m = −c−1, n = [a12(a12u−12fa12+bu−12f+u)]/u,
p = −f , q = (16a312u− 192fa312 + 16bua212 − 16ua212 + 8fu2 − u3)/(4u2),
r = 0, s = [a12(3u

3−384fa312+32a312u+32bua212−48ua212−24fu2)]/(6u3);

(c6) a = 3f , d = (1 − 18fa03)/(9a03), g = b+ c, k = −3f , l = (2ba03 − a03 +
f)/2, m = −c − 1, n = (f − 6ba03 + 6ca03 + 9a03)/(12a03), p = −f ,
q = (18ba03 + 24ca03 + 15a03 + 5f)/2, r = 0, s = (f − 6ba03 − 6ca03 −
3a03)/(12a03), 108a203 − 1 = 0;

(c7) d = (ft − at − 4)/t, g = b + c, k = −a, l = (36f − t(2b − 1))/72,
m = −c − 1, n = (4a − 6bt + 6ct − 48f + 9t)/(12t), p = −f , q =
(24a − 6bt − 8ct − 12f − 5t)/24, r = 0, s = −(4a + 2bt + 2ct + t)/(4t),
t2 = 12;

(c8) c = [−(18(at2+36f)(t2+4)2+t(t4+168t2+144)(t2+12))]/[108t(t2+4)2],
d = [18(f −a)(t2 + 4)2− t(3t4 + 56t2 + 432)]/[18(t2 + 4)2], g = [36(6(bt−
6f)−at2)(t2+4)2− t(5t4+264t2+720)(t2+12)]/[216t(t2+4)2], k = −a,
l = [−4(2(9(2b−1)(t2+4)2+(t2−12)2)t−27(t2+12)(t2+4)2f)t2]/[243(t2+
4)4], m = −c − 1, n = [−72at4(t2 + 4)3 − 432bt3(t2 + 12)(t2 + 4)2 −
27f(7t6 + 220t4 + 1296t2 + 5184)(t2 + 4)2 − 4t3(t8 + 40t6 + 1056t4 +
5760t2 + 20736)]/[972t(t2 + 4)4], p = −f , q = [((7t4 + 184t2 + 1008)(t4 +
72t2 + 144)−432(t2 + 12)(t2 + 4)2b)(t2 + 12)t+ 18(7t2 + 36)(t2 + 36)(t2 +
4)3a − 54(t4 − 56t2 − 624)(t2 + 12)(t2 + 4)2f)/[3888(t2 + 4)4], r = 0,
s = [(((t4 + 72t2 + 144)(t2 + 12)3 + 18(t2 + 4)3(t2 − 12)at)t − 72(bt −
6f)(t2 + 12)2(t2 + 4)2)(t2 + 12)]/[7776t(t2 + 4)4];

(c9) a = [27c(v2 + 1)2− v6 + 36v4 + 63v2 + 54]/[9(v2 + 1)2v], d = [−(27c(v2 +
1)2 + 2v6 + 54v4 + 90v2 + 54)]/[9(v2 + 1)2v], f = (−4v3)/[9(v2 + 1)2],
g = [18(b + c)(v2 + 1)2 + (v2 + 3)(v2 − 3)2]/[18(v2 + 1)2], k = −a,
l = [−4v3(18b(v2 + 1)2 + 5v4 + 6v2 + 9)]/[243(v2 + 1)2], m = −c − 1,
n = [9(v2 + 1)2((v2 + 1)(5v2 + 9)c− b(5v4 + 6v2 + 9)) + 2(8v6 + 31v4 +
42v2 + 27)(5v2 + 3)]/[81(v2 + 1)4], p = −f , q = [36bv2(v2 + 3)2(v2 +
1)2 + 9c(7v4 − 36v2 − 27)(v2 + 1)3 + 72v10 − 454v8 − 2064v6 − 3060v4 −
1944v2 − 486)]/[162v(v2 + 1)4], r = 0, s = [(18bv2(v2 + 1)2 + 27c(v2 +
1)3 + 2(10v6 + 33v4 + 54v2 + 27))(v4 − 18v2 − 27)]/[486(v2 + 1)4];

(c10) a = [108(ct − 6f)(t2 + 4)2 − t7 + 144t5 + 432t3 + 3456t]/[18(t2 + 4)2t2],
d = [9((t2+36)f−6ct)(t2+4)2−t7−100t5−432t3−1728t]/[9(t2+4)2t2],
g = [72(b + c)(t2 + 4)2 + (t2 + 12)(t2 − 12)2]/[72(t2 + 4)2], k = −a, l =
[16(5t4+24t2+144)t3−9(16bt3−15ft4−72ft2−432f)(t2+4)2]/[243(t2+
4)4], m = −c− 1, n = [(36ct(5t2 + 36)(t2 + 4)− 36bt(5t4 + 24t2 + 144)−
9f(7t4+40t2+432)(t2+12))(t2+4)2+8t(33t8+592t6+3936t4+11520t2+
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20736)]/[324t(t2+4)4], p = −f , q = [9f(t4+40t2+48)(t4−72t2−432)(t2+
4)2−72b(t2+12)2(t2+4)2t3−18ct(7t4−144t2−432)(t2+4)3−8t(17t10−
422t8 − 4992t6 − 28224t4 − 103680t2 − 124416)]/[648t2(t2 + 4)4], r = 0,
s = [(18bt3(t2 + 4)2 + 27ct(t2 + 4)3 − 54f(t2 + 12)(t2 + 4)2 + 4t(5t4 +
24t2 + 144)(t2 + 6))(t4 − 72t2 − 432)]/[1944t(t2 + 4)4];

(c11) a = [(8ft − 3t4 − 2t2w2 − 4t2w + w4 + 4w3 + 4w2)(3t2 + 3w2 + 6w +
4)]/[8t(t2+w2+2w)], c = [(4f−3t3)(w+1)−t(3w3+9w2+7w+4)]/(2t),
d = [3t6 + 3t4(3w2 + 6w + 2) − 8ft3 + t2w(9w3 + 36w2 + 46w + 20) −
8tf(w2 + 2w + 2) + w2(w + 2)2(3w2 + 6w + 4)]/[4t(t2 + w2 + 2w)], g =
[−3t4(w+ 1) + 2t2(4b− 3w3 − 9w2 − 2w− 2) + 16tf(w+ 1) − 3w2(w3 +
5w2 + 8w+ 4)]/(8t2), k = −a, l = [(4b− 3t2w− 3t2 − 3w3 − 9w2 − 8w−
4)(t2 +w2 +2w)t+4f(3t2w+3t2 +3w3 +9w2 +8w+4)]/16, m = −c−1,
n = [(9t4w2 + 18t4w+ 6t4 + 18t2w4 + 72t2w3 + 96t2w2 + 42t2w+ 9w6 +
54w5 +126w4 +138w3 +64w2 +8w)(t2 +w2 +2w)t−4f((2(9w3 +27w2 +
22w+2)(w+1)+(9w2+18w+7)t2)t2+(9w4+36w3+55w2+34w+8)(w+
2)w)−4b(3t2w+3t2+3w3+9w2+8w+4)(t2+w2+2w)t]/[16t(t2+w2+2w)],
p = −f , q = [4b(3t2 + 3w2 + 6w+ 4)(t2 +w2 + 2w)(w+ 2)tw+ 4f((9w3 +
27w2 + 14w + 6)t4 + (9w2 + 18w + 14)(w + 2)2(w + 1)w2 + 2(9w5 +
45w4 + 77w3 + 56w2 + 16w + 4)t2) − (9t4w3 + 27t4w2 + 12t4w + 9t4 +
18t2w5 + 90t2w4 + 150t2w3 + 114t2w2 + 48t2w + 12t2 + 9w7 + 63w6 +
174w5+249w4+200w3+84w2+16w)(t2+w2+2w)t]/[16t2(t2+w2+2w)],
r = 0, s = [((3t2w2 + 3t2w − 3t2 + 3w4 + 9w3 + 5w2 + 4w − 4bw)(t2 +
w2 + 2w)t−4(3t2w2 + 3t2w−2t2 + 3w4 + 9w3 + 6w2)f)(t2w+ 3t2 +w3 +
5w2 + 8w + 4)w]/[16(t2 + w2 + 2w)t3];

(c12) a = [(8ft + 3t4 + 2t2w2 + 4t2w − w4 − 4w3 − 4w2)(3t2 + 3w2 + 6w +
4)]/[8t(t2+w2+2w)], c = −[(4f+3t3)(w+1)+t(3w3+9w2+7w+4)]/(2t),
d = [−3t6 − 3t4(3w2 + 6w + 2) − 8ft3 − t2w(9w3 + 36w2 + 46w + 20) −
8tf(w2 + 2w + 2) − w2(w + 2)2(3w2 + 6w + 4)]/[4t(t2 + w2 + 2w)], g =
[−3t4(w+1)+2t2(4b−3w3−9w2−2w−2)−16tf(w+1)−3w2(w3+5w2+
8w + 4)]/(8t2), k = −a, l = [4((3w2 + 3w + 2)(w + 2) + 3(w + 1)t2)f −
t(4b− 3t2w− 3t2 − 3w3 − 9w2 − 8w− 4)(t2 +w2 + 2w)]/16, m = −c− 1,
n = [(9t4w2 + 18t4w+ 6t4 + 18t2w4 + 72t2w3 + 96t2w2 + 42t2w+ 9w6 +
54w5 +126w4 +138w3 +64w2 +8w)(t2 +w2 +2w)t+4f((2(9w3 +27w2 +
22w+2)(w+1)+(9w2+18w+7)t2)t2+(9w4+36w3+55w2+34w+8)(w+
2)w)−4bt(3t2w+3t2+3w3+9w2+8w+4)(t2+w2+2w]/[16t(t2+w2+2w)],
p = −f , q = [−4b(3t2+3w2+6w+4)(t2+w2+2w)(w+2)tw+4f((9w3+
27w2 +14w+6)t4 +(9w2 +18w+14)(w+2)2(w+1)w2 +2(9w5 +45w4 +
77w3 + 56w2 + 16w+ 4)t2) + t(9t4w3 + 27t4w2 + 12t4w+ 9t4 + 18t2w5 +
90t2w4 + 150t2w3 + 114t2w2 + 48t2w + 12t2 + 9w7 + 63w6 + 174w5 +
249w4 +200w3 +84w2 +16w)(t2 +w2 +2w)]/[16t2(t2 +w2 +2w)], r = 0,
s = [((3t2w2+3t2w−3t2+3w4+9w3+5w2+4w−4bw)(t2+w2+2w)t+
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4f(3t2w2 + 3t2w− 2t2 + 3w4 + 9w3 + 6w2))(t2w+ 3t2 +w3 + 5w2 + 8w+
4)w]/[16t3(t2 + w2 + 2w)];

(c13) a = [(8ft + 3t4 + 2t2w2 − 4t2w − w4 + 4w3 − 4w2)(3t2 + 3w2 − 6w +
4)]/[8(t2+w2−2w)t], c = [(4f+3t3)(w−1)+(3w3−9w2+7w−4)t]/(2t),
d = [−8ft(t2 +w2−2w+ 2)− (3t4 + 6t2w2−12t2w+ 6t2 + 3w4−12w3 +
16w2 − 8w)(t2 +w2 − 2w)]/[4(t2 +w2 − 2w)t], g = [8bt2 + 16ft(w− 1) +
3((w − 2)2w2 + t4)(w − 1) + 2(3w3 − 9w2 + 2w − 2)t2]/(8t2), k = −a,
l = [4bt(−t2 − w2 + 2w) − 4f((3w2 − 3w + 2)(w − 2) + 3(w − 1)t2) −
t(3t2w − 3t2 + 3w3 − 9w2 + 8w − 4)(t2 + w2 − 2w)]/16, m = −c − 1,
n = [(9t4w2 − 18t4w+ 6t4 + 18t2w4 − 72t2w3 + 96t2w2 − 42t2w+ 9w6 −
54w5 +126w4−138w3 +64w2−8w)(t2 +w2−2w)t+4f((2(9w3−27w2 +
22w−2)(w−1)+(9w2−18w+7)t2)t2+(9w4−36w3+55w2−34w+8)(w−
2)w)+4b(3t2w−3t2+3w3−9w2+8w−4)(t2+w2−2w)t]/[16t(t2+w2−2w)],
p = −f , q = [4b(3t2+3w2−6w+4)(t2+w2−2w)2(2−w)tw−4f(9t4w3−
27t4w2 + 14t4w− 6t4 + 18t2w5 − 90t2w4 + 154t2w3 − 112t2w2 + 32t2w−
8t2 + 9w7 − 63w6 + 176w5 − 250w4 + 184w3 − 56w2)(t2 + w2 − 2w) −
(9t4w3− 27t4w2 + 12t4w− 9t4 + 18t2w5− 90t2w4 + 150t2w3− 114t2w2 +
48t2w− 12t2 + 9w7− 63w6 + 174w5− 249w4 + 200w3− 84w2 + 16w)(t2 +
w2−2w)2t]/[16t2(t2+w2−2w)], r = 0, s = [((3t2w2−3t2w−3t2+3w4−
9w3 + 5w2 − 4w+ 4bw)(t2 +w2 − 2w)t+ 4f(3t2w2 − 3t2w− 2t2 + 3w4 −
9w3 + 6w2))(t2w − 3t2 + w3 − 5w2 + 8w − 4)w]/[16(t2 + w2 − 2w)t3];

(c14) a = [(8ft−3t4−2t2w2+4t2w+w4−4w3+4w2)(3t2+3w2−6w+4)]/[8t(t2+
w2 − 2w)], c = [(3w3 − 9w2 + 7w − 4 + 3(w − 1)t2)t − 4f(w − 1)]/(2t),
d = [(3t4 + 6t2w2 − 12t2w + 6t2 + 3w4 − 12w3 + 16w2 − 8w)(t2 + w2 −
2w)−8(t2+w2−2w+2)ft)/[4t(t2+w2−2w)], g = [3(w−1)(w−2)2w2+
8bt2 − (16f − 3t3)(w − 1)t + 2(3w3 − 9w2 + 2w − 2)t2]/(8t2), k = −a,
l = [4((w − 2)w + t2)bt − 4((3w2 − 3w + 2)(w − 2) + 3(w − 1)t2)f +
(3t2w − 3t2 + 3w3 − 9w2 + 8w − 4)(t2 + w2 − 2w)t]/16, m = −c − 1,
n = [4b(3t2w−3t2+3w3−9w2+8w−4)(t2+w2−2w)t−4f((2(9w3−27w2+
22w−2)(w−1)+(9w2−18w+7)t2)t2+(9w4−36w3+55w2−34w+8)(w−
2)w) + (9t4w2−18t4w+ 6t4 + 18t2w4−72t2w3 + 96t2w2−42t2w+ 9w6−
54w5 + 126w4− 138w3 + 64w2− 8w)(t2 +w2− 2w)t]/[16t(t2 +w2− 2w)],
p = −f , q = [4b(3t2 + 3w2−6w+ 4)(t2 +w2−2w)(w−2)tw−4f((9w3−
27w2 + 14w − 6)t4 + (9w2 − 18w + 14)(w − 1)(w − 2)2w2 + 2(9w5 −
45w4 + 77w3 − 56w2 + 16w − 4)t2) + (9t4w3 − 27t4w2 + 12t4w − 9t4 +
18t2w5 − 90t2w4 + 150t2w3 − 114t2w2 + 48t2w − 12t2 + 9w7 − 63w6 +
174w5−249w4+200w3−84w2+16w)(t2+w2−2w)t]/[16t2(t2+w2−2w)],
r = 0, s = [((3t2w2 − 3t2w − 3t2 + 3w4 − 9w3 + 5w2 − 4w + 4bw)(t2 +
w2−2w)t−4(3t2w2−3t2w−2t2 + 3w4−9w3 + 6w2)f)(t2w−3t2 +w3−
5w2 + 8w − 4)w]/[16t3(t2 + w2 − 2w)];
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(c15) d = f − a, g = (2b + 2c − 3)/2, k = −a, l = (3f)/2, m = −c − 1,
n = [3(c+ 1)]/2, p = −f , q = (3a− 2f)/2, r = 0, s = (1 − 2b− 2c)/2;

(c16) a = k = r = 0, d = f , l = (3f)/2, m = −c− 1, n = [3(c+ 1)]/2, p = −f ,
q = [f(2g− 2b− 2c+ 1)]/2, s = (3− 4b2− 10bc+ 4bg− 6c2 + 6cg+ 3c)/6;

(c17) d = 2(a + 2f), g = (3ac + 3a + 2bf + 5cf + 3f)/(2f), k = −a, l = 2f ,
m = −c−1, n = (8af+3c+8f2+3)/2, p = −f , q = (5c+3+2b)(a+f),
r = 0, s = [((3c+ 1 + 2b)f + (2b+ 3c)a)(c+ 1)]/(2f);

(c18) c = (u3−3au2−27f−9u)/(9u), g = (5u3−6au2+18bu−54f−45u)/(18u),
k = −a, l = 2f , m = (3au2+27f−u3)/(9u), n = (4u3−12au2+21fu2−
81f)/(18u), p = −f , q = (7u3 − 21au2 + 81a + 36bu + 9fu2 − 189f −
63u)/54, r = 0, s = [(u3 − 3au2 + 6bu − 18f − 9u)(u2 − 9)]/(54u),
u = d− f + a;

(c19) d = f − a, l = −f/2, g = (2c + 3 + 2b)/2, k = −a, m = −c − 1,
n = −(c+ 2 + 2b)/2, p = −f , q = a/2, r = s = 0;

(c20) a = k = r = 0, d = f , l = −f/2, m = −c − 1, n = (−2b − c − 2)/2,
p = −f , q = l(2b+ 2c− 2g + 3), s = −(2b+ 3c+ 4)(2b+ 2c− 2g + 3)/6;

(c21) c = (3av2 + 27f − v3 − 18v)/(9v), l = −f , g = (6av2 + 18bv + 54f −
5v3− 9v)/(18v), k = −a, m = −c− 1, n = (2v3− 6av2− 18bv+ 21fv2−
27f)/(18v), p = −f , q = (21av2+27a+36bv+9lv2−135l−7v3−27v)/54,
r = 0, s = [v(v3 − 3av2 + 9a− 6bv + 18l + 3v)]/54, v = a+ d− f ;

(c22) d = 2(a + 2f), l = −f , g = (6f + 3ac + 6a + 2bf + 5cf)/(2f), k = −a,
m = −c − 1, n = (8f2 + 8af − 2b − c − 2)/2, p = −f , q = 2ab + 5ac +
9a+ 2bf + 5cf + 6f , r = 0, s = [(f + cf + 2a+ ac)(3c+ 4 + 2b)]/(2f);

(c23) c = −(h2 + 8)/(h2 + 4), d = −((h2 + 4)a + 6h))/(h2 + 4), f = l = p =
r = 0, g = [(2b− 5)(h2 + 4) + 16]/[2(h2 + 4)], k = −a, m = 4/(h2 + 4),
n = (ah3 + 4ah− 16 − 4(b− 1)(h2 + 4))/(h2 + 4)2, q = [3ah4 + 16ah2 +
16a − 32h − 2h(4b − 7)(h2 + 4)]/[2(h2 + 4)2], s = [(3h3 − 2ah2 − 8a −
2bh3 − 8bh+ 4h)h]/[2(h2 + 4)2];

(c24) c = (3au3 − 9v2 − 9uv − u4)/(9uv), f = p = r = 0, g = (24au3 −
27a2u2 + 18buv + 9v2 − 18uv − 5u4)/(18uv), k = −a, m = −c − 1,
n = (9au4 − 15au3v − 18buv2 − 9v3 + 9uv2 + 5u4v − 3u5)/(18u2v), q =
(63a2u3 + 108abuv − 42au4 − 108auv + 54av2 − 36bu2v + 7u5 + 45u2v −
18uv2)/(54uv), s = [(9a2u3 + 18abuv + 9av2 − 27auv − 6au4 − 6bu2v −
3uv2 + 6u2v + u5)(u− 3a)]/(54v2), u = 2a− d, v = 2a− d+ 6l;

(c25) c = (h4l−h3+8h2l−8h+16l)/[h(h2+4)], d = (−ah2−4a−6h)/(h2+4),
f = p = r = 0, k = −a, g = (2bh3 + 8bh + 2h4l − 5h3 + 16h2l − 4h +
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32l)/[2h(h2 + 4)], m = −c − 1, n = (2ah4 + 8ah2 − 8bh3 − 32bh +
3h6l + 20h4l + 8h3 + 16h2l − 64l)/[2h(h2 + 4)2], q = (3ah4 + 16ah2 +
16a − 8bh3 − 32bh − 10h4l + 14h3 − 80h2l + 24h − 160l)/[2(h2 + 4)2],
s = [h(3h3−2ah2−8a−2bh3−8bh−2h4l−16h2l+4h−32l)]/[2(h2+4)2];

(c26) c = (3au3 − u4 − 18uv − 9v2)/(9uv), f = p = r = 0, g = (9v2 −
27a2u2 + 24au3 + 18buv − 5u4 − 36uv)/(18uv), k = −a, m = −c − 1,
n = (u5−3au4−15au3v−18bu2v−18buv2+5u4v−9uv2−9v3)/(18u2v),
q = (63a2u3+108abuv−42au4−54auv+54av2−36bu2v+7u5+45u2v−
18uv2)/(54uv), s = [(9a2u− 6au2 + u3 + 9v)(u4 − 3au3 − 6buv + 6uv −
3v2)]/(54uv2);

(c27) d = −a, f = p = r = s = 0, g = (2b−c−3)/2, k = −a, l = [−(c+2)a]/2,
m = −c− 1, n = [(2b− c− 2)(c+ 1)]/2, q = a/2;

(c28) d = −a, f = p = r = 0, g = (2b − c − 6)/2, k = −a, l = [−a(c + 1)]/2,
m = −c−1, n = (2bc+2b−c2−3c−2)/2, q = (3a)/2, s = (c−2b+4)/2.

Proof. Suppose the set of conditions (7) is realized for system (6) and consider
the cubic curve (9). By Definition 2.1, the curve (9) is an invariant cubic for
(6) if there exist numbers c20, c11, c02, c10, c01 ∈ R such that

P (x, y)
∂Φ

∂x
+Q(x, y)

∂Φ

∂y
≡ Φ(x, y)(c10x+ c01y + c20x

2 + c11xy + c02y
2). (10)

Identifying the coefficients of the monomials xiyj in (10), we reduce this
identity to a system of fifteen equations

{Uij = 0, i+ j = 3, 4, 5} (11)

for the unknowns a30, a21, a12, a03, c20, c11, c02, c10, c01 and the coefficient of
system (6). When i + j = 3, we find that c10 = 2a − a21, c01 = a12 − 2b,
d = (2f − 2a− 3a03 + 3a21)/2, g = (2b+ 2c+ 3a30 − 3a12)/2.

We divide the proof into two cases: a03 ̸= 0 and a03 = 0.
1. a03 ̸= 0. We express c02, c11, c20 and s from the equations {U05 =

0, U14 = 0, U23 = 0, U32 = 0} of (11) and obtain:
c02 = −3l, c20 = [(f − l)a212 +(n− c−1)a03a12−3qa203 +2(l−f)a03a21]/a

2
03,

c11 = [(l− f)a12 − 3na03]/a03, s = [(q − a)a203a12 + 2(n− c− 1)a203a21 + 3(l−
f)a203a30 + (c− n− 1)a03a

2
12 + 3(f − l)a03a12a21 + (l − f)a312]/(3a

3
03).

Then we calculate the resultant of the polynomials U50 and U41 with respect
to n. We have that Res(U50, U41, n) = f1f2, where
f1 = (a − q)a03 + (l − f)a21, f2 = 27a203a

2
30 + (4a321 − 18a12a21a30)a03 +

4a312a30 − a212a
2
21.
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1.1. Assume that f1 = 0. In this case q = [aa03 + (l − f)a21]/a03 and the
equations U50 = 0, U41 = 0 of (11) look

U50 ≡ (3a03a12a30 + 2a03a
2
21 − a212a21)F = 0,

U41 ≡ (9a203a30 − 7a03a12a21 + 2a312)F = 0,
(12)

where F = (c− n+ 1)a03 + (l − f)a12.
1.1.1. Suppose that F = 0, then n = (ca03 + a03 − fa12 + la12)/a03 and the

equations {U04 = 0, U13 = 0} of (11) yield
l = (a12+b)a03b−fa12, a = (2a212−9a203+7a03a21+6fa03−2ca12−4fa21−

2c− 2)/(2a03).
If a03 = (2f)/3 and a12 = c + 1, then we obtain the set of conditions (c1)

for the existence of the invariant cubic

3(x2 + y2) + (c− 2b+ 2g + 3)x3 + 6ax2y + 3(c+ 1)xy2 + 2fy3 = 0.

If a03 = (2f)/3 and a12 ̸= c+ 1, then the system of equations (11) has not
real solutions.

Let a03 ̸= (2f)/3 and express a30 from the equation U22 = 0. Then we
calculate the resultant of the polynomials U40 and U31 with respect to c. We
obtain that Res(U40, U31, c) = 96a03g1g2g

4
3g4g5g6, where

g1 = a21 − a03, g2 = 3a03a21 − (a12 + 1)2, g3 = 3a203 − 2a03a21 + (a12 + 1)2,
g4 = 3a03 − 2f ̸= 0, g5 = (3a03 − a21)

2 + 4(a12 + 1)2 ̸= 0, g6 = (4a03a21 −
3a203 − (a12 + 1)2)2 + 4a203(a12 + 1)2 ̸= 0.

Assume that g1 = 0, then a21 = a03. If a12 = c+ 1, then the cubic curve is
reducible. If a12 ̸= c+ 1, then c = [2(3a03a12 − fa12 − f)]/(3a03). In this case
we get the set of conditions (c2) for the existence of the cubic

9(x2 + y2)(4x− 4 − 3fy + ay) +
√

3(a− 3f)(x2 + 9y2)x = 0,

and the set of conditions (c3) for the existence of the cubic

9(x2 + y2)(4x− 4 − 3fy + ay) −
√

3(a− 3f)(x2 + 9y2)x = 0.

Assume that g1 ̸= 0 and let g2 = 0. Then a21 = (a212 + 2a12 + 1)/(3a03) and
U31 ≡ h1h2 = 0, where h1 = 6a12a03 − 2fa12 − 3ca03 − 2f , h2 = a12 − c− 1.

The equation h1 = 0 yields c = [2(3a03a12 − fa12 − f)]/(3a03). Denote
u = d−2a+8f . Then a03 = u/12, a = (16a212 +32a12 +24fu−3u2 +16)/(8u)
and d = u+ 2a− 8f . In this case we obtain the set of conditions (c4) for the
existence of the invariant cubic

12u2(x2 + y2) + 4(16a312 + 48a212 + 48a12 − 3u2 + 16)x3+
+48u(a12 + 1)2x2y + 12u2a12xy

2 + u3y3 = 0.
If h1 ̸= 0 and h2 = 0, the system of equations (11) has no solutions.
Assume that g1g2 ̸= 0 and let g3 = 0. In this case the system of algebraic

equations (11) is not consistent.

1.1.2. Assume that F ̸= 0, then
U50 ≡ 3a03a12a30 + 2a03a

2
21 − a212a21 = 0,
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U41 ≡ 9a203a30 − 7a03a12a21 + 2a312 = 0.
The equation U41 = 0 yields a30 = [a12(7a03a21 − 2a212)]/(9a

2
03). Then

U50 ≡ (3a03a21 − a212)(a03a21 + a212) = 0.
The case a21 = a212/(3a03) is contained in 1.2 (j2 = 0) and the case a21 =

(−a212)/(a03) is contained in 1.3 (v2 = 0).

1.2. Assume that f1 ̸= 0 and let f2 = 0. If a21 = a212/(3a03), then f2 = 0
yields a30 = a312/(27a203). In this case we express l, n, q from the equations
U04 = 0, U13 = 0, U22 = 0 of (11) and calculate the resultant of the polynomials
U40, U31 with respect to c. We obtain that

Res(U40, U31, c) = −6a03(9a
2
03 + a212)j1j2,

where j1 = 27a203−18fa03−a212+6aa03, j2 = 729a403+162a203a
2
12+324a203a12+

108a203 + 9a412 + 4a312.
Suppose that j1 = 0, then a = (a212 − 27a203 + 18fa03)/(6a03). In this case

we have
U31 ≡ (63a203a12 + 18a203 − 9a312 − 4a212)H,
U40 ≡ a03(27a203 − 13a212 − 6a12)H,

(13)

where H = 6a03a12 − 3ca03 − 3a03 − 2fa12.
If H = 0, then we obtain the set of conditions (c5) for the existence of the

invariant cubic
12u2(x2 + y2) + (4a12x+ uy)3 = 0.

When H ̸= 0 the system of equations {U31 = 0, U40 = 0} is consistent if
and only if a12 = (−1)/2 and 108a203 − 1 = 0. In this case we get the set of
conditions (c6) for the existence of the invariant cubic

54a03(x− 2)(x2 + y2) − y(9x2 + y2) = 0.

Suppose that j1 ̸= 0 and let j2 = 0. In this case we denote a12 = (u2−1)/2.
Then j2 ≡ e1e2 = 0, where

e1 = (3u+ 1)(u− 1)3 + 108a203, e2 = (3u− 1)(u+ 1)3 + 108a203.

The equation e1 = 0 has the parametrization
a03 = (−16t3)/[27(t2 + 4)2], u = (12 − t2)/[3(t2 + 4)]

and U31 ≡ i1i2 = 0, where i1 = t2−12, i2 = 108ct(t2 +4)2 +18(at2 +36f)(t2 +
4)2 + t(t4 + 168t2 + 144)(t2 + 12).

If i1 = 0, then we obtain the set of conditions (c7) for the existence of the
invariant cubic

3t(x− 2)(x2 + y2) + 2y(9x2 + y2) = 0.

If i1 ̸= 0 and i2 = 0, then we get the set of conditions (c8) for the existence
of the invariant cubic

108(t2 + 4)2(x2 + y2) − (t2x+ 12x+ 4ty)3 = 0.

Assume that e1 ̸= 0 and let e2 = 0. The equation e2 = 0 has the
parametrization a03 = (−16t3)/[27(t2 + 4)2], u = (t2 − 12)/[3(t2 + 4)], where
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t2 ̸= 12. In this case we express c from the equation U31 = 0 and also obtain
the set of conditions (c8).

1.3. Assume that f1 ̸= 0, a21 ̸= a212/(3a03) and let f2 = 0. Denote a21 =
(a212 − h2)/(3a03). In this case f2 ≡ u1u2 = 0, where
u1 = 27a203a30 − a312 + 3a12h

2 − 2h3, u2 = 27a203a30 − a312 + 3a12h
2 + 2h3.

1.3.1. If u1 = 0, then a30 = (a312 − 3a12h
2 + 2h3)/(27a203) and the equations

U50 = 0 and U41 = 0 imply
q = [(n− 1 − c)(2a12 + h)a03 + (a212 + a12h+ h2)(f − l) + 3aa203]/(3a

2
03).

Suppose that a12 ̸= (h − 3)/4. In this case we express l, n, a from the
equations U04 = 0, U13 = 0, U22 = 0 of (11) and calculate the resultant of the
polynomials U40, U31 with respect to c. We obtain that

Res(U40, U31, c) = 6a03v1v
4
2v3v4v5v6,

where v1 = 3a03 − 2f , v2 = 729a403 + 54a203(3a
2
12 + 6a12 + 2h3 + 3h2 + 2) +

(9a212 +18a12h+4a12 +12h3−3h2 +8h)(a12−h)2, v3 = 9a203 +(a12 +2h)2 ̸= 0,
v4 = 9a203 + (a12 − h)2 ̸= 0, v5 = 4a12 − h+ 3 ̸= 0.

If v1 = 0, then a12 − c − 1 ̸= 0. In this case the system of equations
{U40 = 0, U31 = 0} has solutions different from that obtained above only if

a12 = −(h2 + 1)/2 and H ≡ 48f2 + (3h− 1)(h+ 1)3 = 0.
The equation H = 0 admits the following parametrization

f = (−4v3)/(9(v2 + 1)2), h = (v2 − 3)/(3(v2 + 1)).

We obtain the set of conditions (c9) for the existence of the invariant cubic

27(v2 + 1)2(x2 + y2) + (v4x− 8v3y − 18v2x− 27x)(xv + y)2 = 0.

Assume that v1 ̸= 0 and let v2 = 0. If a12 = −(h2 + 1)/2, then v2 =
(3h−1)(h+1)3+108a203. The equation v2 = 0 has the following parametrization

a03 = (−16t3)/[27(t2 + 4)2], h = (t2 − 12)/[3(t2 + 4)].
We get the set of conditions (c10) for the existence of the invariant cubic

108(t2 + 4)2(x2 + y2) + (t4x− 16t3y − 72t2x− 432x)(xt+ 2y)2 = 0.

Suppose that a12 ̸= −(h2 + 1)/2 and denote a12 = (u2 − h2 − 1)/2. In this
case the equation v2 = 0 looks as v2 ≡ s1s2 = 0, where

s1 = 108a203 + (3h2 − 6hu+ 2h+ 3u2 + 2u− 1)(h+ u+ 1)2,
s2 = 108a203 + (3h2 + 6hu+ 2h+ 3u2 − 2u− 1)(h− u+ 1)2.

Let s1 = 0 and denote h = (−3t2−3w2−8w−4)/4, u = (−3t2−3w2−4w)/4.
Then s1 ≡ p1p2 = 0, where p1 = 4a03+t3+tw2+2tw, p2 = 4a03−t3−tw2−2tw.

If p1 = 0, then the equations U40 = 0 and U31 = 0 of (11) imply c =
(4fw + 4f − 3t3w − 3t3 − 3tw3 − 9tw2 − 7tw − 4t)/(2t). In this case we have
the set of conditions (c11) for the existence of the invariant cubic

4t2(x2 + y2) + (t3y − t2wx− 3t2x+ tw2y+
+2twy − w3x− 5w2x− 8wx− 4x)(yt− xw)2 = 0.
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If p1 ̸= 0 and p2 = 0, then the equations U40 = 0 and U31 = 0 yield
c = −[(4f + 3t3)(w + 1) + t(3w3 + 9w2 + 7w + 4)]/(2t). In this case we have
the set of conditions (c12) for the existence of the invariant cubic

4t2(x2 + y2) − (t3y + t2wx+ 3t2x+ tw2y+
+2twy + w3x+ 5w2x+ 8wx+ 4x)(yt+ xw)2 = 0.

Assume that s1 ̸= 0 and let s2 = 0. Denote h = (−3t2 − 3w2 + 8w − 4)/4,
u = (3t2 +3w2−4w)/4. Then s2 ≡ q1q2 = 0, where q1 = 4a03 + t3 + tw2−2tw,
q2 = 4a03 − t3 − tw2 + 2tw.

If q1 = 0, then the equations U40 = 0 and U31 = 0 of (11) imply c =
[(4f + 3t3)(w− 1) + (3w3 − 9w2 + 7w− 4)t]/(2t). In this case we have the set
of conditions (c13) for the existence of the invariant cubic

4t2(x2 + y2) − (t3y − t2wx+ 3t2x+ tw2y−
−2twy − w3x+ 5w2x− 8wx+ 4x)(yt− xw)2 = 0.

If q1 ̸= 0 and q2 = 0, then the equations U40 = 0 and U31 = 0 yield
c = [(3t3 − 4f)(w− 1) + (3w3 − 9w2 + 7w− 4)t]/(2t). In this case we have the
set of conditions (c14) for the existence of the invariant cubic

4t2(x2 + y2) + (t3y + t2wx− 3t2x+ tw2y−
−2twy + w3x− 5w2x+ 8wx− 4x)(yt+ xw)2 = 0.

The case a12 = (h−3)/4 is contained in v2 = 0 ((64h2−53h+11)(h+1)3 +
6912a403 + 32(32h− 13)(h+ 1)2a203 = 0).

1.3.2. Assume that u1 ̸= 0 and let u2 = 0. Then a30 = (a312 − 3a12h
2 +

2h3)/(27a203) and the equations U50 = 0 and U41 = 0 imply
q = [(n− 1 − c)(2a12 − h)a03 + (a212 − a12h+ h2)(f − l) + 3aa203)/(3a

2
03).

Suppose that a12 ̸= (−h − 3)/4. In this case we express l, n, a from the
equations U04 = 0, U13 = 0, U22 = 0 of (11) and calculate the resultant of the
polynomials U40, U31 with respect to c. We obtain that

Res(U40, U31, c) = 6a03w1w
4
2w3w4w5w6,

where w1 = 3a03 − 2f , w2 = 729a403 + 54a203(3a
2
12 + 6a12 − 2h3 + 3h2 + 2) +

(9a212−18a12h+4a12−12h3−3h2−8h)(a12+h)2, w3 = 9a203+(a12−2h)2 ̸= 0,
w4 = 9a203 + (a12 + h)2 ̸= 0, w5 = 4a12 + h+ 3 ̸= 0.

If w1 = 0, then a12 − c − 1 ̸= 0. In this case the system of equations
{U40 = 0, U31 = 0} has solutions different from that obtained above if

a12 = −(h2 + 1)/2 and G ≡ 48f2 + (3h+ 1)(h− 1)3 = 0.
The equation G = 0 admits the following parametrization

f = (−4v3)/(9(v2 + 1)2), h = (v2 − 3)/(3(v2 + 1)).

In this case we have the set of conditions (c9) obtained above.
Assume that w1 ̸= 0 and let w2 = 0. If a12 = −(h2 + 1)/2, then w2 = (3h+

1)(h − 1)3 + 108a203. The equation w2 = 0 has the following parametrization
a03 = (−16t3)/[27(t2 + 4)2], h = (12 − t2)/[3(t2 + 4)]. In this case we get the
condition (c10) which was determined above.
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Suppose that a12 ̸= −(h2 + 1)/2 and denote a12 = (u2 − h2 − 1)/2. In this
case the equation w2 = 0 looks as w2 ≡ r1r2 = 0, where

r1 = 108a203 + (3h2 + 6hu− 2h+ 3u2 + 2u− 1)(h− u− 1)2,
r2 = 108a203 + (3h2 − 6hu− 2h+ 3u2 − 2u− 1)(h+ u− 1)2.

Let r1 = 0 and denote h = (3t2+3w2+8w+4)/4, u = (−3t2−3w2−4w)/4.
Then r1 ≡ k1k2 = 0, where k1 = 4a03+t3+tw2+2tw, k2 = 4a03−t3−tw2−2tw.

If k1 = 0, then the equations U40 = 0 and U31 = 0 of (11) imply c =
(−4fw− 4f − 3t3w− 3t3 − 3tw3 − 9tw2 − 7tw− 4t)/(2t). In this case we have
the set of conditions (c12) obtained above.

If k1 ̸= 0 and k2 = 0, then the equations U40 = 0 and U31 = 0 yield
c = [(4f − 3t3)(w+ 1)− t(3w3 + 9w2 + 7w+ 4)]/(2t). In this case we have the
set of conditions (c11) determined above.

Assume that r1 ̸= 0 and let r2 = 0. Denote h = (3t2 + 3w2 + 8w + 4)/4,
u = (3t2 + 3w2 + 4w)/4. Then r2 ≡ l1l2 = 0, where l1 = 4a03 + t3 + tw2 + 2tw,
l2 = 4a03 − t3 − tw2 − 2tw.

If l1 = 0, then the equations U40 = 0 and U31 = 0 of (11) imply c =
(−4fw− 4f − 3t3w− 3t3 − 3tw3 − 9tw2 − 7tw− 4t)/(2t). In this case we have
the set of conditions (c12) obtained above.

If l1 ̸= 0 and l2 = 0, then the equations U40 = 0 and U31 = 0 yield
c = [(4f − 3t3)(w+ 1)− t(3w3 + 9w2 + 7w+ 4)]/(2t). In this case we have the
set of conditions (c11) determined above.

The case a12 = (−h−3)/4 is contained in w2 = 0 (6912a403− ((64h2 +53h+
11)(h− 1) + 32(32h+ 13)a203)(h− 1)2 = 0).

2. a03 = 0. In this case we express c02, c11, c20, q, n from the equations
{Uij = 0, i+ j = 4} of (11). Then the equation U14 = 0 looks

U14 ≡ fa12(a12 + 1) = 0.

2.1. Assume that a12 = 0. If a21 = 0, then l = (3f)/2. When a30 = −1 we
obtain the set of conditions (c15) for the existence of the invariant cubic

x2 + y2 − x3 = 0.

If a30 ̸= −1 and a = 0, then we obtain the sets of conditions (c16) for the
existence of the invariant cubic

3(x2 + y2) + 2(g − b− c)x3 = 0.

If a21 ̸= 0, then l = 2f . We express s from the equation U50 = 0 and
calculate the resultant of the polynomials U41, U32 with respect to c. We obtain
that Res(U41, U32, c) = −2a21(a

2
21 + a230)m1m2, where m1 = a21 − 2f − 2a,

m2 = a221 − 4a30 − 4.
If m1 = 0, then we get the set of conditions (c17) for the existence of the

invariant cubic
f(x2 + y2) + (a+ f)(cx+ 2fy + x)x2 = 0.

If m1 ̸= 0 and m2 = 0, then we obtain the set of conditions (c18) for the
existence of the invariant cubic
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9(x2 + y2) + x2(u2x+ 6uy − 9x) = 0.

2.2. Assume that a12 = −1 and a21 = 0. If a30 = 0, then we obtain the set
of conditions (c19) for the existence of the invariant cubic

x2 + y2 − xy2 = 0.
If a30 ̸= 0 and a = 0, then we obtain the set of conditions (c20) for the

existence of the invariant cubic
3(x2 + y2) − x(2bx2 + 2cx2 − 2gx2 + 3x2 + 3y2) = 0.

2.3. Assume that a12 = −1 and let a21 ̸= 0. The equation U13 = 0 yields
f = −l. We express n and q from the equations U22 = 0 and U40 = 0. In this
case we have that U50 ≡ n1n2 = 0, where

n1 = a221 + 4a30, n2 = a21(2c+ 3 − a30) + 2(a+ l)(a30 + 1).
When n1 = 0 we obtain the set of conditions (c21) for the existence of the

invariant cubic
9(x2 + y2) − x(vx− 3y)2 = 0.

Suppose that n1 ̸= 0 and let n2 = 0. If l ̸= 0, then we get the set of
conditions (c22) for the existence of the invariant cubic

f(x2 + y2) + (ac+ 2a+ cf + f)x3 + 2f(a+ f)x2y − fxy2 = 0.

If l = 0, then we get the set of conditions (c1) (c = −2, f = 0).

2.4. Assume that a12(a12 + 1) ̸= 0 and let f = 0.
2.4.1. If a21 ̸= 0, then express c, s from the equations U23 = 0, U32 = 0 and

calculate the resultant of the polynomials U50 and U41 with respect to a. We
obtain that Res(U50, U41, a) = 4la12(a12+1)3z1z2z3, where z1 = 4a12a30−a221,
z2 = 4a12a30 + 4a12 − a221 + 4a30 + 4, z3 = (a12 − a30)

2 + a221 ̸= 0.
Let l = 0. If a21 = 2a, then we obtain the set of conditions (c1) (f = 0).
If a21 ̸= 2a and a30 = −a12−1, then the equation U50 ≡ 4a212+4a12+a221 = 0

admits the parametrization a12 = (−4)/(h2 + 4), a21 = (−4h)/(h2 + 4). In
this case we get the set of conditions (c23) for the existence of the invariant
cubic (x2 + y2) − x(hx+ 2y)2 = 0.

Assume that l ̸= 0 and let z1 = 0. In this case a30 = a221/(4a12) and
U41 ≡ l1l2 = 0, where l1 = 2aa12+2a−a12a21−a21+4l, l2 = 4a212+4a12+a221.

If l1 = 0, then we have the set of conditions (c24) for the existence of the
invariant cubic

9uv(x2 + y2) − x(3aux− u2x− 3vy)2 = 0.
If l1 ̸= 0 and l2 = 0, then the equation l2 = 0 admits the parametrization

a12 = (−4)/(h2 + 4), a21 = (−4h)/(h2 + 4). In this case we get the set of
conditions (c25) for the existence of the invariant cubic

(h2 + 4)(x2 + y2) − x(hx+ 2y)2 = 0.
Assume that lz1 ̸= 0 and let z2 = 0. In this case a30 = (a221 − 4a12 −

4)/[4(a12 + 1)] and U41 ≡ b1b2 = 0, where b1 = 2aa12 − a12a21 + 4l, b2 =
4a212 + 4a12 + a221 ̸= 0. If b1 = 0, then we have the set of conditions (c26)
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for the existence of the invariant cubic 9uv(x2 + y2) + u(6au2 − 9a2u− u3 −
9v)x3 + 6uv(3a− u)x2y − 9v(u+ v)xy2 = 0.

2.4.2. If a21 = 0, then a12 = c + 1 and U50 ≡ aa30(a30 + 1) = 0. When
a30 = 0 we have the set of conditions (c27) and the invariant cubic curve

x2 + y2 + (c+ 1)xy2 = 0.

When a30 = −1 we get the set of conditions (c28) and the invariant cubic
x2 + y2 + x(y2 + cy2 − x2) = 0.

If a30(a30 + 1) ̸= 0 and a = 0, the cubic system has two parallel invariant
straight lines.

4. CUBIC SYSTEMS AND INTEGRATING
FACTORS

Let the conditions of Theorem 3.1 be fulfilled. Then the cubic system (6)
has one invariant straight line and one irreducible cubic curve. In this section
we determine the center conditions for cubic system (6) by constructing an
integrating factor of the form

µ =
1

(1 − x)α1Φα2
, (14)

where Φ = x2 + y2 + a30x
3 + a21x

2y + a12xy
2 + a03y

3 and α1, α2 are real
exponents.

According to [8] the function (14) is an integrating factor for system (6) if
and only if the following identity holds

P (x, y)
∂µ

∂x
+Q(x, y)

∂µ

∂y
+ µ

(
∂P

∂x
+
∂Q

∂y

)
= 0. (15)

The identity (15) will be used to find the integrating factors for cubic system
(6) with two invariant algebraic curves.

Theorem 4.1. The cubic system (6) has an integrating factor of the form
(14) if and only if one of the following twenty sets of conditions holds:

(i) d = 2a, k = −a, l = [f(2b−c−1)]/3, m = −(c+1), n = (2bc+2b−c2−3c−
2)/2, p = −f , q = a(2b−c−3), r = 0, s = [(2b−c−2g−3)(c−2b+4)]/6;

(ii) b = [
√

3(a+f)+4]/4, c = [
√

3(5f−3a)−12]/6, d = f−a, g = (b−4)/3,
k = −a, l = f , m = −c− 1, n = −m, p = −f , q = a, r = s = 0;

(iii) b = [4−
√

3(a+f)]/4, c = [
√

3(3a−5f)−12]/6, d = f−a, g = (b−4)/3,
k = −a, l = f , m = −c− 1, n = −m, p = −f , q = a, r = s = 0;

(iv) a = [(2b+ 3c)(2b+ 3c+ 8) + 24fu− 3u2 + 16]/(8u), d = 2a− 8f +u, g =
[(2b+3c)3+12(2b+3c)2+(2b+3c)(48−u2+8fu)+32fu−12u2+64]/(8u2),
k = −a, l = f , m = −c− 1, n = −m, p = −f , q = a, r = s = 0;
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(v) a = [(2b + 3c + 3)2 + 24fu − 3u2]/(8u), d = [(2b + 3c + 3)2 − 8fu +
u2]/(4u), g = [(2b + 3c + 3)3 + (2b + 3c + 3)(8fu − u2) − 8u2]/(8u2),
k = −a, l = r = 0, m = −c − 1, n = [(2b + 3c + 3)(u − 12f)]/(4u),
p = −f , q = −d, s = [(2b + 3c + 3)(u2 − 8fu − (2b + 3c + 3)2)]/(8u2),
4f(2b+ 3c+ 3) − u(2b+ c+ 1) = 0;

(vi) a = 3f , c = (−2b−5)/3, d = [2f(2b+5)]/(1−2b), g = (b−5)/3, k = −a,
l = r = 0, m = (2(b + 1))/3, n = −b, p = −f , q = −d, s = (2 − b)/3,
(2b− 1)2 − 108f2 = 0;

(vii) b = 1/2, c = (−3)/2, d = (a + 15f)/3, g = −1, k = −a, l = f/2,
m = 1/2, n = (3 − 20a2 − 60af)/3, p = −f , q = (2a − 15f)/6, r = 0,
s = (4a2 + 12af + 3)/12, (2a+ 6f)2 − 3 = 0;

(viii) b = 1/2, c = (−3)/2, d = (11a + 21f)/3, g = −1, k = −a, l = f/2,
m = 1/2, n = (27 − 84af − 140a2)/2, p = −f , q = (−2a − 21f)/18,
r = 0, s = (20a2 + 12af + 9)/36, (10a+ 6f)2 − 27 = 0;

(ix) c = −1, d = −2a, f = −a, g = (2b − 5)/2, k = −a, l = (−3a)/2,
m = n = r = 0, p = a, q = (5a)/2, s = (3 − 2b)/2;

(x) c = 1 − 2b, d = 2(a + 2f), g = [(3a + 4f)(1 − b)]/(f), k = −a, l = 2f ,
m = 2(b−1), n = 4af −3b+4f2 +3, p = −f , q = 8(1− b)(a+f), r = 0,
s = [(4ab− 3a+ 4bf − 4f)(b− 1)]/(f);

(xi) b = (2a2+ad−d2+9)/9, c = −b, f = l = p = r = 0, g = (a2+2ad+d2−
9)/6, k = −a, m = −c−1, n = −2m, q = [(d−2a)(a+d+3)(a+d−3)]/18,
s = [(a+ d+ 3)(a+ d− 3)(d2 − 2a2 − ad− 9)]/162;

(xii) b = 1/4, c = −2, d = −2a, f = −a, g = (−1)/4, k = −a, l = a/2,
m = 1, n = (−1)/4, p = a, q = a/2, r = s = 0;

(xiii) b = (v3 − 3av2 + 27a − 9v)/(18v), c = −2b − 2, d = [2(2v − 3a)]/3,
f = (v − 3a)/3, g = (3av2 − 27a − 4v3)/(18v), k = −a, m = −c − 1,
n = [4v(v − 3a)]/9, p = (3a − v)/3, q = (12av2 − 27a − 4v3)/27, r = 0,
s = [v(v3 − 3av2 + 27a)]/81, v = 3(a− l);

(xiv) c = −2(b + 1), d = 2(a + 2f), g = [−(2(2b + 1)f + 3ab)]/f , k = −a,
l = −f , m = 2b+1, n = 4f(a+f), p = −f , q = −((8b+1)a+4(2b+1)f),
r = 0, s = [(2bf + f + 2ab)(2b+ 1)]/f ;

(xv) b = (2u4+9uv−9v2−6au3)/(18uv), c = −(u4+9uv+9v2−3au3)/(9uv),
f = p = r = 0, g = (6au2 − 9a2u− u3 − 3v)/(6v), k = −a, m = −c− 1,
n = [(3a−u)(u−v)u]/(6v), q = (9a2u2−6au3−18av+u4 +9uv)/(18v),
s = [(9a2u2 − 6au3 − 54av + u4 + 9uv)(u − 3a)u]/(162v2), u = 2a − d,
v = 2a− d+ 6l;
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(xvi) a = [−2(h4l + h3 + 8h2l + 16l)]/[h2(h2 + 4)], b = (−2h4l + h3 − 16h2l −
32l)/[2h(h2+4)], c = (h4l−h3+8h2l−8h+16l)/[h(h2+4)], d = [2(h4l−
2h3 + 8h2l+ 16l)]/[h2(h2 + 4)], f = p = r = 0, g = [−2(h2 + 1)]/(h2 + 4),
k = −a, m = −c−1, n = (3hl)/2, q = [−2(2h4l−h3+10h2l+8l)]/[(h2+
4)h2], s = (h3 + 2h2l + 8l)/[(h2 + 4)h];

(xvii) a = (h4l + 8h2l − 4h + 16l)/[2(h2 + 4)], b = (h3 − h4l − 8h2l + 2h −
16l)/[(h2 + 4)h], c = (h4l − h3 + 8h2l − 8h + 16l)/[(h2 + 4)h], d =
−(h4l+8h2l+8h+16l)/[2(h2+4)], f = p = r = 0, g = (−3h2)/[2(h2+4)],
k = −a, m = −c−1, n = [2(h4l+5h2l−h+4l)]/[(h2+4)h], q = (3h2l)/4,
s = [(h− h2l − 4l)h]/[2(h2 + 4)];

(xviii) b = (2u4+9uv−9v2−6au3)/(18uv), c = −(u4+18uv+9v2−3au3)/(9uv),
f = p = r = 0, g = (6au2 − 9a2u− u3 − 9v)/(6v), k = −a, m = −c− 1,
n = (3au3−9au2v−u4 +3u3v−9uv−9v2)/(18uv), q = (9a2u2−6au3 +
u4 + 9uv)/(18v), s = [(9a2u− 6au2 + u3 + 9v)(u3 + 9v− 3au2)]/(162v2),
u = 2a− d, v = 6l − 2a+ d;

(xix) c = 2(b − 1), d = −a, f = n = p = r = s = 0, g = (−1)/2, k = −a,
l = −ab, m = 1 − 2b, q = a/2;

(xx) c = 2b − 3, d = −a, f = p = r = 0, g = (−3)/2, k = −a, l = a(1 − b),
m = 2(1 − b), n = b− 1, q = (3a)/2, s = 1/2.

Proof. Suppose at least one set of the conditions (c1)–(c28) from Theorem
3.1 is satisfied. Then the cubic system (6) has the invariant straight line
1 − x = 0 and the invariant cubic Φ = 0 of the form (9). The function (14)
is an integrating factor for system (6) if and only if the identity (15) holds.
Identifying the coefficients of the monomials xiyj in (15), we obtain a system
of five equations

{Fij = 0, i+ j = 1, 2} (16)

for the unknowns α1, α2 and the coefficients of system (6).

In Case (c1) the equations of (16) give α1 = (c + 1 − 2b)α2. We have the
set of conditions (i) for the existence of the integrating factor (14), where
Φ = 3(x2 + y2) + (c − 2b + 2g + 3)x3 + 6ax2y + 3(c + 1)xy2 + 2fy3 and
α1 = c+ 1 − 2b, α2 = 1.

In Case (c2) the equations F10 = 0, F01 = 0 of (16) yield α2 = 4/3, α1 =
[
√

3(a + f) − 4b + 4]/6 and the equations Fij = 0, i + j = 2 imply b =

(
√

3(a + f) + 4)/4. We obtain the set of conditions (ii) and the integrating
factor (14), where Φ = 9(x2 + y2)(4x− 4− 3fy+ ay) +

√
3(a− 3f)(x2 + 9y2)x

and α1 = 0, α2 = 4/3.
In Case (c3) the equations F10 = 0, F01 = 0 of (16) yield α2 = 4/3, α1 =

[−
√

3(a+f)−4b+4]/6 and the equations Fij = 0, i+j = 2 imply b = (−
√

3(a+
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f)+4)/4. We get the set of conditions (iii) for the existence of the integrating
factor (14), where Φ = 9(x2 + y2)(4x− 4− 3fy+ ay)−

√
3(a− 3f)(x2 + 9y2)x

and α1 = 0, α2 = 4/3.
In Case (c4), from the equations F10 = 0, F01 = 0 of (16), we obtain α2 =

4/3 and α1 = [2(12fa12−ua12− bu+ 12f)]/(3u). Then the equations Fij = 0,
i+j = 2 imply 12fa12−ua12−bu+12f = 0. Since c = [2(a12u−4fa12−4f)]/u,
we find that a12 = (2b + 3c)/4. In this case we get the set of conditions (iv)
for the existence of the integrating factor (14), where Φ = 12u2(x2 + y2) +
((2b+ 3c+ 4)3 − 12u2)x3 + 3u(2b+ 3c+ 4)2x2y + 3u2(2b+ 3c)xy2 + u3y3 and
α1 = 0, α2 = 4/3.

In Case (c5) the equations F10 = 0, F01 = 0 of (16) yield α2 = 4/3, α1 =
(24fa12 − 2ua12 − 2bu+ 3u)/(3u) and the equations Fij = 0, i+ j = 2 imply
12fa12 − a12u− bu = 0. Since c = (2ua12 − 8fa12 − u)/u, we find that a12 =
(2b+3c+3)/4. In this case we obtain the set of conditions (v) for the existence
of the integrating factor (14), where Φ = 12u2(x2 +y2)+((2b+3c+3)x+uy)3

and α1 = 1, α2 = 4/3.
In Case (c6) the equations F10 = 0, F01 = 0 of (16) yield α1 = (−2b −

3c − 2)/2, α2 = 4/3 and the equations Fij = 0, i + j = 2 imply c = (−2b −
5)/3, a03 = (−2b − 3c)/2. Since 108a203 − 1 = 0, we find that the set of
conditions (vi) for the existence of the integrating factor (14), where Φ =
(2b− 1)(x2 + y2)(x− 2) + 2(9x2 + y2)fy and α1 = 1, α2 = 4/3.

In Case (c7) the system of equations (16) has real solutions if and only if
b = 1/2, c = (−3)/2, α1 = (5 − 3α2)/2 and (3α2 − 5)(3α2 − 7) = 0.

If α2 = 5/3, then α1 = 0. We find the set of conditions (vii) for the existence
of the integrating factor (14), where

Φ = 6(a+ 3f)(x2 + y2)(x− 2) − (9x2 + y2)y.
If α2 = 7/3, then α1 = −1. We get the set of conditions (viii) for the

existence of the integrating factor (14), where
Φ = 2(5a+ 3f)(x2 + y2)(x− 2) − (9x2 + y2)y.

In Case (c8) we express α1 and α2 from the equations F10 = 0, F01 = 0 of
(16). Then we find b from F02 = 0 and a from F20 = 0. In this case F11 ̸= 0
and we cannot construct an integrating factor (14) for system (6).

In Case (c9) the equations of (16) yield α1 = [−(5v4 + 6v2 + 9 + 18(v2 +
1)2b)α2]/[9(v2 + 1)2], c = [2(−7v4 − 12v2 − 9)]/[9(v2 + 1)2]. This case is
contained in (i).

In Case (c10) the equations of (16) yield α1 = 0, α2 = 5/3, c = (−3)/2,
b = 1/2, t2 = 12. This case is contained in (vii).

In Case (c11) we express α1 and α2 from the equations F10 = 0, F01 = 0 of
(16). Then the equations Fij = 0, i+j = 2 imply b = 1/2, w = −1, 3t2−1 = 0.
Since a = (−6ft − 1)/(2t), we find that the set of conditions (vii) for the
existence of the integrating factor (14).
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In Cases (c12), (c13) and (c14) we have the set of conditions (vii) for the
existence of the integrating factor (14).

In Case (c15) the equations F10 = 0, F01 = 0 of (16) yield α1 = (−1)/2,
α2 = 2 and the equations Fij = 0, i+ j = 2 imply c = −1, f = −a. We obtain
the set of conditions (ix) for the existence of the integrating factor (14), where
Φ = x2 + y2 − x3.

In Case (c16) we have F11 ≡ 2f ̸= 0. We cannot construct an integrating
factor (14) for system (6).

In Case (c17), from the equations of (16), we find that α1 = −1, α2 = 2,
c = 1−2b. We obtain the set of conditions (x) and the integrating factor (14),
where Φ = f(x2 + y2) + 2(a+ f)((1 − b)x+ fy)x2.

In Case (c18) the equations F10 = 0, F01 = 0 of (16) yield α2 = 4/3, α1 = 0
and the equations Fij = 0, i+ j = 2 imply f = 0, b = (9 + 3au− u2)/9. Since
u = a+ d we obtain the set of conditions (xi) and the integrating factor (14),
where Φ = 9(x2 + y2) + x2((a+ d)2x+ 6(a+ d)y − 9x).

In Case (c19) the equations of (16) give α1 = (−1)/2, α2 = 2, f = −a,
b = 1/4, c = −2 and we obtain the set of conditions (xii) for the existence of
the integrating factor (14), where Φ = x2 + y2 − xy2.

In Case (c20) we have F10 ≡ 2f ̸= 0. In this case we cannot construct an
integrating factor (14) for system (6).

In Case (c21) the equations of (16) imply α1 = 0, α2 = 2, b = (v3 − 3av2 +
27a − 9v)/(18v), v = 3(a − l). We obtain the set of conditions (xiii) for the
existence of the integrating factor (14), where Φ = 9(x2 + y2) − x(3(a− l)x−
3y)2.

In Case (c22) the equations of (16) yield α1 = 0, α2 = 2, c = −2(b+ 1). We
get the set of conditions (xiv) for the existence of the integrating factor (14),
where Φ = f(x2 + y2) − (2ab+ 2bf + f)x3 + 2f(a+ f)x2y − fxy2.

In Case (c23) we obtain the set of conditions (i) (a = (−2h)/(h2 + 4),
c = (−h2 − 8)/(h2 + 4), f = 0, g = (2bh2 + 8b− 5h2 − 4)/[2(h2 + 4)]) for the
existence of the integrating factor (14).

In Case (c24) the equations of (16) give α1 = 1/2, α2 = 3/2, b = (2u4 +
9uv − 9v2 − 6au3)/(18uv). We get the set of conditions (xv) for the existence
of the integrating factor (14), where Φ = 9uv(x2 +y2)−x(3aux−u2x−3vy)2.

In Case (c25) we express α1, α2 and a from the equations of (16). If b =
(h3− 2h4l− 16h2l− 32l)/[2h(h2 + 4)], then we have the set of conditions (xvi)
and the integrating factor (14), where Φ = (h2 + 4)(x2 +y2)−x(hx+ 2y)2 = 0
and α1 = 1/2, α2 = 3/2.

If b = (h3 − h4l − 8h2l + 2h − 16l)/[h(h2 + 4)], then we obtain the set
of conditions (xvii) for the existence of the integrating factor (14), where
Φ = (h2 + 4)(x2 + y2) − x(hx+ 2y)2 = 0 and α1 = 0, α2 = 3/2.

In Case (c26) the equations of (16) yield α1 = 0, α2 = 3/2, b = (2u4 +
9uv − 9v2 − 6au3)/(18uv). We determine the set of conditions (xviii) and the
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integrating factor (14), where Φ = 9uv(x2+y2)+u(6au2−9a2u−u3−9v)x3+
6uv(3a− u)x2y − 9v(u+ v)xy2.

In Case (c27) the equations of (16) give α1 = 1/2, α2 = 3/2, c = 2(b − 1).
We find the set of conditions (xix) for the existence of the integrating factor
(14), where Φ = x2 + y2 + (2b− 1)xy2.

In Case (c28) the equations of (16) yield α1 = 0, α2 = 3/2, c = 2b− 3 and
we obtain the set of conditions (xx) for the existence of the integrating factor
(14), where Φ = x2 + y2 + x(2by2 − 2y2 − x2).

Theorem 4.2. The origin is a center for cubic differential system (6) with
the invariant straight line 1 − x = 0 and one irreducible invariant cubic x2 +
y2+a30x

3+a21x
2y+a12xy

2+a03y
3 = 0 if one of the conditions (i)–(xx) holds.

The proof of Theorem 4.2 follows directly from Theorem 4.1 and local in-
tegrability of the cubic system (6) in the neighborhood of O(0, 0).
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[15] M. Dukarić, On integrability and cyclicity of cubic systems, Electr. J. Qual. Theory
Differ. Eqns., 55(2020), 1–19.

[16] M. Han, V. Romanovski, X. Zhang, Integrability of a family of 2-dim cubic systems
with degenerate infinity, Rom. Journ. Phys., 61, 1-2(2016), 157–166.

[17] J. Llibre, On the centers of cubic polynomial differential systems with four invariant
straight lines, Topological Methods in Nonlinear Analysis, 55, 2(2020), 387–402.

[18] A. M. Lyapunov, The general problem of stability of motion. Gostekhizdat, Moscow,
1950 (in Russian).

[19] V. G. Romanovski, D. S. Shafer, The center and cyclicity problems: a computational
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Abstract A second-order theory for relativistic heat-conducting fluids is derived in a
general frame, independently of the conventions used by Eckart [3] and Landau-
Lifshitz [4].

Based on the hydrodynamic for such a relativistic heat–conducting fluid,
the propagation of weak discontinuity in the ultra–relativistic limit is studied.

The general features of weak discontinuity waves are presented and two
kinds of waves are identified: the hydrodynamic and the heat waves. Both these
two kind of waves can be specialized in Landau–Lifshitz [15] and Eckart [16]
schemes respectively.

Moreover, a differential equation, named growth equation, is obtained to
describe the decay and the growth of discontinuity, for the hydrodynamical
wave propagating along the rays. The solution is in an integral form and
special case of diverging waves are also discussed.

Keywords: Hyperbolic relativistic model, characteristic velocities, relativity, fluid dynam-

ics, irreversible thermodynamics, weak discontinuity.
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1. INTRODUCTION

The study of space–time evolution and non–equilibrium properties of mat-
ter produced in high energy heavy ion collisions, such as those at the Rela-
tivistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) using
relativistic dissipative fluid dynamics, is relevant to understand the observ-
ables. High energy heavy ion collisions offer the opportunity to study the
properties of hot and dense matter. To do so, its space-time evolution has
to be followed, which is affected both by the state’s equation and by dissipa-
tive, non–equilibrium processes. In contexts like RHIC and LHC [12, 26, 27],
some interesting applications require to develop a robust model for dissipative
processes in relativistic hydrodynamics [28, 29, 30, 31].

In order to unify in a single and coherent scheme all irreversible phenomena
occurring in a simple fluid or in mixtures, standard non–equilibrium thermo-
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dynamics works with two basic ideas [1, 2]. The first one is the local equilib-
rium hypothesis, whose mathematical expression is given by the equilibrium
Gibbs law in its local form. It implies that, out of equilibrium, the basic state
functions such as the entropy, depend locally on the same of thermodynamic
variables as in equilibrium. The second idea is that, in the presence of dissi-
pative processes, there is a local entropy source strength τ (entropy variation
per unit volume and unit time), which, by the second law of thermodynamics,
is always non–negative.

The first theories of relativistic dissipative fluid dynamics are due to Eckart [3]
and Landau–Lifshitz [4]. The difference in formal appearance stems from dif-
ferent choices for the definition of the hydrodynamical 4–velocity. In Eckart’s
formulation [3], the 4–velocity is directly related to the particle flux, while,
in Landau–Lifshitz’s approach [4], it is directly related to the energy flux.
Both these conventional theories of dissipative fluid dynamics are based on
the assumption that the entropy 4–current contains terms up to linear order
in dissipative quantities and hence they are referred to as first order theories
of dissipative fluids. By this assumption, the resulting equation for heat–flux
is linear in the thermodynamic forces, and the resulting equations of motion
are parabolic in structure and does not satisfy causality principle [5].

In order to solve this feature, extended theories of dissipative fluid were in-
troduced. These causal theories are based on the assumption that the entropy
4–current should include quadratic terms in the dissipative fluxes and hence
they are referred to as second order theories. Two path can be followed: the
first is named the extended irreversible thermodynamics, developed by Jou et
al. [6], Müller and Ruggeri [7], that allows the inclusion of the dissipative quan-
tities in the expression of the entropy density and the entropy flux due to a
generalized Gibbs relation,; the second, following Israel and Stewart [8, 9, 10],
Muronga [11, 12], but also Giambò et al. [15, 16], introduces additional dy-
namical fields through the assumption that the entropy 4–current includes
quadratic terms in the heat flux.

These models have been taken up and developed later by Garcia–Colin
and Sandoval–Villalbalzo [17], Mondragon–Suarez et al. [18], Lopez–Monsalvo
[19]. There is also an important approach to the heat conduction, in which
a multi-fluids system is considered whose species are represented by a parti-
cle number density current and an entropy flux, in general not aligned with
the particle flux [20, 21]. This model has been recovered and developed re-
cently by Lopez-Monsalvo and Andersson [22] and Andersson and Comer [23].
The resulting equations for the dissipative fluxes are hyperbolic and a causal
propagation of signals is admitted [8, 9, 10, 11, 12, 24, 25].

In the second order theories the space of thermodynamic quantities is ex-
tended to include the dissipative quantities which are treated as field variables
as well.
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In light of some recent results due to Silva et al. [32], Heinz et al. [33],
Ván and Biró [34], Muronga [12], Maartens [30], the authors aim to develop
a general relativistic second-order causal theory for heat-conducting, viscous
and particle–creating relativistic fluid valid both in Eckart and Landau-Lifshitz
frames.

The present paper is organized as follows. After a brief review (Section 2) of
basic concepts of equilibrium thermodynamics for relativistic ideal fluids, i.e.
every dissipative effects are neglected and the entropy 4-current is conserved, in
Section 3 a second-order theory for relativistic heat-conducting fluids is formu-
lated. By using the fundamental Gibbs equation at equilibrium, i.e. no extra
terms are added in this fundamental thermodynamic relations although dissi-
pative effects are considered, the expression for the non-equilibrium entropy
4-current is derived, depending on the heat flux and the equilibrium variables
as well. By imposing the second law of thermodynamics, hyperbolic transport
equations for dissipative fluxes are obtained. In Section 4, weak discontinuity
wave propagation compatible with the hyperbolic system of governing equa-
tions for an ultra–relativistic heat–conducting fluid is studied. Among others,
two propagation modes are found: the hydrodynamic and the heat waves. In
Section 5, the discontinuities associated to hydrodynamic wave are derived,
as well as the transport equation for the discontinuity amplitude, still in the
ultra-relativistic case. Finally, the behaviour of discontinuity amplitude at the
wave front is investigated in detail. Comments and conclusions are reported
in Section 6.

Throughout the article, a coordinate system xα, being x0 = t the time
and xi the spatial coordinates in the flat-space time of special relativity is
introduced. The units adopted are such that the velocity of light is unitary.
The sign convention used follows the time-like convention with the signature
(+,−,−,−), and uα is a time-like vector, uαuα > 0. The metric tensor is
taken to be gαβ = diag(1,−1,−1,−1), the Minkowski tensor.

Greek indices range over 0, 1, 2, 3, and the Latin ones over 1, 2, 3.
The notation ∂α = ∂/∂xα represents the partial derivative with respect to

xα.

2. BASIC OF EQUILIBRIUM FLUID DYNAMICS

When we study the equilibrium thermodynamics three important variables
must be taken into account: the energy density ρ, the particle number density
r and the specific entropy S. The energy density and the particle number
density are related by

ρ = r(1 + ε) , (1)
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where ε is the specific internal energy.
These basic quantities will be referred to as primary thermodynamic variables,
from which to deduce all other state variables, such as the pressure p.

From the equation of state for the entropy density s = rS, s = s(ρ, r), and
Euler relation

µ =
ρ+ p

r
− TS , (2)

defining chemical potential µ, the fundamental Gibbs equation can be written
as:

Tds = dρ− µdr , (3)

where T denotes the temperature. Eq. (2) defines the last unknown thermo-
dynamic function p.

In relativistic fluid dynamics it is useful to rewrite the thermodynamic quan-
tities in terms of covariant objects, namely the 4–vector particle number cur-

rent Rαeq, the energy-momentum tensor Tαβeq and the entropy 4–current Sαeq,
defined by [4, 35]

Rαeq = ruα , (4)

Tαβeq = ρuαuβ − pγαβ , (5)

Sαeq = rSuα , (6)

where uα is the unitary hydrodynamical 4–velocity and γαβ = gαβ − uαuβ

is the spatial projection tensor orthogonal to uα. The subscript eq denotes
quantities evaluated at equilibrium.

Relating the pressure to the energy density and the particle number density
by a state equation, the equilibrium state of an ideal relativistic fluid can be
described by the five independent variables, ρ, r, uα.

The thermodynamic relation (3) can be written in a form involving the

covariant variables Rαeq, T
αβ
eq and Sαeq:

dSαeq = −µ

T
dRαeq +

1

T
uβdT

αβ
eq . (7)

Starting from (2) and (3), simple computations yield the following relations

Sαeq =
p

T
uα − µ

T
Rαeq +

1

T
uβT

αβ
eq , (8)

d
( p
T
uα
)

= Rαeqd
(µ
T

)
− Tαβeq d

(uβ
T

)
. (9)

Thus, the conservation laws for particle number 4–current, energy- momen-
tum tensor and entropy 4–current, describing the motion of an ideal relativistic
fluid,

∂αR
α
eq = 0 , (10)
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∂αT
αβ
eq = 0 , (11)

∂αS
α
eq = 0 , (12)

can be written in the following covariant form

uα∂αr + r∂αu
α = 0 ,

uα∂αρ+ (ρ+ p)∂αu
α = 0 ,

(ρ+ p)uβ∂βu
α − γαβ∂βp = 0 ,

uα∂α(rS) + rS∂αu
α = 0 ,

(13)

where equation (13)2 is the projection of (11) along uα, while (13)3 is the
spatial projection of (11).

3. NON–EQUILIBRIUM STATES

In order to take into account dissipative processes, as heat conduction,

additional terms in the expressions of primary variables, Rαeq, T
αβ
eq and Sαeq

have to be considered.
The next step is to find evolution equations for these extra variables. Whereas

the evolution equations for the equilibrium variables are given by the usual
conservation laws, general criteria do not exist concerning the evolution equa-
tions of the dissipative fluxes, with the exception of the restriction imposed
on them by the second law of thermodynamics.

Moreover, the presence of a heat transfer usually involves a problem regard-
ing the definition of the hydrodynamical 4–velocity uα. Following Landau-
Lifshitz approach [4], uα is defined as the 4–velocity of energy transport, i.e.
uα is the unique unit time–like eigenvector of Tαβ; in Eckart’s formulation, uα

is identified by the 4–velocity of particle transport (particle frame) [3]. For-
mally, the particle frame is the unique time–like vector parallel to Rαeq. Here,
a unified covariant description of a relativistic heat–conducting fluid is devel-
oped in a general frame independently of the conventions used by Eckart and
Landau–Lifshitz. The theories of Eckart and Landau–Lifshitz will be seen to
be special cases of this general formulation. Thus, in presence of irreversible
processes, small terms ∆Rα, ∆Tαβ and ∆Sα are added in (4), (5) and (6)
respectively, namely

Rα = ruα + ∆Rα , with uα∆Rα = 0 , (14)

Tαβ = Tαβeq + ∆Tαβ , (15)

Sα = rSuα + ∆Sα (16)
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the corresponding conservation laws for particle current and for energy-
momentum tensor must be satisfied

∂αR
α = 0 , (17)

∂αT
αβ = 0 , (18)

while the second law of thermodynamics requires the entropy source to be non
negative

∂αS
α ≥ 0 . (19)

The condition uα∆Rα = 0 means that ∆Rα is a space–like vector. The devi-
ations ∆Rα, ∆Tαβ and ∆Sα from local equilibrium contain the information
about particle drift, heat flux and entropy 4–current at non–equilibrium states.

Now, the expressions of such deviations have to be deduced and the evolu-
tion equation for particle drift and heat flux must be determined, according
to the second law of thermodynamics.

The conservation of Rα, (17), yields

uα∂αr + r∂αu
α + ∂α(∆Rα) = 0 , (20)

whereas, from equation (18) it follows that

∂αT
αβ
eq + ∂α(∆Tαβ) = 0 . (21)

Using (13)1, (13)2, (20) and (21), and remembering the definition of the chemi-
cal potential µ, from Gibbs equation (3) the following relation on the covariant
derivative along the world lines is obtained

T∂α(rSuα) = µ∂α(∆Rα) − uβ∂α(∆Tαβ) . (22)

In order to derive the additional equations for ∆Rα and ∆Tαβ from a
phenomenological treatment, the expression of the non–equilibrium (also re-
ferred as extended) entropy 4–current is needed [7]. The most general non–
equilibrium entropy 4–current, Sα = Sα(Rα, Tαβ), for a relativistic fluid in
presence of particle drift and heat conduction only, i.e. other dissipative phe-
nomena are neglected, has the form [8, 9, 10]

Sα =
p

T
uα − µ

T
Rα +

1

T
uβT

αβ +Qα(∆Rα,∆Tαβ) , (23)

where Qα is a function of the deviations ∆Rα and ∆Tαβ.
For small deviations, in order to obtain causal and hyperbolic equations, it

is sufficient to keep only quadratic terms in the Taylor expansions of Qα.
Thus, for the fluids under investigation, by virtue of (2), (4) and (5), to-

gether with the relations [35]

∆Rα = να , ναuα = 0 , νανα < 0 , (24)
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∆Tαβ = qαuβ + qβuα , qαuα = 0 , qαq
α < 0 , (25)

the most general algebraic form for the 4-current of extended entropy, at most
second order in the dissipative fluxes ∆Rα and ∆Tαβ, is [8, 9, 10]

Sα = rSuα − µ

T
να +

1

T
qα + {νµ (α11ν

µ + α12q
µ) + qµ (α21ν

µ + α22q
µ)}uα ,

(26)
where qα and να are, respectively, the heat flow and the particle drift, and the
definition of Rα and Tαβ have been considered. Recalling that the phenomeno-
logical coefficients αij are supposed to obey Onsanger’s reciprocity relations,
it follows that α12 = α21. The deviations ∆Rα and ∆Tαβ describe the effects
due to the presence of particle drift and heat flux in non–equilibrium states.
These 4–vector are space–like and orthogonal to the 4–velocity uα.

From (26) it follows that the effective entropy density measured by co–
moving observer is

uαS
α = rS + {νµ (α11ν

µ + α12q
µ) + qµ (α21ν

µ + α22q
µ)} . (27)

Since the entropy density has a maximum at equilibrium, the conditions
νανα < 0 and qαqα imply that the quadratic form is negative semi definite.

The divergence of extended current (26), together with equation (22), leads
to the following expression for the generalized entropy production

∂αS
α = −να

{
∂α
( µ
T

)
− 2α11u

λ∂λνα − 2α12u
λ∂λqα − α12qα∂λu

λ

−qα∂λ(α12u
λ) − να∂λ(α11u

λ)
}

−qα
{
−∂α

(
1
T

)
− 1

T u
λ∂λuα − να∂λ(α12u

λ) − 2α12u
λ∂λνα

−α12να∂λu
λ − qα∂λ(α22u

λ) − 2α22u
λ∂λqα

}
≥ 0 .

(28)

Since this production has to be non-negative and the particle drift and the
heat flux are space–like vectors, the following phenomenological equations for
να and qα must hold

να = −χ1γ
β
α

{
−µ∂βT + T∂βµ− 2α11T

2uλ∂λνβ − 2α12T
2uλ∂λqβ

−α12T
2qβ∂λu

λ − qβT
2∂λ(α12u

λ) − νβT
2∂λ(α11u

λ)
}
,

(29)

qα = −χ2γ
β
α

{
∂βT − Tuλ∂λuβ − νβT

2∂λ(α12u
λ) − 2α12T

2uλ∂λνβ

−qβT 2∂λ(α22u
λ) − α12T

2νβ∂λu
λ − 2α22T

2uλ∂λqβ
}
,

(30)
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where the phenomenological coefficients χ1 and χ2 (≥ 0) are, respectively, the
diffusion coefficient and heat conductivity coefficient of the fluid.

Thus, the set of hyperbolic equations for a relativistic heat–conducting fluid
is

uα∂αr + r∂αu
α + ∂αν

α = 0 ,

rfuβ∂βu
α − γαβ∂βp+ uβ∂βq

α + qβ∂βu
α + qα∂βu

β + uαuβqλ∂βuλ = 0 ,

rTuα∂αS + ∂αq
α − f∂αν

α − uαqβ∂αu
β = 0 ,

να + χ1γ
β
α

{
−µ∂βT + T∂βµ− 2α11T

2uλ∂λνβ − 2α12T
2uλ∂λqβ

−α12T
2qβ∂λu

λ − qβT
2∂λ(α12u

λ) − νβT
2∂λ(α11u

λ)
}

= 0 ,

qα + χ2γ
β
α

{
∂βT − Tuλ∂λuβ − νβT

2∂λ(α12u
λ) − 2α12T

2uλ∂λνβ

−qβT 2∂λ(α22u
λ) − α12T

2νβ∂λu
λ − 2α22T

2uλ∂λqβ

}
= 0 ,

(31)
where the 11 independent field variables are r, uα, T , να and qα, and f is the
index of the fluid, defined by the relation rf = p + ρ. The pressure p, the
entropy S and the energy density ρ are all functions of the state variables r
and T . Also the coefficients α11, α12 and α22 can be considered as functions
of the particle number density and temperature.

4. WEAK DISCONTINUITIES PROPAGATION

A very interesting aspects of dissipative hydrodynamics is the study of dis-
persion relation for the properties of a perturbed plane-waves [26] or the study
of characteristic surfaces [36]. In the present paper it is studied a weak discon-
tinuity wave propagation compatible with the hyperbolic system of governing
equations (31), [42, 43, 44, 45].

In a domain Ω of space-time V4, let Σ be a moving singular hyper–surface,
defined by

φ(xα) = 0 , xα = xα(wA) , (32)

where wA, A = 0, 1, 2, are the coordinates on Σ; it is supposed to be a weak-
discontinuity surface on which the variables r, uα, T , να and qα are continuous,
but their normal derivatives may exhibit jump discontinuities. The jump on
Σ in a flow quantity F is denoted by [F ] = F1 − F0, where F0 and F1 are the
limits of F from each side of Σ.

Thus, the jumps on Σ in the normal derivatives of the particle number r,
the unitary hydrodynamical 4–velocity uα, the temperature T , the particle
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drift να and the heat flux qα can be denoted as follows

[∂αr]N
α = −ξ , [∂βu

α]Nβ = −ωα ,

[∂αT ]Nα = −ϑ , [∂βν
α]Nβ = −ηα , [∂βq

α]Nβ = −πα .
(33)

Nα is the space–like unit vector orthogonal to Σ, NαNα = −1.
With respect to a rest frame determined by some preferred time–like unit

vector uα, the velocity, λ, of propagation in the direction of some orthogonal
unit space–like vector nα will be given, for a suitably normalized Nα, by

λ =
L

ℓ
, nα =

1

ℓ
(Nα − Luα) , (34)

where

L = uαNα , ℓ2 = 1 + L2 . (35)

If the pressure is a function of the energy density, i.e. p = p(ρ) = p [ρ(r, T )],
the Gibbs relation yields(

∂p

∂r

)
T

=
dp

dρ

(
∂ρ

∂r

)
T

= p′(f + TrS′
r) , (36)

(
∂p

∂T

)
r

=
dp

dρ

(
∂ρ

∂T

)
r

= p′TrS′
T (37)

For an ultra–relativistic fluid, the energy density ρ can be approximated to

ρ = r(1 + ε) = r + rε ≃ rε = CV rT , (38)

where CV is the specific heat at constant volume. The pressure depends only
on ρ, p = ρ(γ − 1) = RrT , where

γ =
CP
CV

, R = CP − CV , (39)

R is the universal constant of gas and CP is the specific heat at constant
pressure. Then, we obtain the following relations for the index of the fluid
and for the chemical potential holds

f = T (CV +R) , µ = f − TS . (40)

Moreover, the entropy, S = S(r, T ), is such that(
∂S

∂r

)
T

= −R
r
,

(
∂S

∂T

)
r

=
CV
T

. (41)
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Making use of Hadamard’s method for characteristic hyper-surfaces of pos-
sible discontinuities [37, 38, 39], taking account of the first order compatibility
conditions derived by Thomas [40, 41], and assuming that the state ahead of
Σ is uniform and in thermodynamic equilibrium, i.e. να = 0 and qα = 0 along
the unperturbed flow direction from (31) the following system in the unknown
discontinuities ξ, ωα, ϑ, ηα and πα, is obtained



Lξ + rωαNα + ηαNα = 0 ,

rfLωβ − γαβNα(RTξ + rRϑ) + Lπβ = 0 ,

RTLξ − rCV Lϑ− πN + fηN = 0 ,

γβαNβ

(
−R
r
T 2ξ + CV Tϑ

)
+ 2α11T

2Lηα + 2α12T
2Lπα = 0 ,

−γβαNβϑ+ TLωα + 2α12T
2Lηα + 2α22T

2Lπα = 0 .

(42)

As first, from system (42), can be obtained the solution L = 0, which
represents a wave moving with the fluid. The corresponding discontinuities
are given by

ωαNα = −1

r
ηαNα ,

παNα = fηαNα ,

ξ = 0 ,

ϑ = 0 .

(43)

Since the coefficients characterizing the discontinuities exhibit seven degrees
of freedom, the system (42) admits seven independent eigenvectors correspond-
ing to L = 0 in the space of field variables.

In what follows, it is suppose L ̸= 0. The equations (42)2, (42)4 and (42)5,
multiplying by Nα, give the reduced system
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Lξ + rωN + ηN = 0 ,

RTℓ2ξ + rRℓ2ϑ+ rfLωN + LπN = 0 ,

RTLξ − rCV Lϑ− πN + fηN = 0 ,

R

r
T 2ℓ2ξ − CV Tℓ

2ϑ+ 2α11T
2LηN + 2α12T

2LπN = 0 ,

ℓ2ϑ+ TLωN + 2α12T
2LηN + 2α22T

2LπN = 0 ,

(44)

in the unknown discontinuities ξ, ωN , ϑ, ηN and πN , being ωN , ηN and πN
the components of the vectors ωα, ηα and πα normal to Σ.

System (44) admits non trivial solutions if, and only if, the determinant
of the coefficient matrix vanishes. Thus, the characteristic equation for the
velocity of propagation λ = L/ℓ is(

CV L
2 −Rℓ2

) {(
4α11α22r

2fT 4 − 2α11rT
3 − 4α2

12r
2fT 4

)
L2

−
(
2α12rfT

3 + 2α11rT
3 + 2α22rf

2T 3 − fT 3
)
ℓ2
}

= 0 .
(45)

Thus, two well–behaved propagation modes exist, which are interpretable as

a hydrodynamic wave, with velocity λ21 =
dp

dρ
=

R

CV
;

a heat wave, with velocity λ22 =
4α12rfT + 2α11rT + 2α22rTf

2 − f
4(α11α22 − α2

12)r
2T 2f − 2α11rT

.

5. DISCONTINUITY TRANSPORT EQUATION

In this section the discontinuities associated to the hydrodynamic wave for
an ultra-relativistic fluid, and the transport equation describing the evolution,
along the rays, of the amplitude of the discontinuities are determined. Finally,
the main features of the solution of this equation are investigated.

From system (44), the discontinuities associated to the hydrodynamic wave
are

ωα = nαψ ,

ξ =
rℓ

L
ψ ,

ϑ =
TL

ℓ
ψ ,

ηα = 0 , ηN = 0 ,

πα = 0 , πN = 0 ,

(46)
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where ψ = −ωN/ℓ is the amplitude of discontinuity associated to this wave.
In order to deduce the transport equation for ψ, the discontinuities in the

second partial derivatives of the field variables must be considered and are
denoted by

[
∂2r

∂xα∂xβ

]
NαNβ = ξ̄ ,

[
∂2uα

∂xβ∂xγ

]
NβNγ = ω̄α ,

[
∂2T

∂xα∂xβ

]
NαNβ = θ̄ ,

[
∂2να

∂xβ∂xγ

]
NβNγ = η̄α ,

[
∂2qα

∂xβ∂xγ

]
NβNγ = π̄α .

(47)

Differentiating the equations (31) with respect to xγ , computing the jumps
and then multiplying by Nγ , using (47) and the first and second order com-
patibility conditions [40, 41], the following system for an ultra-relativistic fluid
is obtained



Lξ̄ + rω̄N + η̄N = A ,

RTℓ2ξ̄ + rRℓ2ϑ̄+ rfLω̄N + Lπ̄N = B ,

RTLξ̄ − rCV Lθ̄ + fη̄N − π̄N = C ,

R

r
T 2ℓ2ξ̄ − CV Tℓ

2ϑ̄+ 2α11T
2L ¯etaN + 2α12T

2Lπ̄N = D ,

ℓ2ϑ̄+ TLω̄N + 2α12T
2Lη̄N + 2α22T

2Lπ̄N = E ,

(48)

where

A = −2ξωN − ℓ
dξ

dσ
− raABωα,Axα,B − aABηα,Axα,B ,

B = −rfℓdωN
dσ

−RTLℓ
dξ

dσ
− rRLℓ

dϑ

dσ
− ℓ

dπN
dσ

− 2Rℓ2ξϑ− L2πλωλ

−3πNωN − rfω2
N − (f + 2RT )LξωN − r(CV + 3R)LϑωN ,

(49)
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C = −RTℓ dξ
dσ

+ rCV ℓ
dϑ

dσ
+ aABπα,Axα,B − faABηα,Axα,B + rCV ϑωN

−(R− CV )Lξϑ−RTξωN − (R+ CV )ϑηN − Lπβω
β ,

D = −
{
Lℓ
dϑ

dσ
+ Lℓ

dξ

dσ
+ 2α11T

2ℓ
dηN
dσ

+ 2α12T
2ℓ
dπN
dσ

+ 2
R

r
Tℓ2ξϑ

−CV ℓ2ϑ2 −
R

r2
T 2ℓ2ξ2 + 3

∂α11

∂r
T 2LξηN + 3α11T

2ωNηN

+4α11TLϑηN + 3
∂α12

∂r
T 2LξπN + 3

∂α12

∂T
T 2LϑπN

+4α12T
2ωNπN + 4α12TLϑπN + 3

∂α11

∂T
T 2LϑηN − 2CV TLϑωN

+2
R

r
T 2LξωN + 2α11T

2L2ωβηβ + 2α12T
2L2ωβπβ +

ηN
χ1

}
,

E = −
{
Lℓ
dϑ

dσ
+ Tℓ

dωN
dσ

+ 2α12T
2ℓ
dηN
dσ

+ 2α22T
2ℓ
dπN
dσ

+ 3LϑωN

+Tω2
N + 3

∂α12

∂r
T 2LξηN + 3

∂α12

∂T
T 2LϑηN + 4α12T

2ωNηN

+4α12T
2ωNηN + 4α12TLϑηN + 3

∂α22

∂r
T 2LξπN + 3

∂α22

∂T
T 2LϑπN

3α22T
2ωNπN + 4α22TLϑπN − TL2ωβωβ − 2α12T

2L2ωβηβ

−2α22T
2L2ωβπβ +

πN
χ2

}
.

In (48)-(49), aAB are the components of the first fundamental covariant
tensor of Σ [40, 41], and xα,B = ∂xα/∂wB. Moreover, the expression of the
derivative along the ray is used, which for a given function F is

dF

dσ
=

1

ℓ
aABuαxα,BF,A ,

where σ is the ray parameter. The derivatives along the rays of the jumps of
uα να and qα are given by

dωN
dσ

=
dωα

dσ
Nα ,

dηN
dσ

=
dηα
dσ

Nα ,
dπN
dσ

=
dπα
dσ

Nα .

Solving equations (48)1,2,3 by substitution, and remembering the expression
for the velocity of propagation λ1, the following equation is derived,

fLA−B − LC = 0 , (50)

where A, B, C are given by (49).
Following Thomas [40, 41], the following relation holds

aABωα,Axα,B = −Ldψ
dσ

+
2

ℓ
Ωψ , (51)
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where Ω is the mean curvature of the hyper-surface Σ and, using (46),

dξ

dσ
= r

ℓ

L

dψ

dσ
,

dθ

dσ
= T

L

ℓ

dψ

dσ
,

dωN
dσ

= −ℓdψ
dσ

. (52)

Introducing (46), (49), (51), (52) into equation (50), the following transport
equation for the amplitude ψ can be derived

dψ

dσ
+
L

ℓ
Ωψ − ψ2 = 0 . (53)

In order to integrate this equation, it is convenient to rewrite it in terms of the
proper time, τ , defined by ℓdσ = dτ . Thus the following differential equation
is obtained

dψ

dτ
+
L

ℓ2
Ωψ − 1

ℓ
ψ2 = 0 , (54)

where 1/ℓ2 = 2 − γ and 1/ℓ =
√

2 − γ. Setting a0 = −L/ℓ2 = −(2 − γ)L and
P0 = −

√
2 − γ, (54) can be rewritten as

dψ

dτ
− a0Ωψ + P0ψ

2 = 0 . (55)

The coefficient a0 represents the constant speed of propagation of the wave
front multiplied for the constant value ℓ−1.

For a family of parallel surfaces propagating with constant velocity the mean
curvature Ω(τ) at any point of the wave front Σ is [46]

Ω(τ) =
Ω0 −K0a0τ

1 − 2Ω0a0τ +K0a0τ2
, (56)

where Ω0 = (k01 + k02)/2 and K0 = k01k02 are, respectively, the mean and
the Gaussian curvatures of Σ at initial time, with k01 and k02 being the initial
principal curvatures. Then, the integration of (55) yields

ψ =
ψ0

(
1 − 2a0Ω0τ +K0a

2
0τ

2
)−1/2

1 + P0ψ0

∫ τ
0

(
1 − 2a0Ω0τ̂ +K0a20τ̂

2
)−1/2

dτ̂
, (57)

where ψ0 is the value of ψ on the wave front at τ = 0. Since the transport
equation is non linear, a critical time may exists, at which the weak discon-
tinuity wave Σ evolves into a shock wave, in the sense that the amplitude ψ
of the discontinuity of the first order derivatives blows up as τ tends to the
critical time.

Eq. (57) can be specialized for plane, cylindrical and spherical wave.

Plane wave: k01 = k02 = 0. The amplitude ψ is

ψ =
ψ0

1 + P0ψ0τ
, (58)
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and, since P0 < 0, if ψ0 > 0 (i.e. an expansive wave), the denominator
of (58) vanishes at a finite time τ c = (|P0|ψ0)

−1. Thus, ψ → +∞ as
τ → τ c, so the weak discontinuity evolves into a shock wave. Conversely,
if ψ0 < 0 (i.e. a compressive wave), the denominator of (58) is positive
for any τ , so the discontinuity amplitude decays, ψ → 0 as τ → +∞.

Cylindrical waves: k01 = −R−1
0 , k02 = 0, where R0 is the cylinder radius

at initial time. The amplitude ψ is

ψ =

ψ0

(
1 +

a0
R0

τ

)−1/2

1 + P0ψ0

∫ τ

0

(
1 +

a0
R0

τ̂

)−1/2

dτ̂

. (59)

Again, since P0 < 0, if ψ0 > 0, a critical time, τ c, exists given by∫ τc

0

(
1 +

a0
R0

τ̂

)−1/2

dτ̂ =
1

|P0|ψ0

, (60)

and the wave degenerates into a shock at time τ c. Conversely, if ψ0 < 0,
the denominator of ((59)) remains positive for any time and the ampli-
tude damps out in time.

Spherical waves: k01 = k02 = −R−1
0 , where R0 is the sphere radius of the

outward travelling discontinuity surface at time τ = 0. The amplitude
ψ is

ψ =

ψ0

(
R0

R0 + a0τ

)
1 + P0ψ0

∫ τ

0

(
R0

R0 + a0τ̂

)
dτ̂

. (61)

Analogously to the previous cases, if ψ0 > 0, a critical time, τ c, appears
given by ∫ τc

0

(
R0

R0 + a0τ̂
τ̂

)
dτ̂ =

1

|P0|ψ0

. (62)

On the contrary, if ψ0 < 0, the amplitude decays in time.

6. CONCLUSION

A depth discussion of the relativistic dynamics of fluids includes a num-
ber of dissipative processes [28]. The effects of internal dissipation in fluids-
viscosity and thermal conductivity are well modelled by a generalization of
the Sonic theory, called Navier Stokes equations, result in rather pathological
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theories [3, 4]. These theories are non-causal and without a well-posed initial
value formulation (see for example [25]).

Less straightforward approaches have succeded in producing a class of causal
dissipative fluid theories, e.g. Israel and Stewart [10], Jou, Casa-Vasquez and
Lebon [6], Hiscock and Lindblom [24, 25], Carter [20, 21], Müller and Rug-
geri [7], Muronga [11, 12], Maartens [30]. Almost all formulation used Eckart
scheme [3] or Landau-Lifshitz approach [4] for problem of heat conduction.

In this paper, in light of some result due to Silva et al [32], Heinz et al [33],
Van and Biró [34], Muronga [11, 12], Maartens [30], a generic causal theory
of heat–conduction fluid has been derived, valid both in Eckart and Landau–
Lifshitz frames.

In two previous papers, [15] and [16], the same authors developed a second-
order theory for relativistic fluid with thermal conduction and examined the
propagation of weak discontinuities in the special case of ultra-relativistic fluid
in Landau-Lifshitz and Eckart scheme respectively. In this paper, the previous
results have been generalized in order to consider the hypothesis (found in
Carter [21] and recently picked up by Anderson and Comer [23]) of state
equilibrium in which particle current and entropy flux are not aligned. The
results obtained in the present paper can be specialized in those discussed in
[15] and [16].
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1. INTRODUCTION

Usually the classical Taher ElGamal encryption system is formulated in the
language of number theory using multiplication modulo a prime [1].

ElGamal’s scheme is a public key cryptosystem based on the difficulty of
computing discrete logarithms in a finite field. The cryptosystem includes an
encryption algorithm and a digital signature algorithm. ElGamal Scheme Un-
derlies US Former Electronic Digital Signature Standards (DSA) and Russia
(GOST R 34.10-94).

The scheme was proposed by Taher ElGamal in 1985. ElGamal developed
one of the variants of the Diffie-Hellman algorithm. He improved the Diffie-
Hellman system and obtained two algorithms that were used for encryption
and for authentication. Unlike RSA, the ElGamal algorithm was not patented
and, therefore, became a cheaper alternative, since it did not require payment
of license fees [2].

The sender of messages and their recipient can be individuals, organizations,
or technical systems. These may be subscribers of a network, users of a com-
puter system, or abstract “parties” involved in information interaction. But
more often participants are identified with people and replaced with the for-
mal designations A and B by Alice and Bob. It is assumed that messages are
transmitted through the so-called “open” communication channel, available
for listening to some other persons.

In cryptography, it is usually assumed that a person sending messages or
receiving them has some opponent E and this opponent can intercept messages
transmitted over an open channel. The enemy is considered as a certain person
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named Eve, who has at her disposal powerful computing equipment and owns
cryptanalysis methods. Naturally, Alice and Bob want their messages to be
incomprehensible to Eve, and use special ciphers for this.

Before sending a message over an open communication channel from A to
B, A encrypts the message, and B, having received the encrypted message,
decrypts it, restoring the original text. The important thing is that Alice
and Bob can agree on the cipher they use not on an open channel, but on
a special ”closed” channel, inaccessible for listening to the enemy. It should
be borne in mind that usually the organization of such a closed channel and
the transmission of messages through it is too expensive compared to an open
channel or a closed channel cannot be used at any time. Each attempt to break
the cipher is called an attack on the cipher. In cryptography, it is generally
accepted that the adversary can know the encryption algorithm used, the
nature of the transmitted messages and the intercepted ciphertext, but does
not know the secret key.

Developers of modern cryptosystems strive to make attacks on known and
selected text invulnerable. Significant successes have been achieved along this
path.

2. ELGAMAL’S SCHEME

Suppose there are subscribers A,B,C, . . . who want to transmit encrypted
messages to each other without having any secure communication channels.
We will consider the code proposed by ElGamal, which solves this problem,
using, in contrast to the Shamir code, only one message forwarding. In fact,
the Diffie -Hellman scheme is used here to form a common secret key for two
subscribers transmitting a message to each other, and then the message is
encrypted by multiplying it by this key. For each subsequent message, the
secret key is recalculated. A large prime number is selected p and number g,
such that different degrees of g are different numbers modulo p. The numbers
p and g are transmitted to subscribers in the clear.

Then each subscriber of the group selects his secret number ci, 1 < ci < p−1,
and calculates the corresponding open number di,

di = gci (mod p) (1)

Table 1.User keys in the ElGamal system

Subscriber Private key Public key

A cA dA

B cB dB

C cC dC
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We show now how A sends message m to the subscriber B. We will assume,
that the message is presented as a number m < p.

Step 1. A forms a random number k, 1 ≥ k ≥ p− 2, calculates numbers:

r = gk mod p (2)

e = m · dBk mod p (3)

and passes a couple of numbers (r, e) to the subscriber B.
Step 2. B, getting (r, e), calculates

m′ = e · rp−1−cB mod p (4)

Statement 1 (properties of the ElGamal cipher).
(1) The subscriber B received a message, i.e. m′ = m;
(2) the adversary, knowing p, g, dB, r and e, cannot calculate m.

Example 2.1. Consider the transmission of message m = 15 from A to B.
We take p = 23, g = 5. Let subscriber B choose for himself a secret number

cB = 13 and calculate (1): dB = 513 (mod 23) = 21.
Subscriber A randomly selects the number k, for example, k = 7, and cal-

culates from (2), (3): r = 57 (mod 23) = 17, e = 15 · 217 (mod 23) = 15 · 10
(mod 23) = 12.

Now A sends to B an encrypted message in the form of a pair of numbers
(17, 12) and B calculates: m′ = 12·17 23−1−13 (mod 23) = 12·179 (mod 23) =
12 · 7 (mod 23) = 15. So B was able to decrypt the transmitted message.

By a similar scheme, all subscribers in the network can send messages.
Moreover, any subscriber who knows the public key of subscriber B can send
him messages encrypted using the public key dB. But only subscriber B, and
no one else, can decrypt these messages using the secret key cB known only
to him.

The Shamir cipher completely solves the problem of exchanging messages
that are closed for reading, in the case when subscribers can use only open
communication lines.

However, this message is sent three times from one subscriber to another,
which is a drawback. The ElGamal cipher allows you to solve the same problem
in one data transfer, but the amount of transmitted ciphertext is twice the
size of the message.

It is easy to see that this system can also be formulated in terms of a residue
ring modulo p or, equivalently, using the language of the Galois field GF (p).

In addition, we can use the concept of the action of a group of automor-
phisms of a cyclic group (Zp,+) on this group. Let (Zp,+) be a cyclic group of
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residues of large simple order with respect to addition of residues and element
a be the generator of the group (Z(p−1), ·) ∼= Aut(Zp,+)(gcd(a, p− 1) = 1).

Alice’s keys are the following: Public key p, a and am, m ∈ N. Private key
m.

Encryption. To send a message b ∈ (Z(p−1), ·), Bob is calculating ar and
amr for random r ∈ N (sometimes the number r is called an ephemeral key
[3]).

Ciphertext: (ar; amr · b).
Decryption. Alice knows m, so if she gets the ciphertext (ar; amr · b), she

will calculate amr from ar and then a(−mr) and then from amr · b calculate b.

Example 2.2. Example Alice picks p = 107, a = 2,m = 67, and calculates
am = 267 ≡ 94 (mod 107).

Her public key (p, am) = (107, 94), and her private key is m = 67. Bob
wants to send a message “B ”to Alice. He selects a random integer r = 45
and encrypts B = 66 like (am)r ·B.

Bob gets: (245, 9445 · 66) ≡ (28, 5 · 66) ≡ (28, 9) (mod 107).
He sends an encrypted message (28, 9) to Alice. Alice receives this mes-

sage and using her private key m = 67 she decrypts as follows: 28(−67) · 9 =
28(106−67) · 9 ≡ 2839 · 9 ≡ 43 · 9 ≡ 66 (mod 107).

The complexity of this system is based on the complexity of the discrete
logarithm problem. ElGamal’s encryption system is not secure according to
the selected attack ciphertext [3]. ElGamal cryptosystems are usually used in
a hybrid cryptosystem, i.e. the message itself is encrypted using a symmetric
cryptosystem and ElGamal also uses a symmetric cryptosystem to encrypt the
key.

3. AN ANALOGUE OF THE ELGAMAL SCHEME
BASED ON THE MARKOVSKI ALGORITHM

We give an analogue of the ElGamal encryption system based on the Markovski
algorithm [4; 5].

Let (Q, f) be a binary quasigroup and T = (α, β, γ) its isotopy.
Alice’s keys are as follows: The public key is (Q, f), T , T (m,n,k) = (αm, βn, γk),

m,n, k ∈ N, and the Markovski algorithm.
Private key m,n, k.
Encryption. To send a message b ∈ (Q, f), Bob calculated T (r,s,t), T (mr,ns,kt)

for random r, s, t ∈ N and (T (mr,ns,kt)(Q, f)).
The ciphertext is (T (r,s,t), T (mr,ns,kt)(Q, f)b).
To obtain (T (mr,ns,kt)(Q, f)b), Bob uses the Markovski algorithm which is

known to Alice.
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Decryption Alice knows m,n, k, so if she gets the ciphertext
(T (r,s,t), (T (mr,ns,kt)(Q, f))b), she will calculate (T (mr,ns,kt)(Q, f))(−1) using T (r,s,t)

and finally she will calculate b.

Example 3.1. Let (Q, f) be a binary quasigroup defined by the following Cay-
ley table:

Table 2

f 0 1 2 3 4 5 6

0 5 2 6 4 0 3 1

1 1 6 5 3 4 2 0

2 0 5 4 6 3 1 2

3 4 1 3 0 2 6 5

4 2 4 0 1 6 5 3

5 6 3 1 2 5 0 4

6 3 0 2 5 1 4 6

and T = (α, β, γ) its isotopy, where: α = (234)(0516) corresponds to a per-
mutation of rows of a quasigroup table Q; β = (0321)(56) corresponds to a
permutation of the columns of a quasigroup table Q obtained after application
α; γ = (1236054) substitution applied to the table obtained after application β.

And for γ we have the inverse γ(−1) the following kind: γ(−1) = (1450632).

Cayley tables of these permutations are of the form:

Table 3.

α 0 1 2 3 4 5 6

0 6 3 1 2 5 0 4
1 3 0 2 5 1 4 6
2 4 1 3 0 2 6 5
3 2 4 0 1 6 5 3
4 0 5 4 6 3 1 2
5 1 6 5 3 4 2 0
6 5 2 6 4 0 3 1
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Table 4.

β 0 1 2 3 4 5 6

0 2 6 3 1 5 4 0
1 5 3 0 2 1 6 4
2 0 4 1 3 2 5 6
3 1 2 4 0 6 3 5
4 6 0 5 4 3 2 1
5 3 1 6 5 4 0 2
6 4 5 2 6 0 1 3

Table 5.

γ−1 0 1 2 3 4 5 6

0 1 3 2 4 0 5 6
1 0 2 6 1 4 3 5
2 6 5 4 2 1 0 3
3 4 1 5 6 3 2 0
4 3 6 0 5 2 1 4
5 2 4 3 0 5 6 1
6 5 0 1 3 6 4 2

Then Alice’s keys are as follows: The private key: m = 3, n = 6, k = 5.
The public key is (Q, f), T, T (3,6,5) = (α3, β6, γ5) and the Markovski algorithm,
where: α3 = (0615);β6 = (02)(13); γ5 = (0315624), γ−5 = (0426513).

As a result, we get the following Cayley tables:

Table 6.

α3 0 1 2 3 4 5 6

0 3 0 2 5 1 4 6
1 6 3 1 2 5 0 4
2 0 5 4 6 3 1 2
3 4 1 3 0 2 6 5
4 2 4 0 1 6 5 3
5 5 2 6 4 0 3 1
6 1 6 5 3 4 2 0

Table 7.

β 6 0 1 2 3 4 5 6

0 2 5 3 0 1 4 6
1 1 2 6 3 5 0 4
2 4 6 0 5 3 1 2
3 3 0 4 1 2 6 5
4 0 1 2 4 6 5 3
5 6 4 5 2 0 3 1
6 5 3 1 6 4 2 0

Table 8.

(γ5)(−1) 0 1 2 3 4 5 6

0 6 1 0 4 3 2 5
1 3 6 5 0 1 4 2
2 2 5 4 1 0 3 6
3 0 4 2 3 6 5 1
4 4 3 6 2 5 1 0
5 5 2 1 6 4 0 3
6 1 0 3 5 2 6 4

Encryption. To send a message b = 630512403, Bob computes from the
known T = (α, β, γ): α = (234)(0516); β = (0321)(56); γ = (1236054),
calculates isotopy T (r,s,t) for random numbers r = 5, s = 3, t = 6, i.e. T (5,3,6):

α5 =

(
0 1 2 3 4 5 6
5 6 4 2 3 1 0

)
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β3 =

(
0 1 2 3 4 5 6
1 2 3 0 4 6 5

)
γ6 =

(
0 1 2 3 4 5 6
6 4 1 2 5 0 3

)
In our example T (5,3,6) we get: α5 = (0516)(243); β3 = (0123)(56);

γ6 = (0632145).
Then he calculates T (mr,ns,kt) using the public key:

T (m,n,k) = (αm, βn, γk) = (α∗, β∗, γ∗):

α∗ =

(
0 1 2 3 4 5 6
6 5 2 3 4 0 1

)
β∗ =

(
0 1 2 3 4 5 6
2 3 0 1 4 5 6

)
γ∗ =

(
0 1 2 3 4 5 6
3 5 4 1 0 6 2

)
Then he raises these permutations, respectively, to the power r = 5,

s = 3, t = 6 and gets:

α∗5 =

(
0 1 2 3 4 5 6
6 5 2 3 4 0 1

)
β∗3 =

(
0 1 2 3 4 5 6
2 3 0 1 4 5 6

)
γ∗6 =

(
0 1 2 3 4 5 6
4 3 6 0 2 1 5

)
α5m = α5 = (0615); β3n = β3 = (02)(13); γ6k = (0426513), (γ6k)(−1) =

(0315624).

As a result of the application of the new isotopy T (5m,3n,6k) to the quasigroup
(Q, f) we obtain:

Table 9.

α5m 0 1 2 3 4 5 6

0 3 0 2 5 1 4 6
1 6 3 1 2 5 0 4
2 0 5 4 6 3 1 2
3 4 1 3 0 2 6 5
4 2 4 0 1 6 5 3
5 5 2 6 4 0 3 1
6 1 6 5 3 4 2 0

Table 10.

β3n 0 1 2 3 4 5 6

0 2 5 3 0 1 4 6
1 1 2 6 3 5 0 4
2 4 6 0 5 3 1 2
3 3 0 4 1 2 6 5
4 0 1 2 4 6 5 3
5 6 4 5 2 0 3 1
6 5 3 1 6 4 2 0
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Table 11.

(γ6k)(−1) 0 1 2 3 4 5 6

0 4 6 1 3 5 0 2
1 5 4 2 1 6 3 0
2 0 2 3 6 1 5 4
3 1 3 0 5 4 2 6
4 3 5 4 0 2 6 1
5 2 0 6 4 3 1 5
6 6 1 5 2 0 4 3

To obtain (T (mr,ns,kt)(Q, f)b, Bob uses the Markovski algorithm known to
Alice, with the known leader value l = 3, then the ciphertext for b = 6 3 0 5 1 2 4 0 3
will look like: v1 = 3 · 6 = 6, v2 = 6 · 3 = 2, v3 = 2 · 0 = 0, v4 = 0 · 5 = 0,
v5 = 0 · 1 = 6, v6 = 6 · 2 = 5, v7 = 5 · 4 = 3, v8 = 3 · 0 = 1, v9 = 1 · 3 = 1,
b′ = 620065311.

Decryption. Alice knows m = 3, n = 6, k = 5, so if she gets an isotopy
T (r,s,t) and ciphertext (T (mr,ns,kt)(Q, f))b) = 620065311, she will calculate the
isotopy first T (mr,ns,kt) using T (r,s,t) = T (∗∗,∗∗,∗∗) :

α∗∗ =

(
0 1 2 3 4 5 6
5 6 4 2 3 1 0

)
β∗∗ =

(
0 1 2 3 4 5 6
1 2 3 0 4 6 5

)
γ∗∗ =

(
0 1 2 3 4 5 6
6 4 1 2 5 0 3

)
She calculates T (mr,ns,kt):

α∗∗3 =

(
0 1 2 3 4 5 6
6 5 2 3 4 0 1

)
β∗∗6 =

(
0 1 2 3 4 5 6
2 3 0 1 4 5 6

)
γ∗∗5 =

(
0 1 2 3 4 5 6
4 3 6 0 2 1 5

)
As a result, she receives the same table as Bob received in the encryption pro-

cess. For Table (γ6k)−1 Alice builds a parastrophe (23) used in the Markovski
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algorithm for decryption:

Table 12.

\ 0 1 2 3 4 5 6

0 5 2 6 3 0 4 1
1 6 3 2 5 1 0 4
2 0 4 1 2 6 5 3
3 2 0 5 1 4 3 6
4 3 6 4 0 2 1 5
5 1 5 0 4 3 6 2
6 4 1 3 6 5 2 0

and finally, using this table, she calculates b: u1 = 3\6 = 6, u2 = 6\2 = 3,
u3 = 2\0 = 0, u4 = 0\0 = 5, u5 = 0\6 = 1, u6 = 6\5 = 2, u7 = 5\3 = 4,
u8 = 3\1 = 0, u9 = 1\1 = 3.

Therefore, b = 630512403.

In this algorithm, isostrophy [6] can also be used instead of isotopy, the
modified algorithm instead of the Markovski algorithm and n-ary (n > 2)
quasigroups [7; 8] instead of binary quasigroups.

A generalization of the Diffie-Hellman scheme of the open key distribution
is given in [9].

The generalization is based on the concepts of the left and right powers of
the elements of some non-associative groupoids.

For medial quasigroups, this approach is implemented in [10]. The protocol
of the elaboration of a common secret key based on Moufang loops is given in
[10].

This protocol is a generalization of the results from [11]. Generalizations of
the ElGamal scheme based on Moufang loops are given in [10].

In [12], the discrete logarithmic problem with Moufang loops is reduced
to the same problem over finite simple fields. Another generalization of the
ElGamal scheme based on quasi-automorphisms of quasigroups is presented
in [10].

4. CONCLUSION

Today, different points of view on the same mathematical idea lead to dif-
ferent generalizations. We considered in our work an analogue of the ElGamal
encryption system based on the Markovski algorithm. This algorithm is under
improvement and its other modifications are planned.
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1. THE LYAPUNOV FORM OF THE CRITICAL
TERNARY DIFFERENTIAL SYSTEM S3(1, 2, 3)

We examine the ternary differential system with polynomial nonlinearities
s3(1, 2, 3) of the form

dxj

dt
= ajαx

α + ajαβx
αxβ + ajαβγx

αxβxγ (j, α, β, γ = 1, 3), (1)

where ajαβ and ajαβγ are symmetric tensors in the lower indices, by which a
total convolution is carried out here.

The system of the first approximation ([1], [2])

dxj

dt
= ajαx

α (j, α = 1, 3). (2)

plays an important role in studying the differential system (1).
Taking into account the fact that the unperturbed motion of the system (1)

corresponds the zero values of variables xj(t) (j = 1, 3), we have the following
definition

115
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Definition of stability by Lyapunov [2]. If for any small positive value
ε, however small, one can find a positive number δ, such that for all perturba-
tions xj(t0) satisfying the condition

2∑
j=1

(xj(t0))
2 ≤ δ, (3)

the inequality
2∑
j=1

(xj(t))2 < ε

holds for any t ≥ t0, then the unperturbed motion xj = 0 (j = 1, 2) is called
stable, otherwise it is called unstable.

If the unperturbed motion is stable and the number δ can be found
however small such that for any perturbed motions satisfying (3) the
condition

lim
t→∞

2∑
j=1

(xj(t))2 = 0,

holds, then the unperturbed motion is called asymptotically stable.
The characteristic equation of the system (1) and (2) is

ϱ3 + L1,3ϱ
2 + L2,3ϱ+ L3,3 = 0, (4)

where the coefficients of this equation are center-affine invariants [4] and have
the form

L1,3 = −θ1, L2,3 =
1

2
(θ2 − θ21), L3,3 =

1

6
(−θ31 + 3θ1θ2 − 2θ3), (5)

and
θ1 = aαα, θ2 = aαβa

β
α, θ3 = aαγa

β
αa

γ
β. (6)

According to I. G. Malkin [3], we have

Definition 1.1. The system (1) is critical if the characteristic equation (4) of
this system has one zero root, and all other roots of this equation have negative
real parts.

Lemma 1.1. The system (1) is critical if and only if the center-affine
invariant conditions

L1,3 > 0, L2,3 > 0, L3,3 = 0 (7)

hold, where Li,3 (i = 1, 3) are from (5).
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By means of the Lyapunov theorems on stability of unperturbed motion [1]
and the Hurwitz theorem [2] we obtain the following theorems:

Theorem 1.1. Assume that the center-affine invariants (5) of the system (1)
satisfy the inequalities

L1,3 > 0, L2,3 > 0, L1,3L2,3 − L3,3 > 0. (8)

Then the unperturbed motion x1 = x2 = x3 = 0, of this system, is
asymptotically stable.

Theorem 1.2. If at least one of the center-affine invariant expression (5) of
the system (1) is negative, then the unperturbed motion x1 = x2 = x3 = 0 of
this system is unstable.

2. STABILITY CONDITIONS OF
UNPERTURBED MOTION GOVERNED BY
CRITICAL THREE-DIMENSIONAL
DIFFERENTIAL SYSTEM S3(1, 2, 3) OF
DARBOUX TYPE

Either
η = aαβγx

βxγxδyµεαδµ ≡ 0, (9)

and
η1 = aαβ,γ,δx

βxγxδxµyνεαµν ≡ 0, (10)

from [4] (or [5]), where x = (x1, x2, x3) and y = (y1, y2, y3) are cogradient
vectors [6].

In the center-affine conditions (9) and (10), by a center-affine transforma-
tion, the system (1) can be brought to the critical Lyapunov of Darboux type,
of the form

dx

dt
= 2x(gx+ hy + kz) + 3x(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz),

dy

dt
= px+ qy + rz + 2y(gx+ hy + kz) + 3y(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz),

dz

dt
= sx+my + nz + 2z(gx+ hy + kz) + 3z(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz),

(11)

where x = x1, y = x2 şi z = x3, and a, b, c, d, e, f, g, h, k,m, n, p, q, r, s are real
arbitrary coefficients.

We analyze the noncritical equations

px+ qy + rz + 2y(gx+ hy + kz) + 3y(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz) = 0,

sx+my + nz + 2z(gx+ hy + kz) + 3z(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz) = 0.
(12)

Because in the system (11), according to the conditions (7), we have L2,3 =
nq −mr > 0, then we can assume, without losing generality, that nq ̸= 0.
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Then from the first relation, from (12), we express y, and from the second
relation we express z

y = −p

q
x− r

q
z − 2

q
y(gx+ hy + kz)− 3

q
y(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz),

z = − s

n
x− m

n
y − 2

n
z(gx+ hy + kz)− 3

n
z(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz).

(13)

We seek y and z as a holomorphic functions of x. Then we can write

y(x) = A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...,

z(x) = B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 + ...
(14)

Substituting (14) into (13) we have

A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ... = −p
q
x− r

q
(B1x+B2x

2 +B3x
3+

+B4x
4 +B5x

5 + ...) − 2

q
(A1x+A2x

2 +A3x
3 +A4x

4 +A5x
5 + ...)[gx+

+h(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...) + k(B1x+B2x
2 +B3x

3+

+B4x
4 +B5x

5 + ...)] − 3

q
(A1x+A2x

2 +A3x
3 +A4x

4 +A5x
5 + ...)[(ax2+

+b(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...)2 + c(B1x+B2x
2 +B3x

3+

+B4x
4 +B5x

5 + ...)2 + 2dx(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...)+

+2ex(B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 + ...) + 2f(A1x+A2x
2+

+A3x
3 +A4x

4 +A5x
5 + ...)(B1x+B2x

2 +B3x
3 +B4x

4 +B5x
5 + ...))],

B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 + ... = − s

n
x− m

n
(A1x+A2x

2 +A3x
3+

+A4x
4 +A5x

5 + ...) − 2

n
(B1x+B2x

2 +B3x
3 +B4x

4 +B5x
5 + ...)[gx+

+h(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...) + k(B1x+B2x
2 +B3x

3+

+B4x
4 +B5x

5 + ...)] − 3

n
(B1x+B2x

2 +B3x
3 +B4x

4 +B5x
5 + ...)[(ax2+

+b(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...)2 + c(B1x+B2x
2 +B3x

3+

+B4x
4 +B5x

5 + ...)2 + 2dx(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...)+

+2ex(B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 + ...) + 2f(A1x+A2x
2+

+A3x
3 +A4x

4 +A5x
5 + ...)(B1x+B2x

2 +B3x
3 +B4x

4 +B5x
5 + ...))].
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This implies that

A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ... = −p+ rB1

q
x−

−2gA1 + 2hA2
1 + 2kA1B1 + rB2

q
x2 − 1

q
(3aA1 + 3bA3

1 + 3cA1B
2
1 + 6dA2

1+

+6eA1B1 + 6fA2
1B1 + rB3 + 2gA2 + 4hA1A2 + +2kA2B1 + 2kA1B2)x

3−

−1

q
(3aA2 + 9bA2

1A2 + 3cA2B
2
1 + 6cA1B1B2 + 12dA1A2 + 6eA2B1+

+6eA1B2 + 12fA1A2B1 + 6fA2
1B2 + rB4 + 2gA3 + 2hA2

2 + 4hA1A3+

+2kA3B1 + 2kA2B2 + 2kA1B3)x
4 − 1

q
(3aA3 + 9bA1A

2
2 + 9bA2

1A3+

+3cA3B
2
1 + 6cA2B1B2 + 3cA1B

2
2 + 6cA1B1B3 + 6dA2

2 + 12dA1A3+

+6eA3B1 + 6eA2B2 + 6eA1B3 + 6fA2
2B1 + 12fA1A3B1+

+12fA1A2B2 + 6fA2
1B3 + rB5 + 2gA4 + 4hA2A3 + 4hA1A4 + 2kA4B1+

+2kA3B2 + 2kA2B3 + 2kA1B4)x
5 + ...,

B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 + ... = −mA1 + s

n
x−

−2gB1 + 2hA1B1 + 2kB2
1 +mA2

n
x2 − 1

n
(3aB1 + 3bA2

1B1 + 3cB3
1 + 6dA1B1+

+6eB2
1 + 6fA1B

2
1 +mA3 + 2gB2 + 2hA2B1 + 2hA1B2 + 4kB1B2)x

3−

− 1

n
(6bA1A2B1 + 3aB2 + 3bA2

1B2 + 9cB2
1B2 + 6dA2B1 + 6dA1B2+

+12eB1B2 + 6fA2B
2
1 + 12fA1B1B2 +mA4 + 2gB3 + 2hA3B1 + 2hA2B2+

+2hA1B3 + 2kB2
2 + 4kB1B3)x

4 − 1

n
(3bA2

2B1 + 6bA1A3B1 + 6bA1A2B2+

+3aB3 + 3bA2
1B3 + 9cB1B

2
2 + 9cB2

1B3 + 6dA3B1 + 6dA2B2+

+6dA1B3 + 6eB2
2 + 12eB1B3 + 6fA3B

2
1 + 12fA2B1B2 + 6fA1B

2
2+

+12fA1B1B3 +mA5 + 2B4g + 2hA4B1 + 2hA3B2 + 2hA2B3+

+2hA1B4 + 4kB2B3 + 4kB1B4)x
5 + ...

From this identity we have

A1 =
rs− np

nq −mr
, B1 =

mp− qs

nq −mr
;

A2 = −2M(nA1 − rB1)

nq −mr
, B2 =

2M(mA1 − qB1)

nq −mr
,
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A3 = − 1

nq −mr
{3N(nA1 − rB1) + 2[A2(gn+ 2hnA1 + knB1 − hrB1)+

+B2(knA1 − gr − hrA1 − 2krB1)]},

B3 = − 1

nq −mr
{−3N(mA1 − qB1) − 2[A2(gm+ 2hmA1 + kmB1 − hqB1)+

+B2(kmA1 − gq − hqA1 − 2kqB1)]},

A4 = − 1

nq −mr
(3anA2 + 9bnA2

1A2 + 3cnA2B
2
1 + 6cnA1B1B2 + 12dnA1A2+

+12dnA1A2 + 6enA2B1 + 6enA1B2 + 12fnA1A2B1 + 6fnA2
1B2 + 2gnA3+

+2hnA2
2 + 4hnA1A3 + 2knA3B1 + 2knA2B2 + 2knA1B3 − 6brA1A2B1−

−3arB2 − 3brA12B2 − 9crB2
1B2 − 6drA2B1 − 6drA1B2 − 12erB1B2−

−6frA2B
2
1 − 12frA1B1B2 − 2grB3 − 2hrA3B1 − 2hrA2B2 − 2hrA1B3−

−2krB2
2 − 4krB1B3),

B4 = − 1

nq −mr
(−3aA2m− 9A2

1A2bm− 3A2B
2
1cm− 6A1B1B2cm−

−12A1A2dm− 6A2B1em− 6A1B2em− 12A1A2B1fm− 6A2
1B2fm−

−2A3gm− 2A2
2hm− 4A1A3hm− 2A3B1km− 2A2B2km− 2A1B3km+

+6A1A2bB1q + 3aB2q + 3A2
1bB2q + 9B2

1B2cq + 6A2B1dq+

+6A1B2dq + 12B1B2eq + 6A2B
2
1fq + 12A1B1B2fq + 2B3gq+

+2A3B1hq + 2A2B2hq + 2A1B3hq + 2B2
2kq + 4B1B3kq),

A5 = − 1

nq −mr
(3aA3n+ 9A1A

2
2bn+ 9A2

1A3bn+ 3A3B
2
1cn+

+6A2B1B2cn+ 3A1B
2
2cn+ 6A1B1B3cn+ 6A2

2dn+ 12A1A3dn+

+6A3B1en+ 6A2B2en+ 6A1B3en+ 6A2
2B1fn+ 12A1A3B1fn+

+12A1A2B2fn+ 6A2
1B3fn+ 2A4gn+ 4A2A3hn+ 4A1A4hn+

+2A4B1kn+ 2A3B2kn+ 2A2B3kn+ 2A1B4kn− 3A2
2bB1r−

−6A1A3bB1r − 6A1A2bB2r − 3aB3r − 3A2
1bB3r − 9B1B

2
2cr−

−9B2
1B3cr − 6A3B1dr − 6A2B2dr − 6A1B3dr − 6B2

2er − 12B1B3er−
−6A3B

2
1fr − 12A2B1B2fr − 6A1B

2
2fr − 12A1B1B3fr − 2B4gr−

−2A4B1hr − 2A3B2hr − 2A2B3hr − 2A1B4hr − 4B2B3kr − 4B1B4kr),
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B5 = − 1

nq −mr
(−3aA3m− 9A1A

2
2bm− 9A2

1A3bm− 3A3B
2
1cm−

−6A2B1B2cm− 3A1B
2
2cm− 6A1B1B3cm− 6A2

2dm− 12A1A3dm−
−6A3B1em− 6A2B2em− 6A1B3em− 6A2

2B1fm− 12A1A3B1fm−
−12A1A2B2fm− 6A2

1B3fm− 2A4gm− 4A2A3hm− 4A1A4hm−
−2A4B1km− 2A3B2km− 2A2B3km− 2A1B4km+ 3A2

2bB1q + 6A1A3bB1q+

+6A1A2bB2q + 3aB3q + 3A2
1bB3q + 9B1B

2
2cq + 9B2

1B3cq + 6A3B1dq+

+6A2B2dq + 6A1B3dq + 6B2
2eq + 12B1B3eq + 6A3B

2
1fq + 12A2B1B2fq+

+6A1B
2
2fq + 12A1B1B3fq + 2B4gq + 2A4B1hq + 2A3B2hq+

+2A2B3hq + 2A1B4hq + 4B2B3kq + 4B1B4kq), ...
(15)

where

M = g + hA1 + kB1; N = a+ bA2
1 + cB2

1 + 2dA1 + 2eB1 + 2fA1B1. (16)

Remark 2.1. From (7) we have

L2,3 = nq −mr > 0.

Substituting (14) into the right-hand sides of the critical differential equa-
tions (11), we get the following identity

2x(gx+ hy + kz) + 3x(ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz) =

= C1x+ C2x
2 + C3x

3 + C4x
4 + C5x

5 + ...,

or in detailed form

2x[gx+h(A1x+A2x
2+A3x

3+A4x
4+A5x

5+...)+k(B1x+B2x
2+B3x

3+B4x
4+

+B5x
5 + ...)] + 3x[ax2 + b(A1x+A2x

2 +A3x
3 +A4x

4 +A5x
5 + ...)2+

+c(B1x+B2x
2 +B3x

3 +B4x
4 +B5x

5 + ...)2 + 2dx(A1x+A2x
2+

+A3x
3 +A4x

4 +A5x
5 + ...) + 2ex(B1x+B2x

2 +B3x
3 +B4x

4 +B5x
5 + ...)+

+2f(A1x+A2x
2 +A3x

3 +A4x
4 +A5x

5 + ...)(B1x+B2x
2 +B3x

3 +B4x
4+

+B5x
5 + ...)] = C1x+ C2x

2 + C3x
3 + C4x

4 + C5x
5 + ...

From here, we obtain

C1 = 0; C2 = 2M C3 = 3N + 2(hA2 +B2k),

C4 = 2(3bA1A2 + 3cB1B2 + 3dA2 + 3eB2 + 3fA2B1 + 3fA1B2 + hA3 + kB3),

C5 = 3bA2
2 + 6bA1A3 + 3cB2

2 + 6cB1B3 + 6dA3 + 6eB3 + 6fA3B1+

+6fA2B2 + 6fA1B3 + 2hA4 + 2kB4, ...,
(17)
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where M and N are from (16).

Theorem 2.1. The stability of the unperturbed motion, described by the
critical system (11) of Darboux type s3(1, 2, 3) of the perturbed motion,
includes all possible cases in the following four:

I. M ̸= 0, (18)

then unperturbed motion is unstable;

II. M = 0, N < 0, (19)

then unperturbed motion is stable;

III. M = 0, N > 0, (20)

then unperturbed motion is unstable;

IV. M = N = 0, (21)

then unperturbed motion is stable.
In the last case, the unperturbed motion belongs to some continuous

series of stabilized motion. Moreover, for sufficiently small perturbations, any
perturbed motion will asymptotically approach to one of the stabilized motions
of the mentioned series. The expressions M and N are from (16).

Proof. According to the Lyapunov theorem [2, §32] and Remark 1, we
analyze the coefficients of the series (17). If C2 ̸= 0, then M ̸= 0, so we
obtained case I.

If M = 0 (which implies A2 = B2 = 0), then C3 = 3N . Depending on the
sign of the expression N , we get cases II and III.

Therefore, if M = N = 0, then Ai = Bi = 0 (∀i), so we get case IV of this
theorem. Theorem 3 is proved.

Remark 2.2. The theorem 3 generalizes the stability of unperturbed mo-
tion, described by the critical systems of Darboux type of the perturbed motion
s3(1, 2) [7] and s3(1, 3) [8].
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[5] N. N. Gerştega, Lie algebras for the three-dimensional differential
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1. INTRODUCTION

This paper is devoted to some new results in spaces of subharmonic func-
tions in the unit disk. We introduce new general spaces of subharmonic func-
tions in the unit disk and show some new embedding theorems for them. Em-
bedding theorems and various inequalities for various spaces of subharmonic
functions in various domains is an old research area. We refer the reader, for
example, to [4] and various references there. See also [1], [3], [4], [5], [8], [10],
[12], [13], [15]. Some arguments from [14] are crucial for this paper.

As a result from these embedding theorems we obtain immediately complete
parametric representations of these new large spaces of subharmonic functions.

To formulate that result, we first need some definition.
Let D = {z ∈ C; |z| ≤ 1} be the unit disk and E = {z ∈ C; |z| = 1} be the

unit circle. Let SH(D) be the space of all subharmonic functions in D.
Let further u ∈ SH(D), let u+ = max(u, 0). Then as usual put

T (r, u) =
1

2π

∫ π

−π
u+(reiθ)dθ, r ∈ (0, 1) (Nevanlinna characteristics)

Let now α ≥ 0 and let

SHα(D) = {u ∈ SH(D) : T (r, u) ≤ Cu
(1 − r)α

, 0 ≤ r < 1}.

For α = 0 we have classical Privalov space and known results on parametric
representation (see [1], [9] , [10]). For fixed ξ, z ∈ D, β > −1, ξ ̸= 0 we denote

125
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by Aβ(z, ξ) the following expression

Aβ(z, ξ) =

(
1 − z

ξ

)
exp

{
−
[

2(β + 1)

π

] ∫
D

(1 − |t|2)β

(1 − zt̄)β+2

(
ln

∣∣∣∣1 − t

ξ

∣∣∣∣) dm2(t)

}
.

These are so-called Djrbashian factors (see [1], [8], [14]).
Consider further the following spaces of subharmonic functions in the unit

disk

SHp
α(D) =

{
u ∈ SH(D) :

(∫ 1

0
(1 − r)α

(∫ π

−π
u+(reiθ)dφ

)p
dr

)
<∞,

}
,

0 < p < +∞, α > −1.
Let B1,∞

α be Besov space on a unit circle E

B1,∞
s (E) =

{
ψ ∈ L1(E) from to eit :

∫ 1

0

∥△2
tψ∥L1

(ts)
dt < +∞

}
,

where △2
tψ
(
eiθ
)

= ψ
(
ei(θ+t)

)
− 2ψ

(
eiθ
)

+ ψ
(
ei(θ−t)

)
, θ ∈ [−π, π], t ∈ (0, 1),

s ∈ (0, 2).
Note that the following mapping t → eit is a homeomorphism between

(−π, π) and E. In [8] Ohlupina showed that the SHα(D) coincides with the
class of functions u, so that

u(z) =

∫
D

ln |Aβ(z, ξ)|dµ(ξ) +Re

{
1

2π

∫ π

−π

ψ(eiθ)dθ

(1 − e−iθz)β+1

}
,

z ∈ D, ψ ∈ B1,∞
β−α+1, β > α, α > −1, µ is a nonnegative Borel measure in

D. Similar sharp parametric representation theorems were obtained also in
mentioned work for SHp

α spaces of subharmonic functions in the unit disk.
Note these SHα, SH

p
α, α > −1, p > 0 spaces and similar type spaces of sub-

harmonic functions were introduced for the first time in [8], where embeddings
and various interesting properties were also provided. Note similar spaces and
results were given also in C+ (upper half spaces) of C. We will use Aβ(z, ξ)
factors actively in this paper, and some properties of these factors that were
used in [1], (see also [8]).

Throughout the paper, we write C or c (with or without lower indexes) to
denote a positive constant which might be different at each occurrence (even
in a chain of inequalities), but is independent of the functions or variables
being discussed.

Let µ be positive Borel measure in D. Let now n(r) = µ(Dr), where
Dr = {z ∈ C : |z| < r}, 0 < r < 1.

One of the corner stones of the theory of subharmonic functions is the fol-
lowing result of Riesz on parametric representation of subharmonic functions.
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Theorem 1.1. (see [6], [9]) Let u ∈ SH(D), u ̸≡ (−∞). Then there is
a unique Borel measure µ so that the following parametric representation is
valid for u function

u(z) =

∫
Dr

ln

∣∣∣∣r(ξ − z)

r2 − ξ̄r

∣∣∣∣ dµ(ξ) + h(z),

where z ∈ Dr and h(z) is a harmonic function in Dr.

We call µ measure Riesz measure for u function. It is a general problem to
find certain concrete conditions on µ so that u ∈ X ⊂ SH(D), where X is a
certain fixed subclass of SH(D). We refer, for example, to [8] for such type
results.

Let

A =

{
f ∈ SH(D) : sup

r
T (r, u) < +∞

}
.

The following sharp parametric representation theorem is classical, (see [6],
[9], [10], [16]).

Theorem 1.2. The A class coincides with the space of all subharmonic func-
tions for which

u(z) =
1

2π

∫
D

ln

∣∣∣∣ ξ − z

1 − ξ̄z

∣∣∣∣ dµ(ξ) +
1

2π

∫ π

−π

(1 − r2)dφ(θ)

(1 − 2r cos(θ − φ) + r2)
,

where µ is an arbitrary nonnegative Borel measure in the unit disk for which∫
D

(1 − |ξ|)dµ(ξ) <∞,

and φ is an arbitrary function of bounded variation on [−π, π].

We provide in this paper similar type parametric representation theorems
for some new large subharmonic function spaces in the unit disk.

Theorem 1.3. (see [8]) Let

Rα =

{
u ∈ SH(D) : u(z) =

∫
D

ln |Aβ(z, ξ)|dµ(ξ) + h(z)

}
,

where µ is a positive Borel measure in D, h(z) is harmonic function, so that∫ π

−π
|h(reiθ)|dθ ≤ c

(1 − r)α
, β > α, α > −1.

Then u ∈ SHα(D), in other words the following embedding is valid

Rα ⊂ SHα, α > −1.
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Let further Mp
p (f, r) =

∫
E |f(rξ)|pdξ, 0 < p <∞, 0 < r < 1.

Theorem 1.4. (see [8]) Let

Rp,α =

{
u ∈ SH(D) : u(z) =

∫
D

ln |Aβ(z, ξ)|dµ(ξ) + h(z)

}
,

where β > β0, β0 = β0(α), for large enough β0, µ is a positive Borel measure
in D, so that ∫ 1

0
(1 − r)α+p(n(r))pdr <∞,

and h is harmonic so that∫ 1

0
(1 − r)αMp

1 (h, r)dr <∞,

where 0 < p < ∞. Then u ∈ SHp
α, in other words the following embedding is

valid

Rp,α ⊂ SHp
α, 0 < p <∞, α > −1.

First we show similar type embeddings to those we formulated in our the-
orems above for some new large analytic area Nevanlinna type spaces. Then
we show at the end of this paper that our results are sharp using rather trans-
parent arguments.

Various embedding theorems for various spaces of subharmonic functions in
various domains can be seen in various papers of various authors. We mention,
for example, [1]-[12] and refer the reader for various references which can be
seen there in those papers. Our arguments sometimes are sketchy since they
are based in elementary estimates.

2. MAIN RESULTS

Our main intention is to extend these embedding theorems 1.3 and 1.4 to
large new scales of spaces of subharmonic functions in the unit disk. We in
particular consider the following new large spaces of subharmonic functions.

We first introduce new large spaces of subharmonic functions in the unit
disk as follows and then formulate our results extending of theorems 1.3, 1.4
to these large scales of functions.

Let further

(SA)pα,β(D) =

{
f ∈ SH(D) :

∫ 1

0
sup

0<τ<R
T (f, r)p(1 − r)β(1 −R)αdR <∞

}
,

α > −1, β > 0, 0 < p <∞.
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(SB)p,qα,β(D) =

{
f ∈ SH(D) :

∫ 1

0

(∫ R

0
T (f, r)p(1 − τ)βdτ

) q
p

(1 −R)αdR <∞

}
,

0 < p <∞, β > −1, α > −1.

(
SB̃p

α,β

)
(D) =

{
f ∈ SH(D) : sup

0<R<1

(∫ R

0
(T (f, r))p(1 − r)αdr

)
(1 −R)β <∞

}
,

α > −1, β ≥ 0, 0 < p <∞.
Sometimes, these spaces will be simply denoted as X1, X2 and X3, respec-

tively.
Note SB̃p

α,β classes if p = ∞, β = 0 we have classes studied recently in

[8] and our theorems can be viewed as direct extensions of theorems of O.
Ohlupina.

Note, some sharp results on zero sets and related problems on these type
analytic spaces were obtained in recent papers [14] and [15]. In these papers
subclasses of our spaces consisting of analytic functions were considered and
parametric representations were provided also. We formulate now main results
of this paper. As follows, they extend some results provided previously in
papers [14] and [8] of Ohlupina. We use actively machinery from [8].

We will assume that u is harmonic in a U(0) where U(0) is a neighborhood
of 0 and also u(0) > −∞, though this assumption can be removed probably
using regularization procedure for subharmonic functions provided in [8].

Theorem 2.1. Let

Rpα,β =

{
u ∈ SH(D) : u(z) =

∫
D

ln |A
β̃
(z, ξ)|dµ(ξ) + h(z), z ∈ D

}
,

where β̃ > β0, β0 = β0(α, β), for large enough β0 and h is a harmonic func-
tion, so that∫ 1

0

(∫ R

0

(∫
E
|h(τξ)|dξ

)
(1 − τ)αdm2(τξ)

)p
(1 −R)βdR <∞

and ∫ 1

0
n(r)p(1 − ρ)(α+1)p+β+pdρ <∞.

Then the following embedding is valid

Rpα,β ⊂ SBp
α,β, p ≤ 1, α, β > −1.
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Theorem 2.2. Let

R̃pα,β =

{
u ∈ SH(D) : u(z) =

∫
D

ln |Aβ̃(z, ξ)|dµ(ξ) + h(z), z ∈ D

}
where β̃ > β0, β0 = β0(α, β), for large enough β0 and h is harmonic function,
so that ∫ 1

0

(
sup

0<τ<R

(∫
E
|h(τξ)|dξ

)
(1 − τ)α

)p
(1 −R)βdR <∞

and ∫ 1

0
(1 −R)p(α+1)+β(n(R))pdR <∞.

Then the following embedding is valid

R̃pα,β ⊂ SApα,β, p ≤ 1, α > −1.

Theorem 2.3. Let˜̃
R
p

β,ν =

{
u ∈ SH(D) : u(z) =

∫
D

ln |A
β̃
(z, ξ)|dµ(ξ) + h(z), z ∈ D

}
where β̃ > β0, β0 = β0(β, ν), for large enough β0 and h is a harmonic function,
so that

sup
0<R<1

∫ R

0

(∫
E
|h(τξ)|dξ

)p
(1 − τ)νdτ(1 −R)β <∞

and

n(r) ≤ c(1 − r)

−(β + ν + p+ 1)

p , r ∈ (0, 1).

Then the following embedding is valid

˜̃
R
p

β,ν ⊂ SB̃p
β,ν , ν > −1, β ≥ 0, 0 < p <∞.

Remark 1. These Theorems 2.1 - 2.3 extends Theorems 1.3 and 1.4 to these
new spaces of subharmonic functions.

Proofs of theorems. We need some properties of Aβ(z, ξ) first.

Lemma 1. (see [8])

1 Let ξ, z ∈ D, z ̸= ξ, ξ ̸= 0, −1 < β < +∞. Then

lim
|ξ|→0

ln |Aβ(z, ξ)|(
2 ln 1

|ξ|

) = 2.
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2 Let ξ, z ∈ D, ξ ̸= 0, β > −1. Then

ln |Aβ(z, ξ)| ≤ c

(
1 − |ξ|2

|1 − ξ̄z|

)β+2

.

Lemma 2. (see [8]) Let µ be positive Borel measure in {z : |z| < 1} the unit
disk. Then we have

µ(∆k) ≤ µ(Dk),

where ∆k and Dk are subsets of the unit disk, Dk = {z : |z| < 1 − 1

2k
, k =

0, 1, 2, . . .}, ∆k =

{
ξ : 1 − 1

2k
≤ |ξ| ≤ 1 − 1

2k+1
, k ∈ Z+

}
.

First we provide the following observation concerning subharmonic u func-
tion in the unit disk and it is Riesz measure µ. Let further n(r) = µ(Dr). We
combine arguments from [8] with some known estimates from [14].

We follow some arguments from [8]. We denote by X (or by Xj , j = 1, 2, 3)

one of our classes in our theorems. Let u ∈ X ∩ C(2)(D), u(0) > −∞, △u be
a Laplacian of u function. Let further

n(r) =

∫ r

0

∫ π

−π
△u(reiφ)dφ tdt, 0 < r < 1.

Following arguments of [8] we have

I =

∫ π

−π

∫ ρ

0
ln
ρ

r
△u

(
reiθ

)
rdrdφ ≤

∫ π

−π
u+
(
ρeiφ

)
dφ, ρ ∈ (0, 1).

Then (see [8])

I ≡
∫ ρ

0

1

r

(∫ r

0

∫ π

−π
△u(teiφ)tdtdφ

)
dr.

Using the fact that n(r) = µ(Dr) =
∫ r
0

∫ π
−π△u(teiφ)dφtdt (see [8]) we have∫ ρ

0

n(r)

r
dr ≤ c

∫ π

−π
u+(ρeiφ)dφ, ρ ∈ (0, 1). (A)

We now simply note that from (A) directly we have the following inequali-
ties. ∫ 1

0

(∫ R

0
(1 − τ)α

∫ r

0

n(u)

u
dudτ

)p
(1 −R)βdR ≤ C1∥f∥X1∫ 1

0

(
sup

0<τ<R

(∫ r

0

n(u)

u
du

)
(1 − r)ν

)p
(1 −R)σdR ≤ C2∥f∥X2



132 Romi F. Shamoyan

sup
0<R<1

(∫ R

0

(∫ τ

0

n(u)

u
du

)p
(1 − τ)αdτ

)
(1 −R)β ≤ C3∥f∥X3

It remains to follow arguments from [14] to get what we need. Namely we
have the following estimates for each function space (Xj)j=1,2,3.∫ 1

0
n(ρ)p(1 − ρ)(α+1)p+β+pdρ <∞ for X1 function space∫ 1

0
n(ρ)p(1 − ρ)p(ν+1)+σdR <∞ for X2 function space

n(ρ) ≤ c̃(1 − ρ)
− 1+p+α+β

p for X3 function space

For general case, 0 < p <∞, that is when u ∈ C2(D), u(0) > −∞ assump-
tion is not needed we must follow again arguments from [8].

We arrived at the following theorem.

Theorem 2.4. Let u ∈ X1 or X2 or X3 function space, ρ ∈ (0, 1). Then we
have for µ Riesz measure of subharmonic u function∫ 1

0 (n(ρ))p(1 − ρ)(α+1)p+β+pdρ < ∞, 0 < p < ∞, α > −1, β > −1 for X1

space.∫ 1
0 n(ρ)p(1 − ρ)p(ν+1)+σdρ <∞, 0 < p <∞, ν ≥ 0, σ > −1 for X2 space.

n(ρ) ≤ c(1 − ρ)
− 1+p+α+β

p , α > −1, β ≥ 0, 0 < p <∞ for X3 space.

Similar results for SHα(D) and SHp
α(D) spaces of subharmonic functions

were obtained earlier by Ohlupina in [8].
We assume further u is subharmonic in D, u(0) > −∞, and if U0 is a ball

covering zero, then u is harmonic there Aβ(z, ξ) is defined for all z, ξ ∈ D.
This assumption however can be removed via standard procedure of regu-

larization of subharmonic functions (see [8]).
Let us return now to the proof of our Theorems 2.1 - 2.3 (new embedding

theorems for our new general large spaces of subharmonic functions in the unit
disk).

Let further Vβ(z) =
∫
D ln |Aβ(z, ξ)|dµ(ξ), z ∈ D, u(z) = Vβ(z) + h(z) and

based on properties of Aβ we have (see Lemma 1) for z ∈ D

u+(z) ≤ |h(z)| + C

∫
D

(
1 − |ξ|2

|1 − ξz|

)β+2

dµ(ξ)

Following the arguments used in proof of Theorem 1.1, see [8], we arrive at
the following estimate∫ π

−π
u+(reiφ)dφ ≤

∫ π

−π
|h(reiφ)|dφ+

∫ π

−π

(∫
D

(
1 − |ξ|2

|1 − ξ̄z|

)β+2

dµ(ξ)

)
dφ = I1+I2;



On Some New Theorems for Spaces of Subharmonic Functions 133

From here it remains to show that I2(r), r ∈ (0, 1) function satisfies certain
estimates. Namely that the following estimates are valid

∫ 1

0

(∫ R

0
I2(r)(1 − r)αdr

)p
(1 −R)βdR <∞; (C1)

sup
R

∫ R

0
(I2(r)

p(1 − r)αdr) (1 −R)β <∞; (C2)∫ 1

0

(
sup

0<r<R
(I2(r))(1 − r)α

)p
(1 −R)βdR <∞; (C3)

So this arrives at another problem to estimate I2(r) in each X1, X2, X3, space
to show further that (C1), (C2), (C3) are valid using condition in formulation
of our theorems. We have following again same ideas from [8] the following
chain of estimates.

The proof of (C2) is very similar to arguments used in [8]. Indeed we have
the following estimates.

Let △k =

{
ξ : 1 − 1

2k
≤ |ξ| < 1 − 1

2k+1

}
, r ∈ △k, then

1

2k+1
≤ (1− |ξ|) <

1

2k
, D =

⋃+∞
k=0△k. We have to show for (C2) that

∫ R

0
(I2(r))

p(1 − r)αdr ≤ c

(1 −R)β
, R ∈ (0, 1).

Note that∫ π

−π

(∫
D

(1 − |ξ|2)β+2

|1 − ξ̄z|β̃+2
dµ(ξ)

)
dφ ≤ (z = reiφ) ≤

≤ c

∞∑
k=0

∫
△k

(1 − |ξ|2)β̃+2

(1 − r|ξ|)β̃+1
dµ(ξ) ≤ c

(1 − r)
α+β+1

p

, r ∈ (0, 1), (see [8]).

Since

∞∑
k=0

∫
△k

(1 − |ξ|2)β̃+2

(1 − r|ξ|)β̃+1
dµ(ξ) ≤

≤ c
n∑
k=0

∫
△k

(1 − |ξ|2)β̃+2

(1 − r|ξ̄|)β̃+1
dµ(ξ) + c1

∞∑
k=n+1

∫
△k

(1 − |ξ|2)β̃+2

(1 − r|ξ|)β̃+1
dµ(ξ) =

= Ĩ1 + Ĩ2, |ξ| ∈
[
1 − 1

2k
; 1 − 1

2k+1

)
, k ≥ 0
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It is easy to show

Ĩ1 ≤
c

(1 − r)
α+β+1

p

, (see [8]),

and
Ĩ2 ≤

c1

(1 − r)
α+β+1

p

, r ∈ (0, 1), (see [8]).

The rest is clear now. We have∫ R

0
(I2(r))

p(1 − r)αdr ≤ c

(1 −R)β
, R ∈ (0, 1).

Theorem is proved for X3 spaces.

Let us show (C1) and (C3) now. First (C1). As it was shown in [8] if

(1 − rk) =
1

2k
, n(rk) = nk, rk − rk−1 =

1

2k
, then for ˜β > β0 we have

C1(R) =

∫ R

0
(1 − r)αI2(r)dr ≤ ˜̃c

∫ R

0
(1 − r)α

∫ 1

0

(1 − ρ)β̃+1

(1 − rρ)β̃+1
n(ρ)dρ ≤

≤ C1

∞∑
k=1

nk

2k(β̃+2)

[∫ R

0

(1 − r)αdr

(1 − rkr)β̃+1

]
≤

≤ C

∞∑
k=1

nk

2k(β̃+2)

1

(1 − rkR)β̃−α
.

Now for p ≤ 1 (we can easily reformulate condition in our theorem on n(r)
in terms of nk)∫ 1

0
C1(R)p(1 −R)βdr ≤ c

∞∑
k=1

(npk)(2
−kβ)

2k(β̃+2)p

[
2−kαp

] (
2−k
)(

2−kβ̃p
)
≤ c.

The proof of (C3) is similar. We use

sup
0<r<R

(1 − r)α

(1 − rρ)β̃+1
≤ 1

(1 −Rρ)β̃+1−α
, R, ρ ∈ (0, 1),

(a bit general form of this) and we repeat 0 < p <∞ case almost similarly for
(C3).
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Note, indeed, that∫ 1

0
sup

0<r<R
(I2(r)(1 − r)α)p (1 −R)βdR ≤

≤ C̃

∫ 1

0

(∫ π

−π

(∫
D

(1 − |ξ|2)β+2dµ(ξ)

|1 − ξ̄z|β+2−α

)p
dφ

)
(1 −R)βdR,

α > 0, β > −1 and it remains to repeat arguments we provided for (C1) and
(C2) case using the fact that for α2 > α1 + 1, α1 > −1∫ 1

0
(1 −R)α1(1 −Rρ)−α2dR ≤ C̃(1 − ρ)−α2+α1+1, ρ ∈ (0, 1).

Theorem is proved.

Remark 2. For p > 1 similar type argument based on Hardy’s inequality
leads to same conclusion. We however do not consider this case here in details
refereing to [8] and leaving this case to interested readers.

Another case of interest for this theory is that of parametric representation
results for

Dc = {z ∈ C; |z| > 1}(the complement of the unit disk).

This may be the subject of a further study for the authors.
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lems, knowledge and Big Data processing. The research is carried out in de-
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1. INTRODUCTION

The existence of society in our days, but even more so in the future, de-
pends on emerging ICT technologies, which integrate with the traditional ones
gradually replacing them. The integrated technologies are applied in the real
production environment, as well as in the artificially created one, but also
in services. They ensure effective interaction, respond to speech, movement
and, of course, to the person’s traditional commands. 3G technologies already
provide fast and easy transfer of data in the form of text, images and voice,
which will make private and public services more efficient. Virtual reality will
make possible interactive virtual modeling and design of production systems .
Advanced speech and motion detection allow you to almost completely control
information systems using speech and gestures. The use of distributed data
warehouses and extensive information networks (e.g. GRID) already allows
the use, if necessary, of sufficiently large amounts of information needed to
achieve the desired goals regardless of the user’s workplace.

The predominantly unstructured character of the data remains a perma-
nently stringent current problem. We speak about data on the basis of which
the computer systems operate, with which the databases are populated but
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also with which they are traditionally manipulated. Therefore, the processing
of ill-structured data and knowledge remains relevant, especially the process-
ing methods. At present, but also until some progress is made, the processing
methods depend very much on the examined domain. New IT solutions for
information systems, that will be used and specific tools are needed to im-
prove the quality of data, information, and knowledge in daily activity and
perspective processes [1]. Looking to the future is not a routine task, which
makes it very difficult and important to provide activities with good quality
of data, information, and knowledge.

2. BASIC CONCEPTS

As digital technology becomes more and more important in many aspects
of everyday life, people should be able to trust it. Ensuring trust is also a
prerequisite for the adoption of this technology. This is an opportunity for
Europe, given its strong commitment to values and the rule of law and its
proven ability to design safe, reliable and complex products and services, from
aeronautics to energy, cars, and medical equipment.

The sustainable growth and societal well-being of present and future Eu-
rope is increasingly based on the value of data.[20] Artificial Intelligence (AI)
[7] is one of the most important applications of the data-based economy. To-
day, most data is consumer-related and stored and processed in central cloud
infrastructures. Instead, much of tomorrow’s data, which will be much more
abundant, will come from industry, businesses and public sector and will be
stored on a variety of systems, especially the computer devices that will operate
on the periphery of the network. This creates new opportunities for Europe,
which is in a strong position in the digital industry and business-to-business
applications, but occupies a relatively weak place in terms of consumer plat-
forms.

The High Level Expert Group proposed ”A Definition of AI”, [20]: ”Arti-
ficial Intelligence (AI) systems are software (and possibly hardware) designed
by humans that, if they are given a complex goal, acts in the physical or digital
dimension, perceiving the environment by taking data, interpreting structured
or ill-structured data collected, reasoning about knowledge or processing infor-
mation obtained from that data, and deciding on the best action to be taken
in order to achieve the goal. AI systems can use symbolic rules or learn a
numerical model, and they can also adapt their behavior by analyzing how the
environment is affected by their previous actions.”

For some time now, there has been a conceptual and technological discussion
about the hierarchy of data, information and knowledge, as well as the quality
aspects associated with them.[2] Data are considered as a descriptive element,
representing the perception and intensity of an examined phenomenon. Infor-
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mation is more than just a data set; it is the result of a process that interprets
and processes data in a specific prescribed format. There is also the term
informational product, insisting on the idea that information is not only
the introduction, but also the procedures used to obtain it, its processing,
while the notion of information more frequently used explicitly insists on the
exchange of data [3].

The formulation of the notion of knowledge encounters some difficulties that
can be overcome by a categorization, for example:

Explicit knowledge: knowledge expressed in words or numbers. This
type of knowledge is coded and well defined;

Tacit knowledge: knowledge expressed through introspection, intu-
ition and suspicion. This type of knowledge is very personal and difficult
to formalize;

Self-transcending knowledge: the ability to sense the presence of a
possible potential to see what does not yet exist, which can be considered
as tacit knowledge before its embodiment.

The third type of knowledge, the notion of self-transcendent knowledge
was introduced by Sharmer C.O.[4] which sustain that the examination of
knowledge management in the next decade will focus on the interaction of
three forms of knowledge - explicit, tacit and self-transcendent.

In addition, each of these three types of knowledge can be classified accord-
ing to whether it can be described as:

Declarative knowledge: facts, know-how, understanding;

Explanatory knowledge: rationalization, knowledge of knowledge;

Procedural knowledge: instructions, know-how, understanding;

General/organizational knowledge: knowledge that is easy to be
transmitted on and that is held by a large number of people;

Specific/individual knowledge: knowledge that very few have.

Knowledge is made up of a set of input data: information, experience,
relationships and techniques that each individual mentally synthesizes to form
a conception of how to approach the problem that needs to be solved or to
form an opinion about the decision-making situation or about a person, on
whom the solution of the problem in question depends.

Data quality and information quality are not new concepts, but they have
been increasingly emphasized in research during the last years. Most of the
concerns about data and information quality are due to ICT specialists, infor-
mation management systems, databases and their management, data security



140 Inga Titchiev, Constantin Gaindric

and data warehouse quality. Many researchers, including Pierce, Kahn, and
Melkas [1], examine the relationship between data quality, information quality,
and knowledge quality. Most researchers agree that improving the quality of
data should lead to the improvement in the quality of the information that
is generated from this data. It therefore seems reasonable that improving
information should, in turn, improve the quality of knowledge.

Convinced that information systems will become the predominant factor in
the progress of any field of activity, there are still many questions that need
to be answered:

1 Is high data quality the only requirement for improving the quality of
information?

2 Does high-quality information automatically ”turn” into knowledge and,
if so, what kind of knowledge?

3 How does the improvement execute between data, information, and
knowledge?

One answer, seems to be natural: one of the possibilities proposed by this
project is to structure the data, and matter-of-course the knowledge; and
methods of structuring both data and knowledge must be developed accord-
ing to the field examined, taking into account the specificity of the domain
and the nature of the data. Thus, we consider there, opens a way to pro-
cess knowledge and large volumes of data that will allow the development of
intelligent information systems to solve problems of major public interest.

3. SOME LANDMARKS OF THE PROJECT FOR
THE DEVELOPMENT OF INTELLIGENT IT
SYSTEMS FOR SOLVING ILL– STRUCTURED
PROBLEMS AND KNOWLEDGE
PROCESSING

In an attempt to answer the above questions, the goal of the project was
formulated as follows:

1 Structural design of intelligent information systems, databases, and knowl-
edge bases for applications in medical triage and diagnostics, e-learning
and digitization of heterogeneous documents;

2 Adaptation and integration of content and software from the existing
developments in the concept of intelligent information systems.

In order to carry out the research, the following objectives were formulated:

1 Design of intelligent IT systems, databases and knowledge bases for med-
ical triage and diagnostic applications;
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2 Creating the platform for digitizing heterogeneous documents;

3 Development of the automatic content generation systems for computer-
based education (e-learning);

4 Elaborating of the systemic concept of the heterogeneous multi-cloud
platform and the methods of creating the execution environment of the
imaging information processing applications;

5 Elaborating of the concepts and tools for interpreting and evaluating
information.

4. THE MAIN OBTAINED RESULTS

4.1. DESIGN OF INTELLIGENT IT SYSTEMS,
DATABASES AND KNOWLEDGE BASES
FOR MEDICAL TRIAGE AND DIAGNOSTIC
APPLICATIONS

1 The minimum set of parameters required for the registration of victims
has been identified, in limited time and comprehensive compliance with
the provisions of national and international protocols based on the ex-
perience of physicians-experts who determine triage decisions based on
vital signs and allow rapid classification of victims.[5]

2 The inference algorithm in the form of a decision table represents the
actions of the emergency diagnosis and allows the triage of victims.

3 The SonaRes technology platform, being adapted to EFAST (Figure 1),
has been completed with attributes/values, which allow the localization
of free fluids. EFAST diagnostic rules have been created.

4 In everyday life, and in particular in the case of the algorithm for emer-
gency diagnosis, we often need to manage para-consistent information,
i.e. seemingly contradictory information. One of the proposed method-
ologies for managing inconsistent information is the use of the concept
of para-consistent negation.

4.2. PLATFORM FOR DIGITIZING
HETEROGENEOUS DOCUMENTS

4.2.1 Modules to support manual verification of the processed
documents.

Step 1. Improving image quality - by providing online access to the rel-
evant features of ABBYY FineReader (AFR): automatic preprocessing,
alignment, splitting, etc [6].;
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Fig. 1. Adapted SonaRes technology

Red (I) Red (II) Yellow Green

Glasgow
Coma Scale

3-8 9-13 14 15

Airways Per-
meability

Obstruction/
Stridor

Difficult
breathing

Normal
breathing

Normal
breathing

Pulse >120 or
<40

111-120 or
41-45

81-110 or
46-59

60-80

Systolic
Blood Pres-
sure

<80 80-89 90-100 >100

Respiratory
Rate

>35 or
<13

29-35 19-28 14-18

Oxygen satu-
ration

<= 85 86-90 91-95 96-100

Individual
mobility

Unable Unable With help Walking

Table 1 Basic attributes and values in triage based on virtual signs.
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Fig. 2. Neural networks in font classification

Step 2. Checking/correcting the layout of the recognized document - by
displaying the web version of the reconstructed document, in which both
the margins and the content of the layout elements can be edited;

Step 3. For text elements - font correction. Font classification is per-
formed, the platform provides tools for correcting/modifying the font.
Fonts were classified using neural networks[9, 10]. In addition, for non-
Latin fonts, transliteration may be applied at the user’s request. The
platform provides support for spelling correction of texts, including old
ones.

Step 4. Writing metadata. Metadata is provided in textual form in the
format ”name = value.”

Step 5. Checking/correcting scripts - using script-specific writing mod-
ules (LaTeX editor for math formulas[8] and other types, Musescore for
music notes, etc.)

Step 6. Preview and save the reconstructed document.
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Fig. 3. Automatic generation[18, 19] of graphical representations of finite automata scheme

4.3. AUTOMATIC CONTENT GENERATION
SYSTEMS FOR COMPUTER-BASED
EDUCATION (E-LEARNING)

1 The possibilities offered by the existing e-learning platforms[14] were re-
searched and analyzed. The evaluation criteria were selected and the
comparative analysis of the 8 most popular platforms and learning man-
agement systems that support the use of multimedia elements, content
creation, and editing, was performed.

2 The system of automatic content generation[15] for computer-based ed-
ucation (e-learning) has been extended by making equivalent transfor-
mations on stack memory machines and context-independent grammars.

3 The management of learning progress and collaboration issues that may
arise in distance learning through Petri nets have been researched (Fig-
ure 4). After modeling the collaborative learning process, analyzing the
nets obtained through the coverability trees, the blockages in the system,
the learning path and the improvement of the process were estimated.
Hierarchical Petri nets (HLPNs) [11] have been applied to build vari-
ous control sequences in distance learning. Depending on the student’s
behavior, different ways of learning are proposed. Different training
strategies are proposed: linear, choice and arbitrary (combining the first
two).
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Fig. 4. HLPN in collaborative learning

4 Algorithms for the automatic generation of computer-based education
content have been developed [12]. The mechanism for generating the
list of questions in an adaptive TestWid test has been developed. The
system will generate the list of questions, which were not presented to
the previous student. The development steps of the application that
generate the content at the request of the user through keywords have
been described. Ways to improve the content generation process have
been defined.

4.4. SYSTEMIC CONCEPT OF THE
HETEROGENEOUS MULTI-CLOUD
PLATFORM AND THE METHODS OF
CREATING THE EXECUTION
ENVIRONMENT OF THE IMAGING
INFORMATION PROCESSING
APPLICATIONS

1 Methods for storing and archiving the ill-structured data (medical im-
ages) based on hierarchical platforms for processing and visualizing the
imaging information in distributed computing systems used to imple-
ment multi-level memory in archiving have been proposed.
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Fig. 5. Distributed Cloud infrastructure

2 Software tools for creating Open Science repositories[17] for storing imag-
ing data have been studied.

3 A solution for the implementation of a distributed Cloud infrastructure
(figure 5) with the possibility of its further integration in the European
computing infrastructure EGI was chosen.

4 Technologies for the creation of intelligent software agents (e.g. chatbots)
have been established for access to the knowledge base for ultrasound
diagnosis of pathologies.

4.5. CONCEPTS AND TOOLS FOR
INTERPRETING AND EVALUATING
INFORMATION

1 Methods to adapt software tools from the existing developments to assess
the credibility of online information have been developed[13].

2 Basic features of several tools for verifying the credibility of Web sources
were analyzed[16].

3 In order to create a theory of the ontological unity of Information/ Mat-
ter/ Energy, the concept of information of natural kinds, the concept
of evolutionary information - Plyrophoria [21], the concept of emergent
information and embedded in matter information based on the quantum
states that make up the matter of systems was formulated and described
(Figure 6).
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Fig. 6. Information in Wiener’s sense

5. CONCLUSIONS

In the Digital Europe and Horizon Europe programs, adopted by the Eu-
ropean Commission, great attention is paid to artificial intelligence, which is
seen as a tool capable of providing more benefits to citizens and businesses
across Europe, including better disease prevention, enhanced cyber security,
and more. Several EU countries have adopted strategies to promote Artificial
Intelligence, research programs in the field, specialization master programs for
applications in artificial intelligence. We consider that these examples would
be worth following, otherwise our country risks being left without the capac-
ity to use advanced technologies in all fields of activity: economy, education,
health, culture, etc.

The research that comes with a national contribution to a current challenge
of enabling online access to European heritage digital resources, will facilitate
the generation of digital content of computer-assisted training courses with
the application of knowledge bases, reusable language resources. Also it will
contribute to the systemic treatment of the poorly structured issues. Model-
ing of human intelligence is a fundamental concern that influences practical
applications developed.
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