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Abstract We study several iterative methods for fully coupled flow and reactive transport
in porous media. The resulting mathematical model is a coupled, nonlinear
evolution system. The flow model component builds on the Richards equa-
tion, modified to incorporate nonstandard effects like dynamic capillarity and
hysteresis, and a reactive transport equation for the solute. The two model
components are strongly coupled. On one hand, the flow affects the concen-
tration of the solute; on the other hand, the surface tension is a function of
the solute, which impacts the capillary pressure and, consequently, the flow.
After applying an Euler implicit scheme, we consider a set of iterative lin-
earization schemes to solve the resulting nonlinear equations, including both
monolithic and two splitting strategies. The latter include a canonical nonlin-
ear splitting and an alternate linearized splitting, which appears to be overall
faster in terms of numbers of iterations, based on our numerical studies. The
(time discrete) system being nonlinear, we investigate different linearization
methods. We consider the linearly convergent L-scheme, which converges un-
conditionally, and the Newton method, converging quadratically but subject
to restrictions on the initial guess. Whenever hysteresis effects are included,
the Newton method fails to converge. The L-scheme converges; nevertheless,
it may require many iterations. This aspect is improved by using the Ander-
son acceleration. A thorough comparison of the different solving strategies is
presented in five numerical examples, implemented in MRST, a toolbox based
on MATLAB.

Keywords: flow and reactive transport in porous media, dynamic capillarity, hysteresis,

Richards equation, Euler implicit scheme, L-scheme, Anderson acceleration
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1. INTRODUCTION

Mathematical models for complex physical phenomena are generally ne-
glecting several processes, in order to guarantee that the result is sufficiently
simple and to facilitate the numerical simulations. With a particular focus
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on porous media applications, in this sense we mention enhanced oil recovery,
diffusion of substances in living tissues, and pollution of underground aquifers.
With the increase of computational power, and the development of efficient
simulation algorithms, mathematical models are improved continuously, and
more and more of the neglected effects are included.

When studying unsaturated flow, the equilibrium capillary pressure plays a
fundamental role. It is typically assumed to be a nonlinear, monotone function
of the water content. Explicit representations have been obtained thanks to
numerous experiments under equilibrium conditions (no flowing phases). Even
though this formulation has been the most commonly used in the last decades,
it has been observed [18, 25, 53, 65], that changes in time of the water content,
thus its time derivatives, do influence the profile of the capillary pressure.
In terms of modeling, this is achieved by including the so-called dynamic
effects [13, 30, 47]. Numerous papers investigate the existence of a solution for
systems including such effects, among them we cite [20, 41, 48]. Furthermore,
the problem has been already studied numerically in, e.g., [2, 3, 21].

The hysteresis effect is another phenomenon often neglected. Again, experi-
ments have revealed that the curve obtained when investigating the imbibition
process, is different from the one observed during the drainage, [23, 34, 50, 51].
This is sketched in Fig. 1.

Fig. 1.: Primary hysteresis loop as presented in [50].

In this article, we study unsaturated flow in porous media, modeled by the
Richards equation [14, 32], however including both dynamic and hysteresis
effects. Furthermore, we include a solute component, e.g., a surfactant, in the
wetting phase, which can directly influence the fluid properties ([4, 56]). The
study of the transportation of an external components, e.g., surfactant, in vari-
ably saturated porous media has been already investigated both numerically
[36, 42, 59] and experimentally [33, 38].

Here, we will mainly concentrate on numerical studies, extending the solu-
tion techniques in [36] to include dynamic capillarity and hysteresis We con-
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sider the following model for coupled unsaturated flow and reactive transport

∂tθ(Ψ, c)−∇ · (K(θ(Ψ, c))∇(Ψ + z)) = S1,
∂t(θ(Ψ, c)c)−∇ · (D∇c− uwc) +R(c) = S2.

(1)

Here, θ(Ψ, c) is the water content, expressed as a function of both the unknown
pressure head Ψ and the concentration of the external component c. K, a
function of the water content θ, is the conductivity, z the vertical coordinate
of x⃗, pointing against gravity, D the dispersion/diffusion coefficient, uw :=
−K(θ(Ψ, c))∇(Ψ + z) the water flux, R(c) the reaction term and S1,S2 the
external sink/source terms involved.

Next to a concentration dependence of θ and Ψ, here we include also play-
type hysteresis and dynamic capillary effects as introduced in [13]. More
precisely,

Ψ ∈ −pcap(θ, c) + τ(θ)∂tθ + γ(θ) sign(∂tθ), (2)

where pcap is the equilibrium capillary pressure, expressed as a function of θ
and c, τ(θ) the dynamic effects, and γ(θ) the width of the primary hysteresis
loop. Later on, for ease of presentation, we consider γ as a positive constant,
γ ∈ R≥0. Note that (2) is a differential inclusion as the sign graph is multi-
valued and defined as follow,

sign(ξ) =


1 for ξ > 0,

[−1, 1] for ξ = 0,

−1 for ξ < 0.

(3)

The multi-valued graph allows switching between the imbibition and drainage
curves in the play-type hysteresis. For more details on the formulation we
refer to [13].

The primary unknowns of the system are the pressure Ψ, the concentration
c and the water content θ. In standard models, also obtained as special case
for γ = τ(θ) = 0, θ is a function of pressure and concentration. Therefore, (2)
is replaced by an algebraic relationship, which simplifies the model and allows
eliminating θ as an unknown. In the extended/nonstandard formulation, θ is
an unknown and (2) is required as additional equation of the model. Initial
and boundary conditions will complete the system.

To avoid working with a graph, we consider the following regularization,

Φ(ξ) =

{
sign(ξ) if |ξ| ≥ δ,
ξ
δ if |ξ| < δ,

(4)
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where δ ∈ R+ is a small parameter. Using this in (2) gives the regularized
system of equations

∂tθ −∇ · (K(θ)∇(Ψ + z)) = S1,
Ψ = −pcap(θ, c) + τ(θ)∂tθ + γΦ(∂tθ),

∂t(θc)−∇ · (D∇c− uwc) +R(c) = S2.
(5)

From now on, the system (5) will be further investigated. We will discretize
the equations and study different solving algorithms.

Remark 1.1. An inverse formulation is proposed in [13], obtained by solving
(2), as its regularized counterpart in (5), in terms of ∂tθ. This gives

∂tθ = F (Ψ, θ, c), (6)

for a suitable function F . The time derivative in the flow equation can then
be substituted by F ,

F (Ψ, θ, c)−∇ ·
(
K(θ)∇(Ψ + z)

)
= S1. (7)

This formulation is used for the mathematical analysis of such models,
[19, 61]. It has been observed, e.g., in [46], that such formulation can reduce
the number of iterations required to solve the system of equations, compared to
the formulation in (2). However, for the particular test cases investigated here,
no remarkable improvements are observed. Thus, for ease of presentation, we
will report the results obtained only for the formulation given by (5).

We point out that the concentration of the external component directly
influences the capillary pressure. The presence of such a component results
in a non-constant surface tension, which induces a rescaling of the pressures
[35, 63, 64].

To solve the system (5) numerically, one first needs to discretize in time
and space, and then develop solvers for the discretized equations. In this
paper, due to the expected low regularity of the solutions [6] and the desire of
relatively large time steps, we choose to use the backward Euler method for
the time discretization. Certain processes investigated in porous media flow
can take place on time intervals longer than decades, thus the need for large
time steps. Multiple spatial discretization techniques are available, e.g., the
Galerkin Finite Element Method (FEM ) [11, 52, 60], Discontinuous Galerkin
Method (DGM ) [9, 39, 43, 66], the Mixed Finite Element Method (MFEM )
[8, 21, 58, 59, 67, 70], the Finite Volume Method (FVM ) [27] and the Multi-
Point Flux Approximation (MPFA) [1, 10, 12, 40]. We will here concentrate
on FEM and TPFA (Two Points Flux Approximation), a particular case of
MPFA. In particular, we cite [15, 26, 71] for papers on improved numerical
schemes applied to the Richards equation.
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Since the equations investigated here are characterized by several nonlinear
quantities, K(θ), pcap(θ, c), τ(∂tθ), and R(c), and the time discretization is
not explicit, one needs to solve a nonlinear system at each time step, requir-
ing a linearization procedure. Examples of possible linearization schemes are:
the Newton method [54], the modified Picard method [24] and the L-scheme
[45, 57]. In this paper, we investigate the Newton method and the L-scheme.
The former is a commonly used linearization scheme which is quadratically
convergent. However, this convergence is only local and one needs to compute
the Jacobian matrix, which can be expensive. The L-scheme is instead glob-
ally (linearly) convergent, under mild restrictions, and it does not require the
computation of any derivative. The L-scheme is in general slower in terms of
numbers of iterations than the Newton method. Moreover, the linear systems
to be solved within each iteration are better conditioned when compared to
the ones given by the Newton method [36, 45]. Furthermore, the rate of con-
vergence of the scheme strongly depends on user-defined parameters. Such
aspects are investigated for numerous nonlinear problems, including Richards
equation, and two-phase flow in porous media, in [36, 45, 49, 57, 62]. Fi-
nally there numerous papers proposing improved formulation of the L-scheme,
among them we cite [5, 49].

In this work, we test the L-scheme on more complex problems involving
hysteresis and dynamic effects, and coupled reactive transport and flow. Fur-
thermore, we investigate a post-processing technique, the Anderson Acceler-
ation (AA) [7], which can drastically improve linearly convergent schemes.
The acceleration tool requires user-defined parameters. As will be seen below,
choosing the suitable parameters for the AA, significantly relaxes the choice
of the parameters for the L-scheme linearization.

We observe that the system (5) is fully coupled. This is due to the depen-
dence of the capillary pressure on both θ and c. Therefore, we will investigate
multiple solution algorithms, combining different linearization schemes and de-
coupling techniques. Decoupling/splitting the equations may present multiple
advantages such as: an easier implementation, a better conditioned problem
to solve, similar convergence properties but faster computations. We divide
the schemes into three main categories: monolithic (Mono), nonlinear split-
ting (NonLinS) and alternate splitting (AltS). Subsequently, we denote, e.g.,
by Newton-Mono, the monolithic scheme obtained by applying the Newton
method as linearization. Such schemes have already been investigated for the
standard model in [36].

The paper is organized as follows. In Section 2, we present the lineariza-
tion and discretization techniques including monolithic or decoupled solution
approaches. Section 3 presents five different numerical examples, which allow
to compare the efficiency and robustness of the solving algorithms. Section 4
concludes this work with the final remarks.
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2. PROBLEM FORMULATION,
DISCRETIZATION AND ITERATIVE
SCHEMES

In the following, we use the standard notations of functional analysis. The
domain Ω ⊂ Rd, d = 1, 2 or 3, is bounded and has a Lipschitz continuous
boundary ∂Ω. The final time is T > 0, and the time domain is (0, T ]. L2(Ω)
denotes the space of real valued, square integrable functions defined on Ω and
H1(Ω) its subspace containing the functions also having weak first derivatives
in L2(Ω). H1

0 (Ω) is the space of functions belonging to H1(Ω), having zero
trace on the boundary ∂Ω. Furthermore, we denote by < ·, · > the standard
L2(Ω) scalar product and by ∥·∥ the associated norm.

To numerically solve the system of equations (5), one needs to discretize
both in time and space. We combine the backward Euler method with linear
Galerkin finite elements. Let N ∈ N be a strictly positive natural number.
We define the time step size ∆t = T/N and tn = n∆t (n ∈ 1, 2, . . . , N).
Furthermore, let Th be a regular decomposition of Ω, Ω = ∪

T∈Th
T , with h

denoting the mesh diameter. The finite element spaces Vh ⊂ H1
0 (Ω) and

Wh ⊂ L2(Ω) are defined by

Vh :=
{
vh ∈ H1

0 (Ω) s.t. vh|T ∈ P1(T ), T ∈ Th
}
,

Wh :=
{
wh ∈ L2(Ω) s.t. wh|T ∈ P1(T ), T ∈ Th

}
,

(8)

where P1(T ) denotes the space of the linear polynomials on T . The fully
discrete Galerkin formulation of the system (5) can now be written as:

Problem Pn: Let n ≥ 1 be fixed. Assuming that Ψn−1
h , cn−1

h ∈ Vh and

θn−1
h ∈Wh are given, find Ψn

h, c
n
h ∈ Vh and θnh ∈Wh such that

< θnh − θn−1
h , v1,h >+∆t < K(θnh)(∇Ψn

h + ez),∇v1,h >
= ∆t < S1, v1,h >

∆t < Ψn
h, w1,h >+∆t < pcap(θ

n
h, c

n
h), w1,h >

− < τ(θnh)(θ
n
h − θn−1

h ), w1,h > = ∆tγ < Φ

(
θnh − θn−1

h

∆t

)
, w1,h >

< θnh(c
n
h − cn−1

h ) + cnh(θ
n
h − θn−1

h ), v2,h >+∆t < D∇Ψn
h

+un
wc

n
h,∇v2,h > +∆t < R(cnh),v2,h > = ∆t < S2, v2,h >

(9)

holds for all v1,h, v2,h ∈ Vh and for all w1,h ∈ Wh. We denote by ez the unit
vector in the direction opposite to gravity.

Observe that choosing the spaceH1
0 (Ω) implies that homogeneous boundary

conditions have been adopted for the pressure and the concentration. How-
ever, this choice is made for the ease of presentation, the extension to other
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boundary conditions being possible without major complications. We also
mention that, for n = 1, we use the approximation in Vh of the initial water
content and concentration, respectively θ0h and c0h.

In the following, we investigate different iterative schemes for solving Prob-
lem Pn. These schemes are based on the ones discussed in [36], extending
them, not only to the case of dynamic capillary pressure (τ(θ) ̸= 0) [37], but
also to the case of hysteresis. Among the numerous papers investigating nu-
merically the effects of hysteresis and dynamic capillarity pressure, we cite
[55, 72]. As mentioned, we compare monolithic (Mono) and splitting (Non-
LinS and AltS) solvers, combined with two different linearization schemes, the
Newton method and the L-scheme. Furthermore, the Anderson acceleration
[7] will be taken into account to speed up the linearly convergent L-scheme.

2.1. SOLVING ALGORITHMS

In what follows, when solving (9) iteratively, the index n will always refer
to the time step level, whereas j will denote the iteration index. As a rule, the
iterations will start with the solution at the last time step, tn−1, for example
Ψn,1 = Ψn−1. As mentioned, this choice is not required for L-type schemes
but it is a natural one.

In a compact form Problem Pn can be seen as the system
F1(Ψ

n
h, θ

n
h) = 0,

F2(Ψ
n
h, θ

n
h, c

n
h) = 0,

F3(Ψ
n
h, θ

n
h, c

n
h) = 0,

(10)

with F1, F2 resulting from the flow equations and F3 from the transport. In the
following we will indicate with F lin, the linearized formulation of F obtained
by either the Newton method or the L-scheme. Finally, we can proceed to
present monolithic and splitting solvers.

In the monolithic approach one solves the three equations of the system
(10) at once. Formally, one iteration is:

Find Ψn,j+1
h , θn,j+1

h and cn,j+1
h such that

F lin1 (Ψn,j+1
h , θn,j+1

h ) = 0,

F lin2 (Ψn,j+1
h , θn,j+1

h , cn,j+1
h ) = 0,

F lin3 (Ψn,j+1
h , θn,j+1

h , cn,j+1
h ) = 0,

(11)

where FLini is the linearization of Fi, i ∈ {1, 2, 3}. Depending on which
linearization technique is used, we refer to the Newton-monolithic scheme
(Newton-Mono) or monolithic-L-scheme (LS-Mono). These two schemes will
be presented in details below. Fig. 2 displays the sketched version of the
monolithic solver.
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Fig. 2.: The monolithic approach.

In the iterative splitting approach, the flow and the transport equations are
solved subsequently, iterating between them. We will distinguish between two
primary splitting schemes: the nonlinear splitting (NonLinS) and the alternate
linearized splitting (AltLinS), illustrated in Figure 3 and Figure 4, respectively.
Such schemes have already been studied, in the case of a standard flow model
in [36].
In the nonlinear splitting, one iteration step is:
Find first Ψn,j+1

h , θn,j+1
h such that{

F1(Ψ
n,j+1
h , θn,j+1

h ) = 0,

F2(Ψ
n,j+1
h , θn,j+1

h , cn,jh ) = 0,
(12)

and then find cn,j+1
h such that

F3(Ψ
n,j+1
h , θn,j+1

h , cn,j+1
h ) = 0. (13)

The two flow equations are solved at once. Each of the nonlinear systems
(12) and (13) is solved until some convergence criterion is met. Once the

pressure and water content are obtained, Ψn,j+1
h and θn,j+1

h , are then used in

the transport equation (13) to compute cn,j+1
h . The resulting F1, F2 and F3,

being nonlinear, are linearized using the Newton method or the L-scheme.
In contrast, the alternate linearized splitting (AltLinS) schemes perform

only one linearization step per iteration, see Figure 4. One iteration in the
alternate splitting scheme can be written as:
Find Ψn,j+1

h , θn,j+1
h such that{

F lin1 (Ψn,j+1
h , θn,j+1

h ) = 0,

F lin2 (Ψn,j+1
h , θn,j+1

h , cn,jh ) = 0,
(14)

and then cn,j+1
h such that

F lin3 (Ψn,j+1
h , θn,j+1

h , cn,j+1
h ) = 0. (15)

Again, depending on which linearization is used, we refer to alternate split-
ting Newton (AltS-Newton) or alternate splitting L-scheme (AltS-LS). Both
schemes will be presented in detail below.
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In the following sections we will illustrate, in the details, the different
schemes here investigated.

Fig. 3.: The nonlinear splitting approach.

Fig. 4.: The alternate splitting approach.

2.1.1 The monolithic Newton method (Newton-Mono). The
standard monolithic Newton method applied to (9) reads as:
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Problem P-Newton-Mono: Let j > 1 be fixed. Let Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈

Vh, and θn−1
h , θn,jh ∈ Wh be given, find Ψn,j+1

h , cn,j+1
h ∈ Vh, and θn,j+1

h ∈ Wh

such that

< θn,j+1
h − θn−1

h , v1,h > +∆t < K(θn,jh )(∇(Ψn,j+1
h ) + ez),∇v1,h >

+∆t < ∂θK(θn,jh )(∇(Ψn,j
h ) + ez)(θ

n,j+1
h − θn,j

h ),∇v1,h >= ∆t < S1,v1,h >
(16)

∆t < Ψn,j+1
h , w1,h > = −∆t < pcap(θ

n,j
h , cn,jh ), w1,h > −

−∆t < ∂θpcap(θ
n,j
h , cn,jh )(θn,j+1

h − θn,jh ), w1,h >

−∆t < ∂cpcap(θ
n,j
h , cn,jh )(cn,j+1

h − cn,jh ), w1,h > +

+ < τ(θn,jh )(θn,j+1
h − θn−1

h ), w1,h > +

+ < ∂θτ(θ
n,j
h )(θn,jh − θn−1

h )(θn,j+1
h − θn,jh ), w1,h > +

+∆tγ < Φ

(
θn,j
h −θn−1

h
∆t

)
, w1,h >

(17)
and

< θn,jh (cn,j+1
h − cn−1

h ) + cn,jh (θn,j+1
h − θn−1

h ), v2,h > +

+∆t < D∇cn,j+1
h + un,jw cn,j+1

h ,∇v2,h > +

+∆t < R(cn,jh ), v2,h > +

+∆t < ∂cR(c
n,j
h )(cn,j+1

h − cn,jh ) > = ∆t < S2, v2,h >
(18)

hold true for all v1,h, v2,h ∈ Vh, and for all w1,h ∈ Wh. By ∂θ we denote the
partial derivative with respect to the water content θ, and by ∂c the partial
derivative with respect to the concentration c, and un,jw := −K(θn,jh )∇(Ψn,j

h +
ez).

2.1.2 The monolithic L-scheme (LS-Mono). The monolithic
L-scheme for solving (9) reads:

Problem P-LS-Mono: Let j > 1 be fixed. Let Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈ Vh,

and θn−1
h , θn,jh ∈ Wh be given, find Ψn,j+1

h , cn,j+1
h ∈ Vh, and θ

n,j+1
h ∈ Wh such

that

< θn,j+1
h − θn−1

h , v1,h > +

∆t < K(θn,jh )(∇(Ψn,j+1
h ) + ez),∇v1,h > +

+L1 < Ψn,j+1
h −Ψn,j

h , v1,h > = ∆t < S1, v1,h >
(19)
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∆t < Ψn,j+1
h , w1,h >= −∆t < pcap(θ

n,j
h , cn,jh ), w1,h > +

+ < τ(θn,jh )(θn,j+1
h − θn−1

h ), w1,h > +

+∆tγ < Φ

(
θn,j
h −θn−1

h
∆t

)
, w1,h > +

+L2 < (θn,j+1
h − θn,jh ), w1,h >

(20)

and

< θn,jh (cn,j+1
h − cn−1

h ) + cn,jh (θn,j+1
h − θn−1

h ), v2,h > +

+∆t < D∇cn,j+1
h + un,jw cn,j+1

h ,∇v2,h > +

+∆t < R(cn,jh ), v2,h > +L3 < cn,j+1
h − cn,jh , v2,h > = ∆t < S2, v2,h >

(21)
hold true for all v1,h, v2,h ∈ Vh, and for all w1,h ∈Wh. L1, L2 and L3 are three
positive, user-defined parameters on which only mild conditions are imposed.
We refer to [36, 45, 57] for the analysis of the numerical schemes which have
inspired the ones presented here. Often, one needs to properly tune these
parameters to obtain a robust and relatively fast solver.

2.1.3 The nonlinear splitting approach (NonLinS). The nonlin-
ear splitting approach for solving (9) reads:

Problem P-NonLinS: Let j > 1 be fixed. Let Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈ Vh

and θn−1
h , θn,jh ∈Wh be given, find Ψn,j+1

h ∈ Vh, and θ
n,j+1
h ∈Wh such that

< θn,j+1
h − θn−1

h , v1,h > +

+∆t < K(θn,j+1
h )(∇(Ψn,j+1

h ) + ez),∇v1,h > = ∆t < S1, v1,h >
(22)

∆t < Ψn,j+1
h , w1,h >= −∆t < pcap(θ

n,j+1
h , cn,jh ), w1,h > +

+ < τ(θn,j+1
h )(θn,j+1

h − θn−1
h ), w1,h > +

+∆tγ < Φ

(
θn,j
h −θn−1

h
∆t

)
, w1,h >

(23)

holds true for all v1,h ∈ Vh and for all w1,h ∈Wh.

Then let Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈ Vh and θn−1

h , θn,jh ∈Wh be given, Ψn,j+1
h ∈

Vh and θn,j+1
h ∈ Wh are obtained from the equations above, find cn,j+1

h ∈ Vh
such that

< θn,j+1
h (cn,j+1

h − cn−1
h ) + cn,jh (θn,j+1

h − θn−1
h ), v2,h > +

+∆t < D∇cn,j+1
h + un,j+1

w cn,j+1
h ,∇v2,h > +

+∆t < R(cn,j+1
h ), v2,h > = ∆t < S2, v2,h >

(24)
holds true for all v2,h ∈ Vh. The water flux is given by

un,j+1
w := −K(θn,j+1

h )∇(Ψn,j+1
h + ez).
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Observe that (22)–(23) and (24) are nonlinear. To approximate their respec-
tive solutions, one can employ, e.g., the Newton method (NonLinS-Newton)
or the L-scheme (NonLinS-LS).

2.1.4 The alternate splitting Newton method (Newton-AltLinS).
Applied to (9), the alternate splitting Newton method reads:

Problem P-Newton-AltLinS: Let j > 1 be fixed. Let Ψn−1
h ,Ψn,j

h , cn−1
h ,

cn,jh ∈ Vh and θn−1
h , θn,jh ∈ Wh be given, find Ψn,j+1

h ∈ Vh, and θn,j+1
h ∈ Wh

such that

< θn,j+1
h − θn−1

h , v1,h > +

+∆t < K(θn,jh )(∇(Ψn,j+1
h ) + +ez),∇v1,h > +

+∆t < ∂θK(θn,jh )(∇(Ψn,j
h ) + ez)(θ

n,j+1
h − θn,jh ),∇v1,h > = ∆t < S1, v1,h >

(25)

∆t < Ψn,j+1
h , w1,h >= −∆t < pcap(θ

n,j
h , cn,jh ), w1,h > −

−∆t < ∂θpcap(θ
n,j
h , cn,jh )(θn,j+1

h − θn,jh ), w1,h > +

+ < τ(θn,jh )(θn,j+1
h − θn−1

h ), w1,h > +

+ < ∂θτ(θ
n,j
h )(θn,jh − θn−1

h )(θn,j+1
h − θn,jh ), w1,h > +

+∆tγ < Φ

(
θn,j
h −θn−1

h
∆t

)
, w1,h >

(26)
hold true for all v1,h ∈ Vh and w1,h ∈Wh.

Then, with given Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈ Vh and θn−1

h , θn,jh ∈ Wh, Ψ
n,j+1
h ∈

Vh and θn,j+1
h ∈ Wh are obtained from the equations above, find cn,j+1

h ∈ Vh
such that

< θn,j+1
h (cn,j+1

h − cn−1
h ) + cn,jh (θn,j+1

h − θn−1
h ), v2,h >

+∆t < D∇cn,j+1
h + un,j+1

w cn,j+1
h ,∇v2,h > +∆t < R(cn,jh ), v2,h >

+∆t < ∂cR(c
n,j
h )(cn,j+1

h − cn,jh ), v2,h >= ∆t < S2, v2,h >

(27)

hold true for all v2,h ∈ Vh.

2.1.5 The alternate splitting L-scheme (LS-AltLinS). The al-
ternate splitting L-scheme for solving (9) is:

Problem P-LS-AltLinS: Let j > 1 be fixed. Let Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈

Vh and θn−1
h , θn,jh ∈Wh be given, find Ψn,j+1

h ∈ Vh, and θ
n,j+1
h ∈Wh such that

< θn,j+1
h − θn−1

h , v1,h > +

+∆t < K(θn,jh )(∇(Ψn,j+1
h ) + ez),∇v1,h > +

+L1 < Ψn,j+1
h −Ψn,j

h , v1,h >= ∆t < S1, v1,h >
(28)
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∆t < Ψn,j+1
h , w1,h >= −∆t < pcap(θ

n,j
h , cn,jh ), w1,h > +

+ < τ(θn,jh )(θn,j+1
h − θn−1

h ), w1,h > +

+L2 < θn,j+1
h − θn,jh , w1,h > +

+∆tγ < Φ

(
θn,j
h −θn−1

h
∆t

)
, w1,h >

(29)

holds true for all v1,h ∈ Vh and w1,h ∈Wh.

Then, with given Ψn−1
h ,Ψn,j

h , cn−1
h , cn,jh ∈ Vh and θn−1

h , θn,jh ∈ Wh, and

Ψn,j+1
h ∈ Vh and θn,j+1

h ∈ Wh from the equations above. We find cn,j+1
h ∈ Vh

such that

< θn,j+1
h (cn,j+1

h − cn−1
h ) + cn,jh (θn,j+1

h − θn−1
h ), v2,h >

+∆t < D∇cn,j+1
h + un,j+1

w cn,j+1
h ,∇v2,h > +∆t < R(cn,jh ),v2,h >

+L3 < cn,j+1
h − cn,jh , v2,h >= ∆t < S2, v2,h >

(30)

hold true for all v2,h ∈ Vh.

Remark 2.1. There exist multiple improved formulations of both the Newton
method and L-scheme. We refer, among others, to the trust region techniques
[69], and the modified L-scheme in [49].

Remark 2.2. (Stopping criterion) For all schemes (monolithic or splitting),
the iterations are stopped when,

∥Ψn,j+1
h −Ψn,j

h ∥∞ ≤ ϵ1, ∥θn,j+1
h − θn,jh ∥∞ ≤ ϵ2 and ∥cn,j+1

h − cn,jh ∥∞ ≤ ϵ3,

where by ∥ · ∥∞ we mean the L∞(Ω) norm. Later on, for ease of presentation,
we consider ϵ1 = ϵ2 = ϵ3 = ϵ. The parameter ϵ will be defined in the numerical
section.

2.2. ANDERSON ACCELERATION

Although the L-scheme is robust and converges under mild restrictions, the
convergence rate depends strongly on the linearization parameters. We refer
to [45, 57, 62] for the analysis in case of standard Richards equation, and to
[39] for the nonstandard model. Tuning the parameters to obtain optimal
results in terms of numbers of iterations and thus of computational times,
can be tedious and time-consuming. The Anderson Acceleration (AA) is a
powerful post-processing tool which can drastically reduce the numbers of
iterations required by linearly convergent schemes, such as the L-scheme here
investigated. In addiction, it reduces the need for finding close to optimal
linearization parameters.

D. G. Anderson introduced the acceleration tool in 1965 [7], and since then it
has been investigated in multiple works, to name a few [16, 28, 68]. We recall
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here the definition of AA, presented in [68], formulated for a general fixed
point problem, of the form: given g : Rn → Rn, solve the system x = g(x).
Opposed to utilize only the last iteration xk, in the AA the new approximation

Algorithm 1 Classical Fixed-Point iteration

1: Given x0
2: for k = 0, 1,... until convergence do
3: xk+1 = g(xk)
4: end for

is a linear combination of previously computed ones, see Algorithm 2. In
the following, we denote by AA(m) the Anderson acceleration where m + 1
previously computed iterates are taken into account. With this, AA(0) is
the non-accelerated formulation. As revealed in the test cases below, this

Algorithm 2 Anderson Acceleration AA(m)

1: Given x0
2: for k = 1, 2... until convergence do
3: Set mk = min{m, k − 1}
4: Define the matrix Fk = (fk−mk−1, · · · , fk−1), where fi = g(xi)− xi
5: Find α ∈ Rmk+1 that solves

min
α=(α0,··· ,αmk

)T
∥∥∥Fkα∥s.t.

mk∑
i=0

αi = 1.

6: Define xk :=
∑mk

i=0 αig(xk−mk+i−1)
7: end for

technique can drastically reduce the number of iterations required by the L-
scheme.

The original formulation presented in [7] allows a for more general step,

xk := βk

mk∑
i=0

αig(xk−mk+i−1) + (1− βk)

mk∑
i=0

αixk−mk+i−1,

for a user-defined tuning parameter βk ∈ (0, 1]. We considered the simpli-
fied formulation, obtained with βk = 1, because no improvements have been
observed in the numerical results when using the extended one.

We remark that large values for the depth m can result in an instability
of the solution algorithm. When implementing the Anderson acceleration,
one has to tune this parameter properly. A small m could produce only a
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small reduction in the numbers of iterations; too large m could result in a
non-converging algorithm [29].

Remark 2.3. The definition of the nonlinear splitting solvers allows for dif-
ferent ways to apply the AA. We study three different loops: the coupling one
and the linearizing ones, one for each set of equations. We apply the Ander-
son acceleration to each of them. Two different parameters, m and mlin, are
defined. The former is used for the AA on the coupling loop, the latter for the
implementation on the linearization ones. The same mlin will be used for the
loop regarding the flow equations and for the one regarding the transport.

3. NUMERICAL EXAMPLES

In the following, we consider four numerical examples with increasing com-
plexity, based on a manufactured solution, and an example in which the bound-
ary conditions drive the flow but no manufactured solution is given. The first
four will differ in the different values for γ, δ and τ(θ) taken into account.
We have implemented the models and solving schemes in MRST, a toolbox
based on Matlab for the simulations of flow in porous media [44]. We use the
two point flux approximation, one of the most common spatial discretization
techniques. We remark that the linearization schemes and solving algorithms
do not depend on the particular choice of the spatial discretization, so one
may apply these solvers to other methods as well, without any difficulty.

The domain is the unit square Ω and the final time taken into consideration
is T = 3. The simulations are performed on regular meshes, consisting of
squares with sides dx = 1/10, 1/20, and 1/40. The time steps are ∆t =
T/25, T/50 and T/100. The L parameters, used in the L-scheme formulations,
are L1 = L2 = L3 = 0.1, if not specified otherwise. We took into consideration
different values, but the aforementioned choice seems to produce a robust
algorithm which required fewest iterations to achieve the convergence. For the
ease of the presentation, we set the three L parameters equal to each other;
one could define different values for each parameter, investigating even further
the linearization of each equation. We avoided this due to the application of
the AA. We will observe that the schemes can be drastically accelerated, even
though the L parameters are not optimal.

The condition numbers, for the stiffness matrices resulting from the different
solving algorithms are computed using the L1 norm, and we here report the
averaged values over the full simulation. A minus sign (−), in the tables
reporting on iterations and condition numbers, implies that the method failed
to converge for the particular combination of the time step and mesh size.
The tolerance ϵ used in the stopping criterion presented in Remark 2.2 is
ϵ = 1e− 6. We always report the total numbers of iterations required by the
full simulation, not the average number required by each time step. For the
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splitting solver, we present, separately, the condition numbers of both flow and
transport equations. Furthermore, for the nonlinear splitting, the iterations
are divided in two, the ones required by the flow equations and the ones for the
transport. Finally, the condition numbers reported are obtained by averaging
over the full simulations.

We apply the Anderson acceleration to each solving algorithm, always re-
porting the depths m and mlin used. Once more, mlin is the Anderson pa-
rameter used for the acceleration of the linearization loops regarding the flow
and transport equations in the nonlinear splitting solvers.

Inspired by [46], the first four examples are constructed in such a way that
the following is an exact solution:

θm(x, y, t) =


1− 1

2 cos((t1(x, y)− t)2) if t < t1(x, y),
1
2 if t1(x, y) ≤ t ≤ t2(x, y),

1− 1
2 cos((t− t2(x, y))

2) if t > t2(x, y),

(31)

Ψm(x, y, t) =


−pcap(θm) + τ(θm)∂tθm − γ if ∂tθm < −δ,
−pcap(θm) + τ(θm)∂tθm + γ

δ ∂tθm if − δ ≤ ∂tθm ≤ δ,

−pcap(θm) + τ(θm)∂tθm + γ if ∂tθm > δ,

(32)

cm(x, y, t) = x(x− 1)y(y − 1)t, (33)

where t1(x, y) = xy, t2(x, y) = xy + 2. Once the manufactured water content
is defined, one obtains the pressure by simply using the second equation in
(5). The capillary pressure is expressed as pcap(θ, c) = 1− θ2 − 0.1 c3 and the
conductivity as K(θ) = 1 + θ2. Even though such a formulation may appear
non-realistic, we are mainly interested in the nonlinearities. Furthermore, a
nonlinear reaction term, R(c) = c/(c+1), is taken into account in the transport
equation and the diffusion/dispersion coefficient D is set equal to 1.

Given the analytical expressions above, we can easily define the initial con-
ditions, the Dirichlet boundary conditions on the unit square and compute the
source terms S1 and S2 such that Ψm, θm and cm are solutions of the system.
In particular, the initial concentration and water content are

c(x, y, 0) = 0 on Ω,
θ(x, y, 0) = 1− 1

2 cos
(
t1(x, y)

2
)

on Ω.

We impose a zero concentration c(x, y, t) = 0 on the boundary of the domain.
The remaining boundary conditions, concerning the pressure, are time depen-
dent. One needs to compute t1 and t2 on every side of the unit square. Once
the time intervals given by t1 and t2 are obtained, the pressure can easily be
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imposed. For example, on the left side x = 0, thus t1 = 0 and t2 = 2. The
water content θ becomes

θ(0, y, t) = θleft(t) =

{
1
2 if 0 < t < 2,

1− 1
2 cos((t− 2)2) if t ≥ 2,

and the resulting pressure boundary condition is

Ψleft(0, y, t) =


−pcap(θleft) + τ(θleft)∂tθleft − γ if ∂tθleft < −δ,
−pcap(θleft) + τ(θleft)∂tθleft+

+γ
δ ∂tθleft if − δ ≤ ∂tθleft ≤ δ,

−pcap(θleft) + τ(θleft)∂tθleft + γ if ∂tθleft > δ.

Analogously, one can compute the pressure boundary conditions on the re-
maining sides.

3.1. EXAMPLE 1, γ = 0, τ (θ) = 1

In the first example we impose γ = 0, thus, the hysteresis effects are ne-
glected but we include a dynamic effect by considering a constant τ(θ) = 1.
We compare the different algorithms presented in Section 2.1, reporting in the
Tables 1 and 2 the total numbers of iterations required by each algorithm,
and the condition numbers of the systems associated with each scheme. In the
former, we investigate a fixed time step size, ∆t = T/25, in the latter a fixed
mesh size, dx = 1/10. As expected, a finer mesh results in worse conditioned
systems, while smaller time steps give better conditioned ones. Moreover, the
total number of iterations is increasing as we reduce the time step; smaller ∆t
implies more time steps and thus more iterations.

The schemes based on the L-scheme appear to be better conditioned than
those based on the Newton method. The result is coherent with the theory
[36, 45, 49, 57, 62]. One could even improve the condition numbers by using
larger L parameters. However, larger values would have also increased the
total numbers of iterations.

The alternate splitting schemes are converging much faster than the non-
linear ones. It is also interesting to observe that the numbers of iterations,
required by the alternate splitting schemes, are comparable with the ones as-
sociated with the monolithic solvers. In [36], we observed similar results when
solving the models without hysteresis and dynamic effects.

We notice also some reduction in the number of iterations required by the
L-schemes thanks to the Anderson acceleration. The results obtained for the
non-accelerated L-schemes (m = 0) are already optimal in terms of numbers
of iterations; thus, the improvement can only be minimal. We report the total
number of iterations for the full simulation, but mention that on average,
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Monolithic NonLinS AltLinS
dx #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

1/10 65 4.9e+02 56 - 50 1.8e+02 1.6e+02 66 1.8e+02 1.6e+02
1/20 69 2.2e+03 57 - 50 7.6e+02 6.3e+02 66 7.6e+02 6.3+02
1/40 70 1.1e+04 58 - 50 3.2e+03 2.5e+03 66 3.4e+03 2.5e+03

Newton(AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)

1/10 93 4.7e+02 65 - 50 1.8e+02 1.6e+02 74 1.8e+02 1.6e+02
1/20 98 2.1e+03 66 - 50 7.5e+02 6.3e+02 74 7.5e+02 6.3e+02
1/40 100 9.9e+03 69 - 50 3.2e+03 2.5e+03 76 3.3e+03 2.5e+03

L-scheme L-scheme L-scheme

1/10 134 4.1e+02 117 - 116 1.4e+02 1.3e+02 140 1.6e+02 1.3e+02
1/20 140 1.8e+03 119 - 115 6.9e+02 5.4e+02 144 7.3e+02 5.4e+02
1/40 146 8.5e+03 128 - 116 3.1e+03 2.1e+03 150 3.1e+03 2.1e+03

L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)

1/10 127 4.1e+02 107 - 100 1.9e+02 1.3e+02 136 1.4e+02 1.3e+02
1/20 129 1.8e+03 111 - 100 7.9e+02 5.4e+02 142 7.1e+02 5.3e+02
1/40 130 8.8e+03 118 - 100 3.3e+03 2.1e+03 146 3.0e+03 2.0e+03

Table 1: Example 1: Total number of iterations and
condition numbers for fixed ∆t = T/25, and different
dx. Here, L1 = L2 = L3 = 0.1 and m = mlin = 1.

for each time step, the L-scheme requires only five or six iterations. This
is already a remarkable result, achieved thanks to the optimal L parameters.
Furthermore, the Newton solvers have resulted in being slower when combined
with the AA. This is coherent with the theory where it has been observed
that quadratically convergent schemes, cannot be improved and the resulting
accelerated solvers appear slower [28].

In Table 3 we present the numerical errors and the estimated order of con-
vergence of the spatial discretization based on the successively refined meshes
investigated. Given the manufactured solution Ψm, we compute the numer-
ical error eΨ = ∥∥∥Ψm − Ψn∥, where Ψn is the numerical pressure com-
puted. Similarly, we can define eθ and ec. Furthermore, eΨ,1 is the numer-
ical error obtained for the mesh size dx = 1/10 and ∆t = T/25, eΨ,2 for
dx = 1/20 and ∆t = T/50, and finally eΨ,3 for dx = 1/40 and ∆t = T/100.

EOC = log
(

eΨ,i

eΨ,i+1

)
/ log(2) is the estimated order of convergence. These re-

sults are independent from the solving algorithm taken into account, only the
discretization approach plays a role. In this case we use a TPFA which is
known to have a order of convergence equal to 1, as also reported here in the
table.
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Monolithic NonLinS AltLinS
∆t #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

T/25 65 4.9e+02 56 - 50 1.8e+02 1.6e+02 66 1.8e+02 1.6e+02
T/50 103 2.7e+02 98 - 50 1.2e+02 8.8e+01 99 1.2e+02 8.8e+01
T/100 186 1.9e+02 172 - 50 8.6e+01 4.7e+01 172 8.7e+01 4.7e+01

Newton(AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)

T/25 93 4.7e+02 65 - 50 1.8e+02 1.6e+02 74 1.8e+02 1.6e+02
T/50 137 2.7e+02 114 - 50 1.2e+02 8.8e+01 114 1.2e+02 8.8e+01
T/100 244 1.9e+02 201 - 100 8.5e+01 4.7e+01 200 8.6e+01 4.7e+01

L-scheme L-scheme L-scheme

T/25 134 4.1e+02 117 - 116 1.4e+02 1.3e+02 140 1.6e+02 1.3e+02
T/50 219 2.3e+02 182 - 200 1.1e+02 7.5e+01 218 1.2e+02 7.5e+01
T/100 425 1.6e+02 346 - 400 8.3e+01 3.9e+01 438 8.2e+01 3.9e+01

L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)

T/25 127 4.1e+02 107 - 100 1.9e+02 1.3e+02 136 1.4e+02 1.3e+02
T/50 217 2.3e+02 192 - 160 1.2e+02 7.5e+01 238 1.1e+02 7.5e+01
T/100 387 1.6e+02 347 - 300 8.3e+01 3.9e+01 432 8.2e+01 3.9e+01

Table 2: Example 1: Total number of iterations and
condition numbers for fixed dx = 1/10, and different

∆t. Here L1 = L2 = L3 = 0.1, m = mlin = 1.

e1 EOC e2 EOC e3
Ψ 4.61e-02 0.98 2.33e-02 1.00 1.16e-02
θ 1.31e-02 0.97 6.71e-03 0.99 3.38e-03
c 6.24e-03 1.53 2.15e-03 1.32 8.60e-04

Table 3: Example 1: Numerical error and estimated
order of convergence (EOC) of the discretization

method.

In Table 4 we tested different values of m and L. We can observe that, for
large L, the Monolithic L-Scheme, here investigated, requires more iterations
than for smaller parameters. If many iterations are required to achieve the
convergence at each time step, one can take in consideration larger m values.
For L = 0.1, the optimal choice, in terms of numbers of iterations, is m = 1;
larger values result in slightly slower schemes. For the largest L tested, L =
2.3, the optimal choice is m = 2. Such L value corresponds to the theoretical

L, max
θ

{∂pcap∂θ } ≈ 2.3. To ensure the monotone convergence of the scheme it

has been proved, that the parameter chosen must be larger than the Lipschitz
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constant of the nonlinearity, in this case the capillary pressure as a function of
θ (see [45, 57, 62]). We set L1, L2 and L3 equal to the theoretical L computed
for the capillary pressure.

We can conclude that it is possible to obtain significant improvements by
investigating the AA and thus finding the appropriate depth m. In this work,
we have focused more on individuating the optimal L parameters, as refining
the AA can be done more easily. The depths used are, in fact, small natural
numbers.

L m = 0 m = 1 m = 2 m = 3 m = 5
.1 146 130 146 179 215
.5 247 161 152 172 200
1 411 202 168 165 195
2 711 290 199 206 217
2.3 810 317 207 215 227

Table 4: Example 1: Comparison of number of
iterations for different m and L parameters for

L-Mono.
Here, dx = 1/40, ∆t = T/25 and L1 = L2 = L3 = L.

Finally, we investigate the order of convergence of the linearization schemes.
In Figure 5, we plot the residuals of pressure, water content and concen-
tration, obtained at the final time step for the finest mesh size, dx = 1/40
and ∆t = T/25. We can deduce the rates of convergence of the different
linearization schemes. The L-schemes appear to be, as expected, linearly
convergent in term of numbers of iterations. The AA improves the results
only slightly, as already observed in Tables 1 and 2. This is justified by
the fact that the L parameters (L1, L2, L3) chosen here, appear to be opti-
mal. The Newton methods are instead quadratically convergent. More pre-
cise results are observable in Table 5. Here we present the exact order of
convergence of the different schemes. Given the residual of each unknown
(resΨ, resθ, resc), at each iteration j, we compute the order of convergence
as follow: ORDj =

(
log(resj+1/resj)

)
/
(
log(resj/resj−1)

)
. For a fixed time

step, we can average the orders obtained over the number of iterations required
to achieve the convergence. We report below the values obtained by investi-
gating the final time step; similar results have been observed for previous time
steps.

Remark 3.1. Since the Anderson acceleration with small depth is a cheap
post-processing step, reducing the number of iterations directly reduces the CPU
time almost proportionally.
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(a) Pressure residuals. (b) Water content residuals.

(c) Concentration residuals.

Fig. 5.: Example 1: Residuals of each unknown at
the final time step, for the different schemes.

Here, L1 = L2 = L3 = 0.1, m = mlin = 1, dx = 1/40,
∆t = T/25.

3.2. EXAMPLE 2, γ = 0, τ (θ) = 1 + θ2

In the second example, the setup of the first is extended by adopting a
nonlinear τ , precisely τ(θ) = 1 + θ2. In Tables 6 and 7, we present the con-
dition numbers and the required iteration counts associated with each solving
algorithm.

The introduction of a nonlinear τ(θ) increases the numbers of iterations
required by each solver. The L-scheme is linearly convergent while the New-
ton method is quadratically convergent. Furthermore, the conclusions from
Example 1 concerning the AA remain the same. In particular, we observe
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Ls

Mono

Ls

NonLinS And.

Ls

NonLinS

Ls

NonLinS And.

Ls

AltLinS

Ls

AltLinS And.

Ψ 1.00 1.26 1.13 1.46 1.13 2.07
c 0.96 1.55 1.01 1.77 1.01 1.30
θ 1.01 1.40 0.89 1.01 0.94 1.32

New.

Mono

New.

NonLinS And.

New.

NonLinS

New.

NonLinS And.

New.

AltLinS

New.

AltLinS And.

Ψ 2.03 1.61 1.94 1.86 2.04 2.03
c 2.41 2.01 1.61 1.41 1.85 1.46
θ 1.97 0.57 1.81 0.97 1.61 0.95

Table 5: Example 1: Estimated order of convergence for the different lineariza-
tion schemes.

Monolithic NonLinS AltLinS
dx #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

1/10 67 481.17 59 - 50 161.39 161.00 64 152.62 161.76
1/20 69 2.2e+03 57 - 50 656.26 636.33 66 644.98 644.99
1/40 70 1.1e+04 59 - 50 2.8e+03 2.5e+03 68 2.9e+03 2.5e+03

Newton(AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)

1/10 94 467.04 69 - 50 160.36 161.00 76 152.45 161.94
1/20 98 2.1e+03 68 - 50 636.14 636.33 76 642.25 638.40
1/40 100 9.8e+03 71 - 50 2.8e+03 2.5e+03 80 2.9e+03 2.5e+03

L-scheme L-scheme L-scheme

1/10 136 403.49 112 - 117 158.33 137.81 130 158.05 138.50
1/20 139 1.7e+03 120 - 116 644.85 544.34 136 651.07 545.85
1/40 144 8.3e+03 125 - 116 2.7e+03 2.1e+03 142 2.8e+03 2.1e+03

L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)

1/10 129 401.61 106 - 100 158.87 137.74 132 156.89 138.21
1/20 131 1.7e+03 113 - 100 644.63 543.86 134 647.35 545.18
1/40 137 8.4e+03 117 - 100 2.7e+03 2.1e+03 142 2.7e+03 2.1e+03

Table 6: Example 2: Total number of iterations and
condition numbers for fixed ∆t = T/25, and different
dx. Here, L1 = L2 = L3 = 0.1 and m = mlin = 1.

only small reductions in the numbers of iterations required by the L-schemes.
Once more, this is justified by the optimal choice of the L parameters. We
can observe that, for each time step, only a few iterations are required; thus,
no further acceleration is expected.
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Monolithic NonLinS AltLinS
∆t #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

T/25 67 481.17 59 - 50 161.39 161.00 64 152.62 161.76
T/50 107 256.90 102 - 50 95.40 89.26 102 95.08 89.80
T/100 193 159.33 184 - 100 73.42 47.70 184 72.37 47.91

Newton(AA m = 1) Newton (AA m = mlin = 1) Newton (AA m = 1)

T/25 94 467.04 69 - 50 160.36 161.00 76 152.45 161.94
T/50 142 254.28 117 - 50 94.64 89.26 118 95.71 89.88
T/100 259 159.96 207 - 100 73.05 47.70 208 72.78 47.95

L-scheme L-scheme L-scheme

T/25 136 403.49 112 - 117 157.86 137.81 130 158.05 138.50
T/50 220 211.60 185 - 201 98.63 75.62 220 97.80 75.86
T/100 433 125.49 356 - 400 65.18 40.16 446 65.24 40.28

L-scheme (AA m = 1) L-scheme (AA m = mlin = 1) L-scheme (AA m = 1)

T/25 129 401.61 106 - 100 158.87 137.74 132 156.89 138.21
T/50 214 212.13 192 - 161 97.72 75.69 240 97.63 75.66
T/100 388 126.15 355 - 302 64.73 40.16 440 64.45 40.17

Table 7: Example 2: Total number of iterations and
condition numbers for fixed dx = 1/10, and different

∆t. Here L1 = L2 = L3 = 0.1, m = mlin = 1.

As for the results presented in Tables 6 and 7, the numerical errors and
EOC reported in Table 8 are similar to the ones from the first example.

e1 EOC e2 EOC e3
Ψ 0.0759 0.9688 0.0388 0.9913 0.0195
θ 0.0140 0.9556 0.0072 0.9830 0.0036
c 0.0084 1.5198 0.0029 1.3037 0.0012

Table 8: Example 2: Numerical error and estimated
order of convergence (EOC) of the discretization

method.

In Figure 6, we report the residuals of the pressure, water content and con-
centration at the final time step. The L-schemes are linearly convergent, and
applying the AA does not result in significant improvements. The convergence
rates and number of iterations remain the same. Also for the Newton solvers,
since they are quadratically convergent, the AA cannot improve this aspect.
Table 9 presents the precise order of convergence of the different linearization
schemes.
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(a) Pressure residuals. (b) Water content residuals.

(c) Concentration residuals.

Fig. 6.: Example 2: Residuals of each unknown at
the final time step, for the different schemes. Here,
L1 = L2 = L3 = 0.1, m = mlin = 1, dx = 1/40,

∆t = T/25.

3.3. EXAMPLE 3, γ = 1, δ = 5E − 3, τ (θ) = 0

With the same manufactured solutions, we now consider the case without
dynamic effects (τ(θ) = 0), but include hysteresis by choosing γ = 1 and
δ = 5e− 3.

From the results in Tables 10 and 11, we notice that the Newton method,
in all its formulations, fails to converge. In Table 11, smaller time steps are
taken, but no improvements are observable. A further reduction of the time
step could have resulted in converging Newton solvers but the total numbers of
iterations for the full simulation would have been larger than the ones required



Solvers for Nonstandard Models for Transport in Unsaturated Porous Media 55

Ls

Mono

Ls

NonLinS And.

Ls

NonLinS

Ls

NonLinS And.

Ls

AltLinS

Ls

AltLinS And.

Ψ 1.07 1.40 1.11 1.36 1.14 1.24
c 0.99 1.23 0.98 1.45 0.96 1.10
θ 1.03 1.15 0.97 1.25 0.93 0.98

New.

Mono

New.

NonLinS And.

New.

NonLinS

New.

NonLinS And.

New.

AltLinS

New.

AltLinS And.

Ψ 1.61 1.58 1.97 1.69 2.15 2.14
c 2.68 1.47 1.98 1.54 1.98 1.83
θ 1.99 1.61 1.89 1.70 2.17 1.95

Table 9: Example 2: Estimated order of convergence
for the different linearization schemes.

by the L-schemes on fewer but larger time steps. In contrast, the L-schemes
are more robust and, even though requiring a higher number of iterations than
previously, they converge. We take L1 = L2 = L3 = L = 1, which appear to
be the optimal choice in terms of numbers of iterations.

The AA improves the convergence of the L-schemes. This is the first exam-
ple of this study in which the results obtained thanks to the AA are improved
substantially. This is due to the presence of the hysteresis, requiring a large L
for the overall convergence, and thus the total numbers of iterations is larger.
On average, the monolithic L-scheme solver requires circa 18 iterations per
time step. For m = 1, the AA reduces the iterations by circa 50%. Different
m values have been tested but none of the ones investigated lead to the con-
vergence of the Newton schemes. On all tests, Newton has failed to converge,
whereas the L-schemes converged and the AA yields further improvement.
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Monolithic NonLinS AltLinS
dx #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

1/10 - - - - - - - -
1/20 - - - - - - - -
1/40 - - - - - - - -

L-scheme L-scheme L-scheme

1/10 448 409.16 210 - 441 484.83 69.22 450 361.76 69.34
1/20 456 1.6e+03 266 - 439 1.9e+03 259.35 452 1.4e+03 260.02
1/40 468 6.6e+03 276 - 438 7.7e+03 996.36 460 5.8e+03 999.13

L-scheme (AA m = 2) L-scheme (AA m=2 mlin = 5) L-scheme (AA m = 1)

1/10 226 468.28 179 - 150 497.56 70.10 328 450.28 71.81
1/20 278 1.9e+03 187 - 141 2.0e+03 261.40 408 2.0e+03 269.72
1/40 303 8.2e+03 - - - 378 7.7e+03 967.29

Table 10: Example 3: Total number of iterations and
condition numbers for fixed ∆t = T/25, and different
dx. Here, L1 = L2 = L3 = 1, different m and mlin

are taken into account.

Monolithic NonLinS AltLinS
∆t #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

T/25 - - - - - - - -
T/50 - - - - - - - -
T/100 - - - - - - - -

L-scheme L-scheme L-scheme

T/25 448 409.16 210 - 441 484.83 69.22 450 361.76 69.34
T/50 836 363.15 513 - 846 422.16 35.96 838 332.02 36.03
T/100 1787 395.55 1261 - 1597 428.24 18.91 1764 363.40 19.07

L-scheme (AA m = 1) L-scheme (AA m=2 mlin = 5) L-scheme (AA m = 1)

T/25 226 468.28 179 - 150 497.56 70.10 328 450.28 71.81
T/50 533 410.93 346 - 316 504.00 36.85 664 442.54 37.43

T/100 1217 467.07
861 - 944
(mlin = 1)

491.24 19.15 1842 473.32 19.75

Table 11: Example 3: Total number of iterations and
condition numbers for fixed dx = 1/10, and different
∆t. Here, L1 = L2 = L3 = 1, different m and mlin

are taken into account

Once more, we report the numerical errors and the estimated orders of
convergence associated with the discretization technique here implemented
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(TPFA). In Table 12, we present the values obtained for the monolithic L-
scheme. The EOC depends only on the discretization technique, not the lin-
earization scheme or solving algorithm.

e1 EOC e2 EOC e3
Ψ 0.0308 1.0345 0.0150 0.9281 0.0085
θ 0.0350 1.2985 0.0142 1.0997 0.0066
c 0.0060 1.3202 0.0024 1.3000 0.0010

Table 12: Example 3: Numerical error and estimated
order of convergence (EOC) of the discretization

method.

In Figure 7, we report the residuals of pressure, water content and concen-
tration, at the final time step. The differences between the accelerated and
non-accelerated schemes seem to be minimal at the final time step but we
observe in Tables 10 and 11 that the total improvements are actually substan-
tial. The precise orders of convergence for the different solving algorithms are
reported in Table 13. The non-accelerated L-schemes have an order of conver-
gence equal to one, while the accelerated ones have slightly larger values. No
result was reported for the Newton schemes due to the lack of convergence.

Ls

Mono

Ls

NonLinS And.

Ls

NonLinS

Ls

NonLinS And.

Ls

AltLinS

Ls

AltLinS And.

Ψ 1.14 1.33 1.00 1.19 1.00 1.81
c 1.00 1.32 1.00 1.51 0.99 1.52
θ 1.00 1.29 1.00 1.39 1.00 1.16

Table 13: Example 3: Estimated order of
convergence for the different linearization schemes.
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(a) Pressure residuals. (b) Water content residuals.

(c) Concentration residuals.

Fig. 7.: Example 3: residuals of each unknown at
the final time step, for the different schemes.

Here, L1 = L2 = L3 = 1, dx = 1/40, ∆t = T/25 and
m ̸= mlin.

3.4. EXAMPLE 4, γ = 1, δ = 5E − 3, τ (θ) = 1 + θ2

Finally, we study a problem which includes both hysteresis and dynamic
capillary effects. We choose δ = 5e − 3, γ = 1 and τ(θ) = 1 + θ2. As for the
previous examples, we report the total numbers of iterations required by each
algorithm, the condition numbers associated with the linearized equations, the
EOC of the discretization technique and the residual for each unknown.

In Tables 14 and 15, we present the total number of iterations required
by each algorithm, and the condition numbers associated with each system.
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As in the previous example, the Newton method fails to converge, while the
L-scheme based solvers present no difficulties. The L parameters are all set
equal to 0.1. This leads to a faster convergence, when compared to the pre-
vious example, where larger values have been required for robustness. This is
explained by the fact that, since the dynamic effects are introduced (τ > 0),
the solution is more regular [19, 47].

We have tested different values of m on the Newton methods, but none
ensured the convergence of the schemes. As in the previous test cases, we
have investigated smaller time steps, but the Newton solvers has still failed to
converge.

Regarding the results obtained thanks to the AA, we can notice some im-
provements which are smaller than the ones observed for the previous test
cases. Once more, this is due to the optimal choice of the L parameters, en-
suring that the L-scheme converges, on average, in 5 iterations per time step.
Therefore further improvements are not expected. Note that, compared to
the first example (Table 4), larger L values are used leading to larger num-
bers of iterations. This explains why the AA with proper parameters m have
improved the convergence behaviour of the L-scheme there.

Monolithic NonLinS AltLinS
dx #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

1/10 - - - - - - - -
1/20 - - - - - - - -
1/40 - - - - - - - -

L-scheme L-scheme L-scheme

1/10 152 290.13 128 - 122 208.09 162.46 251 206.24 174.77
1/20 160 768.54 137 - 121 558.01 621.77 259 486.23 598.01
1/40 165 3.0e+03 141 - 120 2.1e+03 2.3e+03 328 2.1e+03 2.4e+03

L-scheme (AA m = 1) L-scheme (AA m=2 mlin = 3) L-scheme (AA m = 3)

1/10 139 288.40 112 - 85 212.29 165.24 152 198.15 166.47
1/20 144 752.41 117 - 89 550.05 630.43 162 522.01 636.00
1/40 149 3.0e+03 127 - 88 2.1e+03 2.3e+03 166 2.0e+03 2.4e+03

Table 14: Example 4: Total number of iterations and
condition numbers for fixed ∆t = T/25, and different

dx. Here, L1 = L2 = L3 = 0.1 and m ̸= mlin.
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Monolithic NonLinS AltLinS
∆t #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

T/25 - - - - - - - -
T/50 - - - - - - - -
T/100 - - - - - - - -

L-scheme L-scheme L-scheme

T/25 152 290.13 128 - 122 208.09 162.46 251 206.24 174.77
T/50 248 310.93 201 - 225 264.09 89.64 424 263.91 97.09
T/100 508 415.80 403- 405 403.31 47.53 768 403.81 52.72

L-scheme (AA m = 1) L-scheme (AA m=2 mlin = 3) L-scheme (AA m = 2)

T/25 139 288.40 112 - 85 212.29 165.24 152 198.15 166.47
T/50 233 312.95 195 - 167 267.27 90.55 250 260.41 91.42
T/100 448 416.05 358 - 308 404.34 47.65 506 403.30 48.38

Table 15: Example 4: Total number of iterations and
condition numbers for fixed dx = 1/10, and different

∆t. Here L1 = L2 = L3 = 0.1 and m ̸= mlin

The numerical errors and the estimated orders of convergence of the dis-
cretization technique (TPFA), presented in Table 16, are consistent with the
ones from the previous test cases.

e1 EOC e2 EOC e3
Ψ 0.0759 0.9558 0.0391 0.8837 0.0212
θ 0.0138 0.9115 0.0073 0.9463 0.0038
c 0.0101 1.2531 0.0042 1.2655 0.0018

Table 16: Example 4: Numerical error and estimated
order of convergence (EOC) of the discretization

method.

Finally, regarding the order of convergence of the different solving algo-
rithms, Figure 8 presents the residuals for each unknown, and Table 17 the
precise orders computed averaging over iterations at the final time step.
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(a) Pressure residuals. (b) Water content residuals.

(c) Concentration residuals.

Fig. 8.: Example 4: Residuals of each unknown at
the final time step, for the different schemes.

Here, L1 = L2 = L3 = 0.1, dx = 1/40, ∆t = T/25
and different m ̸= mlin.

3.5. PHYSICAL EXAMPLE

As final numerical study, we investigate a test case that involves realistic
parameters, but without having a manufactured solution. The flow will be
driven by the boundary conditions. The domain Ω is the vertical column
[0, 1]×[0, 2] and the final time is T = 4. This can represent a vertical section of
the subsurface on which infiltration and drying processes can take place. The
capillary pressure and conductivity expressions are given by the van Genuchten

formulation [31], K(θ) = θle

(
1−
(
1−θ1/Me

)M)2
and pcap(θ, c) =

(
1−b ln(c/a+
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Ls

Mono

Ls

NonLinS And.

Ls

NonLinS

Ls

NonLinS And.

Ls

AltLinS

Ls

AltLinS And.

Ψ 1.00 1.29 0.99 1.27 0.99 1.30
c 1.29 1.29 1.02 1.15 1.07 1.11
θ 1.00 1.16 1.00 1.35 1.00 1.20

Table 17: Example 4: Estimated order of
convergence for the different linearization schemes.

1)
)−1

(−θ−1/M )1−M ,
where θe = (θ−θr)/(θs−θr) is the effective water content, θs = 0.9, θr = 0.005,
M = 2, l = 0.31, a = 0.04 and b = 0.47. Furthermore, we take τ(θ) = 1 + θ2,
and the hysteresis effects are included by setting γ = 1 and δ = 5e − 3, as in
Example 4.

Dirichlet boundary conditions are imposed at the top side of the column

Ψ|y=2 = 1 +


0.5t if t < 1,

0.5 if 1 ≤ t < 2,

0.5(3− t) if 2 ≤ t < 3,

−0.4 if 3 ≤ t ≤ 4,

c|y=2 = 2,

whereas, at the remaining sides, we consider homogeneous Neumann bound-
ary conditions. The discontinuity in time t = 3 makes solving the problem
numerically even more complex. The initial conditions are

θ0 = x, and c0 = 1.

The L parameters, if not otherwise specified, are set to L = 2. We have
tested different values, but, L = 2 seems to give the best results in terms of
numbers of iterations. Furthermore, the results may be improved even further
by choosing different values for each parameter, L1, L2 and L3, but for ease of
presentation this has been omitted here.

In Tables 18 and 19, we report the total numbers of iterations and condition
numbers associated to each algorithm. We observe that, due to the higher
nonlinearities of the conductivity K and capillary pressure pcap involved, the
results are different compared to the ones presented for the previous examples.

Again, the Newton solvers have failed to converge and the systems associ-
ated with the linearized equations are badly conditioned. Considering smaller
time steps did not resolve this.

The L-schemes on the other hand converge, but require high numbers of
iterations. In case of finer meshes, one may need to use a larger L parameter.
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Once more, we can observe significant improvement thanks to the AA. The
performance of the monolithic solver is for example considerably improved.
Furthermore, the AA can also introduce some instabilities, and thus a larger
L may again be required. Clearly, this leads to an increase in the number of
iterations. Such results are still better than the one obtained for smaller L
with no acceleration. Similar observations can also be made for the splitting
solvers. Even though larger L parameters may be necessary, the accelerated
schemes perform better then the non-accelerated ones. The nonlinear splitting
seems to be less stable than the alternate linear one. It also requires more
iterations, and thus the alternate solver here proposed appears once more to
be the better alternative. We can observe as for the finest mesh, an optimal
m was not found for the AA and the schemes could not be further improved.

Moreover, it is interesting to observe the results reported in Table 19, there,
the mesh size is fixed while the time step is reduced. As previously stated, the
time reduction did not improve the Newton solvers, which failed to converge
for all the meshes and ∆t tested. Furthermore, smaller time steps can result
in L-scheme solvers having worse rate of convergence. We can observe as, e.g.,
no results are reported for the monolithic L-scheme in case of ∆t = T/50 and
∆t = T/100. In these cases, the solver was stopped because the number of
iterations required to achieve the convergence has exceed the value of 1000
iterations per time step.

Monolithic NonLinS AltLinS
dx #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

1/10 - - - - - - - -
1/20 - - - - - - - -
1/40 - - - - - - - -

L-scheme L-scheme L-scheme

1/10 5398 612.92 6472 - 727 402.04 58.15 6772 310.28 58.15

1/20 5379 2.6e+03
8336 - 910
(L = 2.5)

1.6e+03 188.54 6922 1.6e+03 228.85

1/40
10281
(L = 4)

2.1e+03
16441 - 1751

(L = 5)
5.1e+03 396.37 6846 7.5e+03 911.66

L-scheme (AA m = 1) L-scheme (AA m=mlin = 1) L-scheme (AA m = 1)

1/10
1454

(L = 4)
564.05

4572 - 542
(L = 5)

223.15 28.35
2480

(L = 5)
185.00 25.84

1/20
2333

(L = 8)
1.8e+03

8756 - 942
(L = 10)

542.12 60.21
4379

(L = 10)
469.75 51.59

1/40 - - - - - - - -

Table 18: Example 5: Total number of iterations and
condition numbers for fixed ∆t = T/25, and different

dx. Here, L1 = L2 = L3 = 2 and m ̸= mlin.
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Monolithic NonLinS AltLinS
∆t #iter. κM #iter. κF κT #iter. κF κT

Newton Newton Newton

T/25 - - - - - - - -
T/50 - - - - - - - -
T/100 - - - - - - - -

L-scheme L-scheme L-scheme

T/25 5398 612.92 6472 - 727 402.04 58.15 6772 310.28 58.15
T/50 - - 23033 - 1423 386.31 30.49 23994 297.65 30.50
T/100 - - 82500 - 2886 377.15 16.22 - - -

L-scheme (AA m = 1) L-scheme (AA m=mlin = 1) L-scheme (AA m = 1)

T/25
1454

(L = 4)
564.05

4572 - 542
(L = 5)

223.15 28.35
2480

(L = 5)
185.00 25.84

T/50 - - - - -
9474

(L = 6)
147.99 11.56

T/100 - - - - -
43488

(L = 10)
115.05 4.24

Table 19: Example 5: Total number of iterations and
condition numbers for fixed dx = 1/20, and different

∆t. Here, L1 = L2 = L3 = 2 and m ̸= mlin.

In Table 20, we report the different m and mlin values investigated for the
AA. We observe that for the L-scheme Mono solver, the optimal choice, in
terms of numbers of iterations is m = 1. Larger depths m may require large L
parameters and thus larger numbers of iterations. For the nonlinear splitting
solver, only one value of mlin has been taken in consideration for the coupling
loop, precisely mlin = 1. This is justified by the fact that the majority of
the iterations have taken place in the inside loops, the nonlinearities of the
equations are playing a larger role than the coupling aspect.

# it. m=0 # it. m=1 # it. m=2 # it. m=5

Mono L-scheme 5398 1454
2307

(L = 10)
3511

(L = 12)

NonLinS L-scheme 6472 - 727
4572 - 542
(L = 5)

- -

AltLinS L-scheme 6772
2480

(L = 5)
2479

(L = 5)
5023

(L = 12)
Newton-Mono - - - -

Table 20: Example 5: Numbers of iterations
associated to different m and mlin values, dx = 1/10

dt = T/25.
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(a) Pressure residuals.
(b) Water content

residuals.
(c) Concentration

residuals.

Fig. 9.: Example 5: Residuals of each unknown at
the final time step, monolithic L-scheme. Here,
different L and m are tested, dx = 1/10, and

∆t = T/25.

(a) Pressure residuals.
(b) Water content

residuals.
(c) Concentration

residuals.

Fig. 10.: Example 5: Residuals of each unknown at
the final time step, AltLinS L-scheme. Here, different

L and m are tested, mlin = 1, dx = 1/10, and
∆t = T/25.

Finally, in the Figures 9, 10 and 11 we report the residuals at the final time
step, for each unknown and each algorithm, and for different values of m. The
results are coherent with the ones presented in the Tables 18 and 19. The
monolithic and alternate linearized splitting solvers show clear improvements
thanks to the AA, for both m = 1 and m = 2. For the nonlinear splitting
solver, the AA does not seem to produce any improvement, as the rates of
convergence seem to be the same. The result does not directly contradict the
ones presented in the Tables 18 and 19; it simply states that, at the final time
step, the AA does not produce any improvement. On the full simulation, we
could observe a clear reduction in the numbers of iterations.
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(a) Pressure residuals.
(b) Water content

residuals.
(c) Concentration

residuals.

Fig. 11.: Example 5: Residuals of each unknown at
the final time step, NonLinS L-scheme. Here,
different L and m are tested, dx = 1/10, and

∆t = T/25.

Table 21 presents the precise rates of convergence of the different lineariza-
tion schemes. Once more we can observe as the AA improves the rates of
convergence of the solvers based on the L-scheme.

Ls

Mono

Ls

NonLinS And.

Ls

NonLinS

Ls

NonLinS And.

Ls

AltLinS

Ls

AltLinS And.

Ψ 0.93 1.60 0.99 1.21 0.99 1.58
c 0.95 1.72 0.89 1.52 0.97 1.61
θ 1.08 1.69 0.94 1.07 0.99 1.10

Table 21: Example 5: Order of convergence of the
linearization schemes.

4. CONCLUSIONS

We consider models for flow and reactive transport in a porous medium.
Next, to account for the influence of the solute concentration on the flow pa-
rameters, we incorporate effects like dynamic capillary pressure and hysteresis.
The problem results being fully coupled.

For solving the time discrete equations (9), obtained after applying the
Euler implicit scheme, we investigate different approaches: a monolithic solu-
tion algorithm and two splitting ones. Furthermore, for solving the nonlinear
problem, two linearizations are studied: the Newton method and the L-scheme.
The latter appears to be more stable than the former, which is more commonly
implemented.
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Finally, we have studied the effects of the Anderson acceleration. We ob-
served that its implementation is particularly simple and can result in signif-
icant improvements. There were cases in which the differences between the
accelerated and non-accelerated schemes were minimal, but due to its sim-
plicity and the possibility of the great reduction in the numbers of iterations,
we think it should always be tested. Particularly, one can either invest time
in finding the optimal L parameters or the best depth m for which the AA
results in the fastest scheme. Often, finding the most suitable m is simpler,
and it can results in impressive improvements.

References

[1] I. Aavatsmark, An introduction to multipoint flux approximations for
quadrilateral grids, Computational Geosciences Volume 6, Issue 3-4,
Pages 405-432, 2002.

[2] E. Abreu, J. Vieira, Computing numerical solutions of the pseudo-
parabolic Buckley Leverett equation with dynamic capillary pressure,
Mathematics and Computers in Simulation, Volume 137, Pages 29-48,
2017.

[3] E. Abreu, P. Ferraz, J. Vieira, Numerical resolution of a pseudo-parabolic
Buckley-Leverett model with gravity and dynamic capillary pressure in
heterogeneous porous media, Journal of computational Physics, Volume
411, 2020.

[4] A. Agosti, L. Formaggia, A. Scotti, Analysis of a model for precipita-
tion and dissolution coupled with a Darcy flux, Journal of Mathematical
Analysis and Applications, Volume 431, Issue 2, Pages 752-781, 2015.

[5] G. Albuja, A. I. Avila, A family of new globally convergent linearization
schemes for solving Richards’ equation, Applied Numerical Mathematics,
Volume 159, Pages 281-296, 2021.

[6] W. Alt, H. Luckhaus, Quasilinear elliptic-parabolic differential equations,
Mathematische Zeitschrift, Volume 183, Issue 3, Pages 311-341, 1983.

[7] D. G. Anderson, Iterative Procedures for Nonlinear Integral Equations,
Journal of the ACM, Volume 12, Issue 4, Pages 547-560, 1965.

[8] T. Arbogast, M. F. Wheeler, A nonlinear mixed finite element method for
a degenerate parabolic equation arising in flow in porous media, SIAM
Journal on Numerical Analysis, Volume 33, Issue 4, Pages 1669-1687,
1996.

[9] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified Analysis of
Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on
Numerical Analysis, Volume 39, Issue 5, Pages 1749-1779, 2006.



68 Davide Illiano, Jakub Wiktor Both, Iuliu Sorin Pop, Florin Adrian Radu

[10] A. Arraras, F. J. Gaspar, L. Portero, C. Rodrigo, Multigrid solvers for
multipoint flux approximations of the Darcy problem on rough quadrilat-
eral grids, Computational Geosciences, https://doi.org/10.1007/s10596-
020-09979-w, 2020.

[11] J. W. Barrett, P. Knabner, Finite element approximation of the transport
of reactive solutes in porous media. Part 1: error estimates for nonequilib-
rium adsorption processes, SIAM Journal on Numerical Analysis, Volume
34, Issue 1, Pages 201-227, 1997.

[12] M. Bause, J. Hoffmann, P. Knabner, First-order convergence of multi-
point flux approximation on triangular grids and comparison with mixed
finite element methods, Numerische Mathematik, Volume 116, Issue 1,
Pages 1-29, 2010.

[13] A.Y. Beliaev, S.M. Hassanizadeh, A Theoretical Model of Hysteresis and
Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous
Media. Transport in Porous Media, Volume 43, Issue 3, Pages 487-510,
2001.

[14] M. Berardi, F. Difonzo, M. Vurro, L. Lopez, The 1D Richards’ equation
in two layered soils: a Filippov approach to treat discontinuities, Advances
in Water Resources, Volume 115, Pages 264-272, 2018.

[15] M. Berardi, F. Difonzo, L. Lopez, A mixed MoL-TMoL for the numer-
ical solution of the 2D Richards’ equation in layered soils, Computers
& Mathematics with Applications Volume 79, Issue 7, Pages 1990-2001,
2020.

[16] J. W. Both, K. Kumar, J. M. Nordbotten, F. A. Radu, Anderson acceler-
ated fixed-stress splitting schemes for consolidation of unsaturated porous
media, Computers & Mathematics with Applications, Volume 77, Issue 6,
Pages 1479-1502, 2019.

[17] S. Bottero, S. M. Hassanizadeh, P. J. Kleingeld, T. J. Heimovaara,
Nonequilibrium capillarity effects in two-phase flow through porous me-
dia at different scales, Water Resources Research, Volume 47, Issue 10,
2011.

[18] G. Camps-Roach, D. M. O’Carroll, T. A. Newton, T. Sakaki, T. H. Illan-
gasekare, Experimental investigation of dynamic effects in capillary pres-
sure: Grain size dependency and upscaling, Water Resources Research,
Volume 46, Issue 8, 2010.

[19] X. Cao, I. S. Pop, Two-phase porous media flows with dynamic capillary
effects and hysteresis: Uniqueness of weak solutions, Computers & Math-
ematics with Applications, Volume 69, Issue 7, Pages 688-695, 2015.



Solvers for Nonstandard Models for Transport in Unsaturated Porous Media 69

[20] X. Cao, I. S. Pop, Degenerate two-phase porous media flow model with
dynamic capillarity, Journal of Differential Equations Volume 260, Issue
3, Pages 2418-2456, 2016.

[21] X. Cao, K. Mitra, Error estimates for a mixed finite element discretization
of a two-phase porous media flow model with dynamic capillarity, Journal
of Computational and Applied Mathematics, Volume 353, Pages 164 -
178, 2019.

[22] X. Cao, S.F. Nemadjieu, I.S. Pop, Convergence of an MPFA finite volume
scheme for two phase porous media flow with dynamic capillarity, IMA
Journal of Numerical Analysis, Volume 39, Issue 1, Pages 512–544, 2019.

[23] D. M. O’Carroll, T. J. Phelan, L. M. Abriola, Exploring dynamic effects
in capillary pressure in multistep outflow experiments, Water Resources
Research, Volume 41, Issue 11, 2005.

[24] M. Celia, E. Bouloutas, R. L. Zarba, A General Mass-Conservative Nu-
merical Solution for the Unsaturated Flow Equation, Advances in Water
Resources, Volume 26, Issue 7, Pages 1483-1496, 1990.

[25] D. A. DiCarlo, Experimental measurements of saturation overshoot on
infiltration, Water Resources Research, Volume 40, Issue 4, 2004.

[26] V. Dolejsi, M. Kuraz, P. Solin, Adaptive higher-order space-time discon-
tinuous Galerkin method for the computer simulation of variably-saturated
porous media flows, Applied Mathematical Modelling, Volume 72, Pages
276-305, 2019.

[27] R. Eymard, M. Gutnic, D. Hilhorst, The finite volume method for
Richards equation, Computational Geosciences, Volume 3, Issue 3-4,
Pages 256-294, 1999.

[28] C. Evans, S. Pollock, L. G. Rebholz, M. Xiao, A proof that Anderson ac-
celeration improves the convergence rate in linearly converging fixed point
methods (but not in those converging quadratically), SIAM Journal on
Numerical Analysis, Volume 58, Issue 1, Pages 788-810, 2020.

[29] H. Fang, Y. Saad, Two classes of multisecant methods for nonlinear ac-
celeration, Numerical Linear Algebra with Application, Volume 16, Issue
3, Pages 197 - 221, 2008.

[30] W. G. Gray, S. M. Hassanizadeh, Macroscale continuum mechanics for
multiphase porous-media flow including phases, interfaces, common lines
and common points, Volume 21, Issue 4, Pages 261 - 281, 1998.

[31] M. van Genuchten, A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Science Society of America Jour-
nal, Volume 44, Issue 5, Pages 892-898, 1980.

[32] R. Helmig, two-phase flow and transport processes in the subsurface: a
contribution to the modeling of hydrosystems, Springer-Verlag, 1997.



70 Davide Illiano, Jakub Wiktor Both, Iuliu Sorin Pop, Florin Adrian Radu

[33] E. J. Henry, J. E. Smith, A. W. Warrick, Solubility effects on surfactant-
induced unsaturated flow through porous media, Journal of Hydrology,
Volume 223, Issues 3-4, Pages 164-174, 1999.

[34] N. T. Hoa, R. Gaudu, C. Thirriot, Influence of the hysteresis effect on
transient flows in saturated-unsaturated porous media, Water Resources
Research, Volume 13, Issue 6, Pages 992-996, 1977.

[35] D. Husseini, Effects of Anions acids on Surface Tension of Water, Un-
dergraduate Research at JMU Scholarly Commons, 2015.

[36] D. Illiano, I. S. Pop, F. A. Radu, Iterative schemes for sur-
factant transport in porous media, Computational Geosciences,
https://doi.org/10.1007/s10596-020-09949-2, 2020.

[37] D. Illiano, I. S. Pop, F. A. Radu, An efficient numerical scheme
for fully coupled flow and reactive transport in variably saturated
porous media including dynamic capillary effects, accepted author
manuscript, Numerical Mathematics and Advanced Applications ENU-
MATH 2019, Lecture Notes in Computational Science and Engineering
139, https://doi.org10.1007/978-3-030-55874-1 55, 2020.

[38] A. Karagunduz, M. H. Young, K. D. Pennell, Influence of surfactants on
unsaturated water flow and solute transport, Water Resources Research,
Volume 51, Issue 4, Pages 1977-1988, 2015.

[39] S. Karpinski, I. S. Pop, F. A. Radu, Analysis of a linearization scheme for
an interior penalty discontinuous Galerkin method for two-phase flow in
porous media with dynamic capillarity effects, International Journal for
Numerical Methods in Engineering, Volume 112, Issue 6, Pages 553-577,
2017.

[40] R. A. Klausen, F. A. Radu, G. T. Eigestad, Convergence of MPFA on
triangulations and for Richards’ equation, International Journal for Nu-
merical Methods in Fluids, Volume 58, Issue 12, Pages 1327-1351, 2008.

[41] J. Koch, A. Ratz, B. Schweizer, Two-phase flow equations with a dynamic
capillary pressure, European Journal of Applied Mathematics, Volume 24,
Issue 1, 2012.

[42] P. Knabner, S. Bitterlich, R. I. Teran, A. Prechtel, E. Schneid, Influ-
ence of Surfactants on Spreading of Contaminants and Soil Remediation,
Jager W., Krebs HJ. (eds) Mathematics — Key Technology for the Fu-
ture. Springer, https://doi.org/10.1007/978-3-642-55753-8-12, 2003.

[43] H. Li, M. W. Farthing, C. N. Dawson, C. T. Miller, Local discontinu-
ous Galerkin approximations to Richards’ equation, Advances in Water
Resources, Volume 30, Issue 3, Pages 555-575, 2007.



Solvers for Nonstandard Models for Transport in Unsaturated Porous Media 71

[44] K.-A. Lie, An Introduction to Reservoir Simulation Using MATLAB:
User guide for the Matlab Reservoir Simulation Toolbox (MRST), SIN-
TEF ICT, 2016.

[45] F. List, F. A. Radu, A study on iterative methods for solving Richards’
equation, Computational Geoscience, Volume 20, Issue 2, Pages 341-353,
2016.

[46] S. B. Lunowa, I. S. Pop, B. Koren, Linearized domain decomposition meth-
ods for two-phase porous media flow models involving dynamic capillarity
and hysteresis, Computer Methods in Applied Mechanics and Engineer-
ing, Volume 372, https://doi.org/10.1016/j.cma.2020.113364, 2020.

[47] A. Mikelic, A global existence result for the equations describing unsat-
urated flow in porous media with dynamic capillary pressure, Journal of
Differential Equations, Volume 248, Issue 6, Pages 1561-1577, 2010.

[48] J.-P. Milisic, The unsaturated flow in porous media with dynamic capillary
pressure, Journal of Differential Equations, Volume 264, Issue 9, Pages
5629-5658, 2018.

[49] K. Mitra, I. S. Pop, A modified L-scheme to solve nonlinear diffusion
problems, Computers & Mathematics with Applications, Volume 77, Issue
6, Pages 1722-1738, 2019.

[50] J. McClure, R. T. Armstrong, M. Berrill, S. Schluter, S. Berg, W. G.
Gray, C. T. Miller, Geometric state function for two-fluid flow in porous
media, Physical Review Fluids, Volume 3, Issue 8, 2018.

[51] N. R. Morrow, C. C. Harris, Exploring dynamic effects in capillary pres-
sure in multistep outflow experiments, Water Resources Research, Volume
41, Issue 11, 2005

[52] R. Nochetto, C. Verdi, Approximation of degenerate parabolic problems
using numerical integration, SIAM Journal on Numerical Analysis, Vol-
ume 25, Issue 4, Pages 784-814, 1988.

[53] O, Oung, S. M. Hassanizadeh, A. Bezuijen, Two-phase flow experiments
in a geocentrifuge and the significance of dynamic capillary pressure effect,
Journal of Porous Media, Volume 8, Issue 3, Pages 247-257, 2005.

[54] C. Paniconi, M. Putti, A comparison of Picard and Newton iteration in
the numerical solution of multidimensional variably saturated flow prob-
lems, Water Resources Research, Volume 30, Issue 12, Pages 3357-3374,
1994.

[55] M. Peszynska, S. Y. Yi, Numerical methods for unsaturated flow with
dynamic capillary pressure in heterogeneous porous media, International
journal of Numerical Analysis and Modeling, Volume 5, Pages 126-149,
2008.



72 Davide Illiano, Jakub Wiktor Both, Iuliu Sorin Pop, Florin Adrian Radu

[56] A. Prechtel, P. Knabner, Accurate and efficient simulation of coupled wa-
ter flow and nonlinear reactive transport in the saturated and vadose zone
- application to surfactant enhanced and intrinsic bioremediation, Inter-
national Journal of Water Resources Development, Volume 47, Pages
687-694, 2002.

[57] I. S. Pop, F. A. Radu, P. Knabner, Mixed finite elements for the Richards’
equation: linearization procedure, Journal of Computational and Applied
Mathematics, Volume 168, Issue 1, Pages 365-373, 2004.

[58] F. A. Radu, I. S. Pop, S. Attinger, Analysis of an Euler implicit, mixed
finite element scheme for reactive solute transport in porous media, Nu-
merical Methods for Partial Differential Equations, Volume 26, Issue 2,
Pages 320-344, 2010.

[59] F. A. Radu, A. Muntean, I. S. Pop, N. Suciu, O. Kolditz, A mixed fi-
nite element discretization scheme for a concrete carbonation model with
concentration-dependent porosity, Journal of Computational and Applied
Mathematics Volume 246, Pages 74-85, 2013.

[60] T. F. Russell, M. F. Wheeler, Finite element and finite difference methods
for continuous flows in porous media, SIAM, Pages 35-106, 1983.

[61] B. Schweizer, The Richards equation with hysteresis and degenerate cap-
illary pressure, Journal of Differential Equations, Volume 252, Issue 10,
Pages 5594-5612, 2012.

[62] M. Slodicka, A robust and efficient linearization scheme for doubly non-
linear and degenerate parabolic problems arising in flow in porous media,
SIAM Journal on Numerical Analysis, Volume 23, Issue 5, Pages 1593-
1614, 2002.

[63] J. E. Smith, R. W. Gillham, The effect of concentration-dependent surface
tension on the flow of water and transport of dissolved organic compounds:
A pressure head-based formulation and numerical model, Water Resources
Research, Volume 31, Issue 3, Pages 343-354, 1994.

[64] J. Smith, R. Gillham, Effects of solute concentration-dependent surface
tension on unsaturated flow: Laboratory sand column experiments, Water
Resource Research, Volume 35, Issue 4, Pages 973-982, 1999.

[65] F. Stauffer, Time dependence of the relations between capillary pressure,
water content and conductivity during drainage of porous media, IAHR
symposium on scale effects in porous media, Volume 29, 1978.

[66] S. Sun, M. F. Wheeler, Discontinuous Galerkin methods for coupled flow
and reactive transport problems, Applied Numerical Mathematics Volume
52, Issues 2–3, Pages 273-298, 2005.

[67] M. Vohralik, A posteriori error estimates for lowest-order mixed finite
element discretizations of convection-diffusion-reaction equations, SIAM



Solvers for Nonstandard Models for Transport in Unsaturated Porous Media 73

Journal on Numerical Analysis, Volume 45, Issue 4, Pages 1570-1599,
2007.

[68] H. F. Walker, P. Ni, Anderson Acceleration for Fixed-Point Iterations,
SIAM Journal on Numerical Analysis, Volume 49, Issue 4, Pages 1715 -
1735, 2011.

[69] X. Wang, H. A. Tchelepi, Trust-region based solver for nonlinear trans-
port in heterogeneous porous media, Journal of Computational Physics,
Volume 253, Pages 114-137, 2013.

[70] C. S. Woodward, C. N. Dawson, Analysis of expanded mixed finite element
methods for a nonlinear parabolic equation modeling flow into variably
saturated porous media, SIAM Journal on Numerical Analysis, Volume
37, Issue 3, Pages 701-724, 2000.

[71] Y. Zha, J. Yang, J. Zeng, C.-H. M. Tso, W. Zeng, L. Shi, Review of
numerical solution of Richardson-Richards equation for variably saturated
flow in soils, WIREs Water, Volume 6, Issue 5, 2019.

[72] H. Zhang, P. A. Zegeling, A Numerical Study of Two-Phase Flow Models
with Dynamic Capillary Pressure and Hysteresis, Transport in Porous
Media, Volume 116, Issue 2, Pages 825-846, 2017.


