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1. INTRODUCTION

In this paper, we are concerned with the existence of solution for implicit
fractional differential inclusion

cDαy(t) ∈ F (t, y(t),cDαy(t)), for a.e. t ∈ J = [0, T ], 0 < α ≤ 1 (1)

m∑
1

aky(tk) = y0, (2)

where cDα is the Caputo fractional derivative, F : [0, T ]×R×R → P(R) is a
multivalued map, P(R) is the family of all nonempty subsets of R.,y0 ∈ R ak ∈
R and 0 < t1 < t2 < ... < tm < T, k = 1, 2, ...,m.

Differential equations and inclusions of fractional order have recently proved
to be valuable tools in the modeling of many phenomena in various fields of
science and engineering. Indeed we can find numerous applications in vis-
coelasticity, electrochemistry, electromagnetism, and so forth. For details,
including some applications and recent results, see the monographs of Kilbas
et al. [21], Podlubny [23], and the papers of Agarwal et al [4, 5], Momani et
al.[22], Guerraiche et al. [18, 19], and the references therein.

Implicit differential equations involving the regularized fractional derivative
were analyzed by many authors, in the last year, see for instance [1, 2, 3] and
the references therein [10, 11, 12].
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To our knowledge, the literature on integral solutions for fractional differen-
tial equations is very limited. El-Sayed and Hashem [16] studied the existence
of integral and continuous solutions for quadratic integral equations. El-Sayed
and Abd El Salam considered Lp-solutions for a weighted Cauchy problem for
differential equations involving the Riemann-Liouville fractional derivative.

In this paper, we present an existence result for the problem (1)-(2) when
the right hand side is convex valued by using nonlinear alternative of Leray
Schauder type. The second results are given for nonconvex valued right hand
sides, which are based upon a fixed point theorem for contraction multival-
ued maps due to Covitz and Nadler[13] . Finally, we present an example to
demonstrate the application of our main results.
Let us mention that most of the existing results for fractional order differen-
tial inclusions are devoted to continuous or Caratheodory solutions. Thus, the
main results of the present paper constitute a contribution to this emerging
field.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts
that will be used in the remainder of this paper.
Let C(J,R) be the Banach space of all continuous functions from J into R
with the norm

∥y∥∞ = sup{|y(t)| : t ∈ J}.

and let L1(J ;R) be the Banach Lebesgue integrale functions y : J → R with
the norm

∥y∥L1 =

∫
J
|y(t)|dt.

For any Banach space (X, ∥.∥), we set:

Pcl(X)={Y ∈ P (X) :Y closed} .

Pb(X)={Y ∈ P (X) :Y bounded}.
Pcp(X)={Y ∈ P (X) :Y compact}.
Pcp,c(X)={Y ∈ P (X) :Y compact and convex}.
A multivalued map G : X → P(x) is:

convex(closed)valued if G(X) is convex(closed) for all x ∈ X;

bounded on bounded sets if G(B) = Ux∈BG(x) is bounded in X, for all
B ∈ Pp(X) (i,e supx∈Bsup|y|; y ∈ G(x);
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upper semi-continuous (u.s.c) on X if for each x0 ∈ X,the set G(x0) is
a there nonempty closed subset of X , and for each open set N of X
containing G(x0) there exists an open neighborhood N0 of x0 such that
G(N0) ⊂ N ;

completely continuous if G(B) is relatively compact for every B ∈ Pb(x).

If the multivalued map G is completely continuous with nonempty compact
values,then G is u.s.c if and only if G has a closed graph (i.e xn → x∗, yn → y∗,
yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that
x ∈ G(X). The fixed point set of the multivalued operator G will be denoted
by FixG.A multivalued map G : J → Pcl(R)is said to be measurable if for
every y ∈ (R), the function:

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 2.1. A multi-valued map F : [0, T ]× R× R → P(R) is said to be
Carathéodory if

(1) t→ F (t, u, v)is measurable for each u, v ∈ R;

(2) u→ F (t, u, v) is upper semicontinuous for almost all t ∈ J .

Further, a Carathéodory function is called L1-Carathéodory, if

(3) for each ρ > 0,there exists ϕρ ∈ L1([0, T ],R+) such that

∥F (t, u, v)∥ = sup{|v|, v ∈ F (t, u, v)} < ϕρ(t), for all |v|, |u| < ρ.

Let (X, d) be a metric space induced from the normed space (X, ∥.∥). The
function Hd : P (X)× P (X) → R+ ∪ {∞} given by :

Hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b,B)}

is known as the Hausdorff-Pompeiu metric.

Definition 2.2. A multivalued operator N : X → Pcl(X) is called

(1) Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) < γd(x, y) for each x, y ∈ X;

(2) a contraction if it isγ-Lipschitz with γ < 1.

The following fixed point result for contraction multivalued maps is due to
Covitz and Nadler [13].
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Lemma 2.1. Let (X, d) be a complete metric space. If N : X → Pcl(X) is a
contraction, then FixN ̸= ∅.

For more details on multivalued maps see the books of Aubin and Cellina
[6], Aubin and Frankowska [7] and Castaing and Valadier [14].

Definition 2.3. ([21]) Let h ∈ L1([a, b],R). The left sided fractional integral
of Riemann-Liouville of order α is defined by

(Iαa h)(t) =
1

Γ(α)

∫ t

a
(t− s)α−1h(s)ds,

where α > 0. When a = 0, we write

Iαh(t) = h(t) ∗ φα(t)

where

φα(t) =


tα−1

Γ(α)
for t > 0

0 for t ≤ 0,

and

φα → δ(t) as α→ 0

where δ is the delta function.

Definition 2.4. Suppose that α > 0, t > a, α, a, t ∈ R. The fractional
operator

CDαf(t) =


1

Γ(n− α)

∫ t

a

fn(τ)

(t− τ)α+1−n
dτ, n− 1 < α < n ∈ N

dn

dtn
f(t), α = n ∈ N,

(3)

is called the Caputo fractional derivative or Caputo fractional differential op-
erator of order α.

Example 2.1.

Let a = 0, α = 1
2 , (n = 1), f(t) = t.

Then, applying formula(3), we have

CD
1
2 t =

1

Γ(12)

∫ t

0

1

(t− τ)
1
2

dτ.



Implicit Fractional Differential Inclusions with Caputo Fractional Derivative... 93

Taking into account the properties of the Gamma function and using substi-

tution u := (t− τ)
1
2 the final result for the Caputo fractional derivative of the

function f(t) = t is obtained as

CD
1
2 t =

1

−
√
π

∫ t

0

1

(t− τ)
1
2

d (t− τ)

=
1

−
√
π

∫ 0

√
t

1

u
du2

=
1√
π

∫ √
t

0

2u

u
du

=
2√
π
(
√
t− 0).

Thus:

CD
1
2 t =

2
√
t√
π
.

Lemma 2.2. For the Caputo fractional derivative:

DαC = 0, C = const.

Theorem 2.1. (Kolmogorov compactness criterion [15] ). Let Ω ⊆ Lp(J,R),
1 ≤ p ≤ +∞. If

(i) Ω is bounded in Lp(J,R) and

(ii) uh → u as h → 0 uniformly with respect to u ∈ Ω then Ω is relatively
compact in Lp(J,R), where

uh(t) =
1

h

∫ t+h

t
u(s)ds.

Proposition 1. [21] Let α,β > 0. Then we have

(1) Iα : L1(J,R) → L1(J,R), and if f ∈ L1(J,R), then

IαIβf(t) = IβIαf(t) = Iα+βf(t).

(2) If f ∈ Lp(J,R), 1 < p <∞, then ∥ Iαf(t) ∥Lp≤ Tα

Γ(α+1) ∥ f(t) ∥Lp .

(3) The fractional integration operator Iα is linear.

(4) The fractional order integral operator Iα maps L1(J,R) into itself.

(5) When α = n, Iα0 is the n-fold integration.

(6) The Caputo and Riemann-Liouville fractional derivative are linear.
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Theorem 2.2. [17](Nonlinear alternative of Leray Schauder type)
Let X be a Banach space and C a nonempty closed convex subset of X. Let
U be a nonempty convex subset of C with 0 ∈ U and T : Ū → Pcp,c(X) is a
upper semicontinuous compact map. Then either

(i) T has a fixed point in U , or

(ii) there exist u ∈ ∂U and λ ∈ [0, 1] for which u ∈ λT (u).

Lemma 2.3. [24] Let α > 0. Then the differential equation

cDαh(t) = 0

has solutions h(t) = c0+c1t+c2t
2+c3t

3...+cn−1t
n−1, ci ∈ R, i = 0, 1, ..., n−1,

n = [α] + 1.

Lemma 2.4. [24] Let α > 0. Then the differential equation

cDαh(t) = h(t)

has solutions IαcDαh(t) = c0 + c1t+ c2t
2 + c3t

3...+ cn−1t
n−1 + h(t), ci ∈ R,

i = 0, 1, 2, 3, ..., n− 1, n = [α] + 1.

We define the set of all measurable selections of F that belong to the Banach
space L1([0, T ];R) that is

S1
F,y = {v ∈ L1([0, T ];R), v(t) ∈ F (t, y(t),C Dry(t)) a.e. t ∈ [0, T ]}.

3. MAIN RESULTS

Let us start by defining what we mean by a solution of the problem (1)-(2).

Definition 3.1. A function y ∈ L1([0, T ],R) is said to be a solution of (1)-(2)
if there exists a function x ∈ L1([0, T ],R) with x(t) ∈ F (t, y(t),cDαy(t)) for
a.e. t ∈ [0, T ] such that cDαy(t) = x(t) and the function ysatisfies conditions
(2).

Let us start by defining what we mean by an integrable solution of the
nonlocal problem (1)-(2).
We assume that

∑m
k=1 ak ̸= 0 and

a =
1∑m

k=1 ak
.

For the existence of solutions for the nonlocal problem (1)-(2) we need the
following auxiliary lemma.
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Lemma 3.1. The nonlocal problem(1)-(2) is equivalent to the integral equation

y(t) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, (4)

where x is the solution of the functional integral equation

x(t) ∈ F (t, ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, x(t)).

(5)

Proof. Let cDαy(t) = x(t) in equation (1)

x(t) ∈ F (t, y(t), x(t)) (6)

and
y(t)) = y(0) + Iαx(t)

= y(0) +

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds.

(7)

Let t = tk in (7), we obtain

y(tk) = y(0) +

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

and
m∑
k=1

aky(tk) =
m∑
k=1

aky(0) +
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds. (8)

Substitute from (2) into (8)

y0 =
m∑
k=1

aky(0) +
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

and

y(0) = a(y0 −
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds). (9)

By substituting (9) into (7) and (6), we obtain (4) and (8). In order to
complete the proof, we prove that equation (4) satisfies the nonlocal problem
(1)-(2). Differentiating (4), we get

cDαy(t) = x(t) ∈ F (t, y(t),cDαy(t)).
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Let t = tk in, we obtain (4)

y(tk) = ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γα
x(s)ds+

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds

= ay0 + a(1− a
m∑
k=1

ak)

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds.

Then

m∑
k=1

aky(tk) =
m∑
k=1

akay0 +
m∑
k=1

aka(1− a
m∑
k=1

ak)

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds = y0.

This completes the proof of the equivalence between the nonlocal problem
(1)-(2) and the integral equation (4).

Theorem 3.1. Assume the following hypotheses hold :

(H1) F : J × R× R → Pcp,c(R) is a Carathéodory multi-valued map;

(H2) There exist p ∈ L1(J,R+) continuous and nondecreasing such that

∥F (t, u1, u2)∥P = sup{|v| : v ∈ F (t, u1, u2)} ≤ p(t)(1 + |u1|+ |u2|) for
t ∈ J and each u1, u2 ∈ R;

(H3) There exist l1, l2 ∈ L1([0;T ];R), with Irl <∞, such that

Hd(F (t, x, y), F (t, x̄, ȳ)) < l1(t)|x− x̄|+ l2(t)|y − ȳ| for every
x, x̄, y, ȳ ∈ R,

and

d(0, F (t, 0, 0)) ≤ l a,e t ∈ J .

Then the problem (1)-(2) has at least one solution on J .

Remark 3.1. Note that for an L1− Carathéodory multifunction
F : J × R× R → Pcp(R), the set S1

F,y is not empty.

Proof. Transform the problem (1)-(2) into a fixed point problem. Consider
the multivalued operator,

N : L1(J,R) → P(L1(J,R))
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N(x) =

h ∈ L1(J,R)
h(t) = ay0 − a

∑m
k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
v(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds v ∈ S1

F,y.


Clearly, from Lemma (3.1), the fixed points of N are solutions to (1)-(2). We
shall show that N satisfies the assumptions of nonlinear alternative of Leray-
Schauder fixed point theorem. The proof will be given in several steps.
Let

r ≥
|ay0|T +

2Tα

Γ(α+ 1)
∥p∥L1 +

2Tα+1

Γ(α+ 1)
|ay0|∥p∥L1

1−
[

2Tα

Γ(α+ 1)
+

4T 2α

Γ(2α+ 1)

]
∥p∥L1

,

and consider the bounded set

Br = {x ∈ L1(J,R) : ∥x∥L1 ≤ r}.

Step 1: N(x) is convex for each y ∈ Br.

Indeed, if h1 , h2 belong to N(y) then there exist v1, v2 such that for each
t ∈ J we have, for i = 1, 2

hi(t) = ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
vi(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
vi(s)ds

Let 0 ≤ d ≤ 1. Then, for each t ∈ J we have

(dh1 + (1− d)h2)(t) = ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
(dv1 + (1− d)v2)(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
(dv1 + (1− d)v2)(s)ds.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(x).

Step 2: N(Br) is relatively compact.
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(a) N(Br) is bounded. Let y ∈ Br, for each h ∈ N(x) and t ∈ J, we have by
(H2),

h(t) = ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
v(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds.

By (H2), we have, for each t ∈ J :

∥h∥
L1 =

∫ T

0
|h(t)|dt

=

∫ T

0

∣∣∣∣∣ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
v(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds

∣∣∣∣∣
≤ |ay0|T +

∫ T

0

(
a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
|v(s)|ds

)
dt

+

∫ T

0

∫ t

0

(
(t− s)α−1

Γ(α)
|v(s)|ds

)
dt

≤ |ay0|T +

∫ T

0

a
∑m

k=1 ak(tk)
α

Γ(α+ 1)
|v(s)|ds+

∫ T

0

Tα

Γ(α+ 1)
|v(s)|ds

≤ |ay0|T +

∫ T

0

2Tα

Γ(α+ 1)
|v(s)|ds

≤ |ay0|T +
2Tα

Γ(α+ 1)

∫ T

0
[|p(t)|

+

∣∣∣∣ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds

∣∣∣∣ |p(t)|
+ |x(t)||p(t)|]dt

≤ |ay0|T +
2Tα

Γ(α+ 1)
∥p∥L1 +

2Tα+1

Γ(α+ 1)
|ay0|∥p∥L1

+
4T 2α

Γ(2α+ 1)
∥p∥L1∥x∥L1 +

2Tα

Γ(α+ 1)
∥p∥L1∥x∥L1

≤ |ay0|T +

(
2Tα + 2Tα+1|ay0|

Γ(α+ 1)
+

[
2Tα

Γ(α+ 1)
+

4T 2α

Γ(2α+ 1)

]
∥x∥L1

)
∥p∥L1 .

Thus

∥h∥L1 ≤ |ay0|T+
(
2Tα + 2Tα+1|ay0|

Γ(α+ 1)
+

[
2Tα

Γ(α+ 1)
+

4T 2α

Γ(2α+ 1)

]
r

)
∥p∥L1 . ≤ r

Then the above inequalities show that

∥N(x)∥ = sup{∥h∥L1 : h ∈ N(x)} ≤ r

which shows that N(Br) ⊂ Br is bounded, then N(Br) is bounded.
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(b) N(x)r → N(y), in L1(J,R) for each y ∈ Br.

Let y ∈ N(y) then we have

∥hr − h∥L1 =

∫ T

0
|hr(t)− h(t)|dt

=

∫ T

0

∣∣∣∣1r
∫ t+r

t
h(s)ds− h(t)

∣∣∣∣ dt
≤

∫ T

0

(
1

r

∫ t+r

t
|h(s)− h(t)|ds

)
dt

≤
∫ T

0

(
1

r

∫ t+r

t
|Iαv(s)− Iαv(t)|ds

)
dt

≤
∫ T

0

1

r

∫ t+r

t
|Iαv(s)− Iαv(t)|dsdt.

Since v ∈ L1(J,R) and by Proposition1 it follows that Iαv ∈ L1(J,R),
then we have

1

r

∫ t+r

t
|Iαv(s)− Iαv(t)|ds→ 0,when r → 0.

Hence

N(y)r → N(y) uniformaly r → 0.

As a consequence of (a) and (b) together with the Kolmogorov compactness
criterion, we can conclude that N(Br) is relatively compact.

Step 3: Nhas a closed graph.

Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that hn ∈ N(yn)
means that there exists vn ∈ S1

F,y, such that, for eacht ∈ J

hn(t) = ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
vn(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
vn(s)ds.

We must show that there exists v∗ ∈ S1
F,y such that, for each t ∈ J

h∗(t) = ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
v∗(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v∗(s)ds.
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Since F (t, ., .) is upper semi-continuous, then for every ϵ > 0 there exists
n0(ϵ) > 0 > such that, for every n > n0, we have
vn(t) ∈ F (t, y(t), x(t)) ⊂ F (t, y∗(t), x∗(t)) + ϵB(0, 1), a.e. t ∈ J .
Since F (., ., .) has compact values, then there exists a subsequence vnm(.)

such that
vnm(.) → v∗ as m→ ∞,
and v∗(t) ∈ F (t, y∗(t), x∗(t)) a.e.t ∈ J .
For every w ∈ F (t, y∗(t), x∗(t))), we have

|vnm − v∗| ≤ |vnm − w|+ |w − v∗|.
Then

|vnm − v∗| ≤ d(vnm , F (t, y∗(t), x∗(t)).

We obtain an analogous relation by interchanging the roles of vnm and v∗, and
it follows that

|vnm − v∗| ≤ Hd(F (t, ynm(t), xnm(t)), F (t, y∗(t), x∗(t))))
≤ l1(t)|ynm(t)− y∗(t)|+ l2(t)|xnm(t)− x∗(t)|.

Then

|hn(t)− h∗(t)| ≤ a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
|vnm − v∗|ds

+

∫ t

0

(t− s)α−1

Γ(α)
|vnm − v∗|ds

≤ 2Tα

Γ(α+ 1)

∫ T

0
(l1(t)|y(t)− ȳ(t)|+ l2(t)|x(t)− x̄(t)|)ds

≤ (
4T 2α

Γ(2α+ 1)
∥l1∥L1 +

2Tα

Γ(α+ 1)
∥l2∥L1)∥x− x̄∥L1

.

Hence
∥hn(t)− h∗(t)∥L1 → 0, as m→ ∞.

Step 4: A priori bounds of solutions.

Let y be such that y ∈ λN(y) with λ ∈ (0, 1] Then there exists v ∈ S1
F,y

such that, for each t ∈ J ,

h(t) = ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
v(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds.
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By (H2), we have, for each t ∈ J

∥h∥
L1 =

∫ T

0
|h(t)|dt

=

∫ T

0

∣∣∣∣∣ay0 − a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
v(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds

∣∣∣∣∣
≤ |ay0|T +

∫ T

0

(
a

m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
|v(s)|ds

)
dt

+

∫ T

0

∫ t

0

(
(t− s)α−1

Γ(α)
|v(s)|ds

)
dt

≤ |ay0|T +

∫ T

0

a
∑m

k=1 ak(tk)
α

Γ(α+ 1)
|v(s)|ds+

∫ T

0

Tα

Γ(α+ 1)
|v(s)|ds

≤ |ay0|T +

∫ T

0

2Tα

Γ(α+ 1)
|v(s)|ds

≤ |ay0|T +
2Tα

Γ(α+ 1)

∫ T

0
[|p(t)|

+

∣∣∣∣ay0 − a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
x(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds

∣∣∣∣ |p(t)|
+ |x(t)||p(t)|]dt

≤ |ay0|T +
2Tα

Γ(α+ 1)
∥p∥L1 +

2Tα+1

Γ(α+ 1)
|ay0|∥p∥L1

+
4T 2α

Γ(2α+ 1)
∥p∥L1∥x∥L1 +

2Tα

Γ(α+ 1)
∥p∥L1∥x∥L1

≤ |ay0|T +

(
2Tα + 2Tα+1|ay0|

Γ(α+ 1)
+

[
2Tα

Γ(α+ 1)
+

4T 2α

Γ(2α+ 1)

]
∥x∥L1

)
∥p∥L1

:= r.

Let U = {x ∈ L1(J,R) : ∥x∥L1 < r+ 1} The operator N : Ū → P(L1(J,R))
is upper semicontinuous and completely continuous. From the choice of U,
there is no x ∈ ∂U such that x ∈ λN(x), for some λ ∈ (0, 1]. As a consequence
of the nonlinear alternative of Leray-Shauder, we deduce that N has a fixed
point x ∈ Ū which is a solution of the problem (1)-(2).This completes the
proof.

We present now a result for the problem (1)-(2) with a nonconvex valued
right hand side. Our considerations are based on the fixed point result in
Lemma(2.1)

Theorem 3.2. Assume (H3) and the following hypothesis hold:

(H4) F : J × R× R → Pcp(X) has the property that
F (., u, v) : J → Pcp(X) is measurable for each u, v ∈ R
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if
4T 2α

Γ(2α+ 1)
∥l1∥L1 +

2Tα

Γ(α+ 1)
∥l2∥L1 < 1. (10)

Then the problem (1)-(2) has at least one solution on J.

Remark 3.2. By (H4), we can see that S1
F,y is nonempty for each

y ∈ L1(J,R), so F has a measurable selection (see [14], Theorem III.6).

Proof. We shall show that N satisfies the assumptions of Lemma(2.1). The
proof will be given in two steps.

Step1: N(x) ∈ Pcl(L
1(J,R)) for each x ∈ L1(J,R).

Indeed, let (hn)n≥0 ⊂ N(x) be such that hn → h̃ in L1(J,R), then h̃ in
L1(J,R) and there exists vn ∈ SF,y such that for each t ∈ J

hn(t) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
vn(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
vn(s)ds.

Using the fact that F has compact values and from (H3) we may pass to a
subsequence if necessary to get that vn converges weakly to v in L1

wC(J,R) (the
space endowed with the weak topology). An application of Mazurs theorem
implies that vn converges strongly to v and hence v ∈ S1

F,y. Then for each
t ∈ J

hn(t) → h̃(t) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
v(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v(s)ds.

So, h̃ ∈ N(x).

Step2: There exists γ < 1 such that Hd(N(x), N(x̄)) < γ∥x− x̄∥L1 for each
x, x̄ ∈ L1(J,R).

Let x, x̄ ∈ L1(J,R) and h1 ∈ N(x). Then there exists v1 ∈ F (t, y(t), x(t))
such that, for each t ∈ J ,

h1(t) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
v1(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v1(s)ds.
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From (H3) it follows that

Hd(F (t, y(t), x(t)), F (t, ȳ(t), x̄(t)) ≤ l(t)|y(t)− ȳ(t)|+ l(t)|x(t)− x̄(t)|.

Hence, there exists w ∈ F (t, ȳ(t), x̄(t)) such that

|v1(t)− w| ≤ l1(t)|y(t)− ȳ(t)|+ l2(t)|x(t)− x̄(t)|, t ∈ J.

Consider U : J → P(R) given by

U(t) = {w ∈ R : |v1(t)− w| ≤ l1(t)|y(t)− ȳ(t)|+ l2(t)|x(t)− x̄(t)|}.

Since the multivalued operator V (t) = U(t)∩ F (t, ȳ(t), x̄(t)) is measurable,
there exists a function v2(t) which is a measurable selection for V . Then
v2 ∈ F (t, ȳ(t), x̄(t)), and for each t ∈ J ,

|v1(t)− v2(t)| ≤ l1(t)|y(t)− ȳ(t)|+ l2(t)|x(t)− x̄(t)|, t ∈ J.

Let us define for each v2 ∈ J

h2(t) = ay0 − a
m∑
k=1

ak

∫ tk

0

(tk − s)α−1

Γ(α)
v2(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
v2(s)ds.

Then for each t ∈ J ,

|h1(t)− h2(t)| ≤ a
∑m

k=1 ak

∫ tk

0

(tk − s)α−1

Γ(α)
|v1 − v2|ds

+

∫ t

0

(t− s)α−1

Γ(α)
|v1 − v2|ds

≤ 2Tα

Γ(α+ 1)

∫ T

0
|v1 − v2|ds

+
Tα

Γ(α+ 1)

∫ t

0
|v1 − v2|ds

≤ 2Tα

Γ(α+ 1)

∫ T

0
|v1 − v2|ds

≤ 2Tα

Γ(α+ 1)

∫ T

0
(l1(t)|y(t)− ȳ(t)|+ l2(t)|x(t)− x̄(t)|)ds

≤ 4T 2α

Γ(2α+ 1)
∥l1∥L1∥x− x̄∥L1 +

2Tα

Γ(α+ 1)
∥l2∥L1∥x− x̄∥L1 .

Thus

∥h1 − h2∥L1 ≤ 4T 2α

Γ(2α+ 1)
∥l1∥L1∥x− x̄∥L1 +

2Tα

Γ(α+ 1)
∥l2∥L1∥x− x̄∥L1 .
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For an analogous relation, obtained by interchanging the roles of x and x̄ it
follows that

Hd(N(x), N(x̄)) ≤ (
4T 2α

Γ(2α+ 1)
∥l1∥L1 +

2Tα

Γ(α+ 1)
∥l2∥L1)∥x− x̄∥L1 .

So by (10), N is a contraction and thus, by Lemma(2.1), N has a fixed
point x which is solution to (1)-(2). The proof is complete.

4. AN EXAMPLE

We conclude this paper with an example to illustrate our main result. We
apply Theorem 3.4 to the the following fractional differential inclusion

cDαy(t) ∈ F (t, y(t),cDαy(t)), for a.e. t ∈ J = [0, 1], 0 < α ≤ 1 (11)

m∑
1

aky(tk) = 1, (12)

where

F (t, y(t),cDαy(t)) = {v ∈ R : f1(t, y(t),
cDαy(t)) ≤ v ≤ f2(t, y(t),

cDαy(t))}

where f1, f2 : J × R× R 7→ R. We assume that for each t ∈ [0, 1], f1(t, ·, ·) is
lower semi-continuous (i.e., the set {y ∈ R : f1(t, y(t),

cDαy(t)) > µ} is open
for each µ ∈ R), and assume that for each t ∈ [0, 1], f2(t, ·, ·) is upper semi-
continuous (i.e., the set {y ∈ R : f2(t, y(t),

cDαy(t)) < µ} is open for each µ ∈
R). Assume that there are p ∈ L1([0, 1],R+) continuous and nondecreasing
such that

∥F (t, u1, u2)∥P = sup{|v| : v ∈ F (t, u1, u2)}
= max(|f1(t, y(t), x(t))|, |f2(t, y(t), x(t))|)
≤ p(t)× [1 + |x|+ |y|],

for t ∈ J and each x, y ∈ R.
It is clear that F is compact and convex-valued, and it is upper semi-

continuous.
Since all the conditions of Theorem (3.1) are satisfied, problem (11)-(12)

has at least one solution y on [0, 1].
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[3] S. Abbas, M. Benchohra, G.M. N’Guérékata, Advanced Fractional Differential and In-
tegral Equations, Nova Science Publishers, New York, 2015.

[4] R. P Agarwal, M. Benchohra, S. Hamani, Boundary value problems for fractional dif-
ferential inclusions, Adv.Stud. Contemp. Math., 16, 2(2008), 181-196.

[5] R. P Agarwal, M. Benchohra, S. Hamani, A survey on existence results for bound-
ary value problems for nonlinear fractional differential equations and inclusions, Acta
Applicandae Math., 109, 3(2010), 973-1033.

[6] J. P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg,
New York, 1984.

[7] J.P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.

[8] L. Byszewski, Theorems about existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162(1991), 494-505.

[9] L. Byszewski, Existence and uniqueness of mild and classical solutions of semilinear
functional-differential evolution nonlocal Cauchy problem, Selected problems of math-
ematics, 25-30, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ.
Technol., Krakw, 1995.

[10] M. Benchohra, M. S. Souid, Integrable Solutions for Implicit Fractional Order Differ-
ential Equations, Transylvanian Journal of Mathematics and Mechanics 2, 6(2014),
101-107.

[11] M. Benchohra, M. S. Souid, L1-Solutions for Implicit Fractional Order Differential
Equations with Nonlocal Condition, Filomat, 30, 6(2016), 1485-1492.

[12] M. Benchohra, M. S. Souid, Integrable Solutions For Implicit Fractional Order Func-
tional Differential Equations with Infinite Delay, Archivum Mathematicum, (BRNO)
51(2015), 67-76 .

[13] H. Covitz, S. B. Nadler Jr, Multivalued contraction mappings in generalized metric
spaces, Israel J. Math., 8(1970), 5-11.

[14] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture
Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

[15] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York,
1992.

[16] A.M.A. El-Sayed, H.H.G. Hashem, Integrable and continuous solutions of a nonlinear
quadratic integral equation, Electron.J. Qual. Theory Differ. Equ., 25(2008), 1-10.

[17] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[18] N. Guerraiche, S. Hamani, J. Henderson, Initial Value Problems for Fractional Func-
tional Differential Inclusions with Hadamard type derivative, ArchivumMathematicum,
52(2016), 263 - 273.

[19] N. Guerraiche, S. Hamani, J. Henderson, Boundary value Problems for Differential
Inclusions with Integral and Anti-periodic Conditions, Comm. on Appl. Nonl. Analy.,
23, 3(2016), 33 - 46.

[20] R. Hilfer, Applications of Fractional Calculus in Physic, World Scientific, Singapore,
2000.

[21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Dif-
ferential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V.,
Amsterdam, 2006.



106 Ahmed Zahed, Samira Hamani

[22] S. M. Momani, S. B. Hadid, Z. M. Alawenh, Some analytical properties of solutions of
diifferential equations of noninteger order, Int. J. Math. Math. Sci., 2004, 697-701.

[23] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[24] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differ-
ential equations, Electron. J. Diff. Equ., 36(2006), 1-12.


