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Abstract In this article we research the degree of approximation of multivariate pointwise
and uniform convergences in the q-mean to the Fuzzy-Random unit operator
of multivariate Fuzzy-Random Quasi-Interpolation general sigmoid activation
function based neural network operators. These multivariate Fuzzy-Random
operators arise in a natural way among multivariate Fuzzy-Random neural
networks. The rates are given through multivariate Probabilistic-Jackson type
inequalities involving the multivariate Fuzzy-Random modulus of continuity
of the engaged multivariate Fuzzy-Random function. The plain stochastic ex-
treme analog of this theory is also met in detail for the stochastic analogs of
the operators: the stochastic full quasi-interpolation operators, the stochastic
Kantorovich type operators and the stochastic quadrature type operators.
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1. FUZZY-RANDOM FUNCTIONS AND
STOCHASTIC PROCESSES BACKGROUND

See also [18], Ch. 22, pp. 497-501.
We start with

Definition 1.1. (see [28]) Let µ : R → [0, 1] with the following properties:
(i) is normal, i.e., ∃ x0 ∈ R : µ (x0) = 1.
(ii) µ (λx+ (1− λ) y) ≥ min{µ (x) , µ (y)}, ∀ x, y ∈ R, ∀ λ ∈ [0, 1] (µ is

called a convex fuzzy subset).
(iii) µ is upper semicontinuous on R, i.e., ∀ x0 ∈ R and ∀ ε > 0, ∃ neigh-

borhood V (x0) : µ (x) ≤ µ (x0) + ε, ∀ x ∈ V (x0) .

(iv) the set supp (µ) is compact in R (where supp(µ) := {x ∈ R;µ (x) > 0}).
We call µ a fuzzy real number. Denote the set of all µ with RF.
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2 George A. Anastassiou

E.g., χ{x0} ∈ RF, for any x0 ∈ R, where χ{x0} is the characteristic function
at x0.

For 0 < r ≤ 1 and µ ∈ RF define [µ]r := {x ∈ R : µ (x) ≥ r} and

[µ]0 := {x ∈ R : µ (x) > 0}.

Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded
interval of R. For u, v ∈ RF and λ ∈ R, we define uniquely the sum u⊕ v and
the product λ⊙ u by

[u⊕ v]r = [u]r + [v]r , [λ⊙ u]r = λ [u]r , ∀ r ∈ [0, 1] ,

where [u]r + [v]r means the usual addition of two intervals (as subsets of R)
and λ [u]r means the usual product between a scalar and a subset of R (see,
e.g., [28]). Notice 1 ⊙ u = u and it holds u ⊕ v = v ⊕ u, λ ⊙ u = u ⊙ λ.

If 0 ≤ r1 ≤ r2 ≤ 1 then [u]r2 ⊆ [u]r1 . Actually [u]r =
[
u
(r)
− , u

(r)
+

]
, where

u
(r)
− < u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀ r ∈ [0, 1] .

Define
D : RF × RF → R+ ∪ {0}

by

D (u, v) := sup
r∈[0,1]

max
{∣∣∣u(r)− − v

(r)
−

∣∣∣ , ∣∣∣u(r)+ − v
(r)
+

∣∣∣} ,
where [v]r =

[
v
(r)
− , v

(r)
+

]
; u, v ∈ RF. We have that D is a metric on RF. Then

(RF, D) is a complete metric space, see [28], with the properties

D (u⊕ w, v ⊕ w) = D (u, v) , ∀ u, v, w ∈ RF,
D (k ⊙ u, k ⊙ v) = |k|D (u, v) , ∀ u, v ∈ RF, ∀ k ∈ R,

D (u⊕ v, w ⊕ e) ≤ D (u,w) +D (v, e) , ∀ u, v, w, e ∈ RF.
(1)

Let (M,d) metric space and f, g : M → RF be fuzzy real number valued
functions. The distance between f, g is defined by

D∗ (f, g) := sup
x∈M

D (f (x) , g (x)) .

On RF we define a partial order by ”≤”: u, v ∈ RF, u ≤ v iff u
(r)
− ≤ v

(r)
− and

u
(r)
+ ≤ v

(r)
+ , ∀ r ∈ [0, 1] .

∗∑
denotes the fuzzy summation, õ := χ{0} ∈ RF the neutral element with

respect to ⊕. For more see also [29], [30].
We need

Definition 1.2. (see also [24], Definition 13.16, p. 654) Let (X,B, P ) be
a probability space. A fuzzy-random variable is a B-measurable mapping g :
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X → RF (i.e., for any open set U ⊆ RF, in the topology of RF generated by
the metric D, we have

g−1 (U) = {s ∈ X; g (s) ∈ U} ∈ B). (2)

The set of all fuzzy-random variables is denoted by LF (X,B, P ). Let gn, g ∈
LF (X,B, P ), n ∈ N and 0 < q < +∞. We say gn (s)

”q-mean”→
n→+∞

g (s) if

lim
n→+∞

∫
X
D (gn (s) , g (s))

q P (ds) = 0. (3)

Remark 1.1. (see [24], p. 654) If f, g ∈ LF (X,B, P ), let us denote F :
X → R+ ∪ {0} by F (s) = D (f (s) , g (s)), s ∈ X. Here, F is B-measurable,
because F = G ◦H, where G (u, v) = D (u, v) is continuous on RF × RF, and
H : X → RF ×RF, H (s) = (f (s) , g (s)), s ∈ X, is B-measurable. This shows
that the above convergence in q-mean makes sense.

Definition 1.3. (see [24], p. 654, Definition 13.17) Let (T,T) be a topological
space. A mapping f : T → LF (X,B, P ) will be called fuzzy-random function
(or fuzzy-stochastic process) on T . We denote f (t) (s) = f (t, s), t ∈ T , s ∈ X.

Remark 1.2. (see [24], p. 655) Any usual fuzzy real function f : T → RF

can be identified with the degenerate fuzzy-random function f (t, s) = f (t), ∀
t ∈ T , s ∈ X.

Remark 1.3. (see [24], p. 655) Fuzzy-random functions that coincide with
probability one for each t ∈ T will be consider equivalent.

Remark 1.4. (see [24], p. 655) Let f, g : T → LF (X,B, P ). Then f ⊕ g and
k ⊙ f are defined pointwise, i.e.,

(f ⊕ g) (t, s) = f (t, s)⊕ g (t, s) ,

(k ⊙ f) (t, s) = k ⊙ f (t, s) , t ∈ T, s ∈ X, k ∈ R.

Definition 1.4. (see also Definition 13.18, pp. 655-656, [24]) For a fuzzy-
random function f : W ⊆ RN → LF (X,B, P ), N ∈ N, we define the (first)
fuzzy-random modulus of continuity

Ω
(F)
1 (f, δ)Lq =

sup

{(∫
X
Dq (f (x, s) , f (y, s))P (ds)

) 1
q

: x, y ∈W, ∥x− y∥∞ ≤ δ

}
,

0 < δ, 1 ≤ q <∞.
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Definition 1.5. ([16]) Here 1 ≤ q < +∞. Let f : W ⊆ RN → LF (X,B, P ),
N ∈ N, be a fuzzy random function. We call f a (q-mean) uniformly con-
tinuous fuzzy random function over W , iff ∀ ε > 0 ∃ δ > 0 :whenever
∥x− y∥∞ ≤ δ, x, y ∈W, implies that∫

X
(D (f (x, s) , f (y, s)))q P (ds) ≤ ε.

We denote it as f ∈ C
Uq
FR (W ) .

Proposition 1.1. ([16]) Let f ∈ C
Uq
FR (W ) , where W ⊆ RN is convex.

Then Ω
(F)
1 (f, δ)Lq <∞, any δ > 0.

Proposition 1.2. ([16]) Let f, g :W ⊆ RN → LF (X,B, P ), N ∈ N, be fuzzy
random functions. It holds

(i) Ω
(F)
1 (f, δ)Lq is nonnegative and nondecreasing in δ > 0.

(ii) lim
δ↓0

Ω
(F)
1 (f, δ)Lq = Ω

(F)
1 (f, 0)Lq = 0, iff f ∈ C

Uq
FR (W ) .

We mention

Definition 1.6. (see also [6]) Let f (t, s) be a random function (stochastic
process) fromW×(X,B, P ) , W ⊆ RN , into R, where (X,B, P ) is a probability
space. We define the q-mean multivariate first modulus of continuity of f by

Ω1 (f, δ)Lq :=

sup

{(∫
X
|f (x, s)− f (y, s)|q P (ds)

) 1
q

: x, y ∈W, ∥x− y∥∞ ≤ δ

}
, (4)

δ > 0, 1 ≤ q <∞.

The concept of f being (q-mean) uniformly continuous random function is
defined the same way as in Definition 1.5, just replace D by |·|, etc. We denote

it as f ∈ C
Uq
R (W ) .

Similar properties as in Propositions 1.1, 1.2 are valid for Ω1 (f, δ)Lq .
Also we have

Proposition 1.3. ([3]) Let Y (t, ω) be a real valued stochastic process such
that Y is continuous in t ∈ [a, b]. Then Y is jointly measurable in (t, ω) .

According to [23], p. 94 we have the following

Definition 1.7. Let (Y,T) be a topological space, with its σ-algebra of Borel
sets B := B (Y,T) generated by T. If (X, S) is a measurable space, a function
f : X → Y is called measurable iff f−1 (B) ∈ S for all B ∈ B.
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By Theorem 4.1.6 of [23], p. 89 f as above is measurable iff

f−1 (C) ∈ S for all C ∈ T.

We mention

Theorem 1.1. (see [23], p. 95) Let (X, S) be a measurable space and (Y, d)
be a metric space. Let fn be measurable functions from X into Y such that
for all x ∈ X, fn (x) → f (x) in Y . Then f is measurable. I.e., lim

n→∞
fn = f is

measurable.

We need also

Proposition 1.4. ([16]) Let f, g be fuzzy random variables from S into RF.
Then

(i) Let c ∈ R, then c⊙ f is a fuzzy random variable.
(ii) f ⊕ g is a fuzzy random variable.

Proposition 1.5. Let Y
(−→
t , ω

)
be a real valued multivariate random function

(stochastic process) such that Y is continuous in
−→
t ∈

N∏
i=1

[ai, bi]. Then Y

is jointly measurable in
(−→
t , ω

)
and

∫
N∏
i=1

[ai,bi]
Y
(−→
t , ω

)
d
−→
t is a real valued

random variable.

Proof. Similar to Proposition 18.14, p. 353 of [7].

2. ABOUT REAL NEURAL NETWORKS
BACKGROUND

Here we follow [21].
Let h : R → [−1, 1] be a general sigmoid function, such that it is strictly

increasing, h (0) = 0, h (−x) = −h (x), h (+∞) = 1, h (−∞) = −1. Also h
is strictly convex over (−∞, 0] and strictly concave over [0,+∞), with h(2) ∈
C (R).

We consider the activation function

ψ (x) :=
1

4
(h (x+ 1)− h (x− 1)) , x ∈ R, (5)

As in [20], p. 88, we get that ψ (−x) = ψ (x) , thus ψ is an even function.
Since x+ 1 > x− 1, then h (x+ 1) > h (x− 1), and ψ (x) > 0, all x ∈ R.

We see that

ψ (0) =
h (1)

2
. (6)
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Let x > 1, we have that

ψ′ (x) =
1

4

(
h′ (x+ 1)− h′ (x− 1)

)
< 0,

by h′ being strictly decreasing over [0,+∞).
Let now 0 < x < 1, then 1 − x > 0 and 0 < 1 − x < 1 + x. It holds

h′ (x− 1) = h′ (1− x) > h′ (x+ 1), so that again ψ′ (x) < 0. Consequently ψ
is stritly decreasing on (0,+∞) .

Clearly, ψ is strictly increasing on (−∞, 0), and ψ′ (0) = 0.
See that

lim
x→+∞

ψ (x) =
1

4
(h (+∞)− h (+∞)) = 0, (7)

and

lim
x→−∞

ψ (x) =
1

4
(h (−∞)− h (−∞)) = 0. (8)

That is the x-axis is the horizontal asymptote on ψ.
Conclusion, ψ is a bell symmetric function with maximum

ψ (0) =
h (1)

2
.

We need

Theorem 2.1. ([21]) We have that

∞∑
i=−∞

ψ (x− i) = 1, ∀ x ∈ R. (9)

Theorem 2.2. ([21]) It holds∫ ∞

−∞
ψ (x) dx = 1. (10)

Thus ψ (x) is a density function on R.
We give

Theorem 2.3. ([21]) Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
{
k = −∞
: |nx− k| ≥ n1−α

ψ (nx− k) <

(
1− h

(
n1−α − 2

))
2

. (11)

Notice that

lim
n→+∞

(
1− h

(
n1−α − 2

))
2

= 0.
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Denote by ⌊·⌋ the integral part of the number and by ⌈·⌉ the ceiling of the
number.

We further give

Theorem 2.4. ([21]) Let x ∈ [a, b] ⊂ R and n ∈ N so that ⌈na⌉ ≤ ⌊nb⌋. It
holds

1∑⌊nb⌋
k=⌈na⌉ ψ (nx− k)

<
1

ψ (1)
, ∀ x ∈ [a, b] . (12)

Remark 2.1. ([21]) i) We have that

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ̸= 1, (13)

for at least some x ∈ [a, b] .
ii) For large enough n ∈ N we always obtain ⌈na⌉ ≤ ⌊nb⌋. Also a ≤ k

n ≤ b,
iff ⌈na⌉ ≤ k ≤ ⌊nb⌋.

In general, by Theorem 2.1, it holds

⌊nb⌋∑
k=⌈na⌉

ψ (nx− k) ≤ 1. (14)

We introduce

Z (x1, ..., xN ) := Z (x) :=

N∏
i=1

ψ (xi) , x = (x1, ..., xN ) ∈ RN , N ∈ N. (15)

It has the properties:
(i) Z (x) > 0, ∀ x ∈ RN ,
(ii)

∞∑
k=−∞

Z (x− k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞
Z (x1 − k1, ..., xN − kN ) = 1,

(16)
where k := (k1, ..., kn) ∈ ZN , ∀ x ∈ RN ,

hence
(iii)

∞∑
k=−∞

Z (nx− k) = 1, (17)

∀ x ∈ RN ; n ∈ N,
and
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(iv) ∫
RN

Z (x) dx = 1, (18)

that is Z is a multivariate density function.
Here denote ∥x∥∞ := max {|x1| , ..., |xN |}, x ∈ RN , also set∞ := (∞, ...,∞),

−∞ := (−∞, ...,−∞) upon the multivariate context, and

⌈na⌉ := (⌈na1⌉ , ..., ⌈naN⌉) ,

⌊nb⌋ := (⌊nb1⌋ , ..., ⌊nbN⌋) ,
(19)

where a := (a1, ..., aN ), b := (b1, ..., bN ) .
We obviously see that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
k=⌈na⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

⌊nb1⌋∑
k1=⌈na1⌉

...

⌊nbN ⌋∑
kN=⌈naN ⌉

(
N∏
i=1

ψ (nxi − ki)

)
=

N∏
i=1

 ⌊nbi⌋∑
ki=⌈nai⌉

ψ (nxi − ki)

 . (20)

For 0 < β < 1 and n ∈ N, a fixed x ∈ RN , we have that

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) =

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ ≤ 1

nβ

Z (nx− k) +

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k) . (21)

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition

∥∥ k
n − x

∥∥
∞ > 1

nβ
implies that there exists at least one

∣∣kr
n − xr

∣∣ > 1
nβ

,
where r ∈ {1, ..., N} .

(v) As in [18], pp. 379-380, we derive that

⌊nb⌋∑
 k = ⌈na⌉∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k)
(11)
<

1− h
(
n1−β − 2

)
2

, 0 < β < 1, (22)

with n ∈ N : n1−β > 2, x ∈
∏N
i=1 [ai, bi] .
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(vi) By Theorem 2.4 we get that

0 <
1∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
<

1

(ψ (1))N
=: γ (N) , (23)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

It is also clear that
(vii)

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ

Z (nx− k) <
1− h

(
n1−β − 2

)
2

=: c (β, n) , (24)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ RN .
Furthermore it holds

lim
n→∞

⌊nb⌋∑
k=⌈na⌉

Z (nx− k) ̸= 1, (25)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

Let f ∈ C
(∏N

i=1 [ai, bi]
)
, and n ∈ N such that ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N.

We define the multivariate averaged positive linear neural network operators

(x := (x1, ..., xN ) ∈
(∏N

i=1 [ai, bi]
)
):

An (f, x1, ..., xN ) := An (f, x) :=

∑⌊nb⌋
k=⌈na⌉ f

(
k
n

)
Z (nx− k)∑⌊nb⌋

k=⌈na⌉ Z (nx− k)
= (26)

∑⌊nb1⌋
k1=⌈na1⌉

∑⌊nb2⌋
k2=⌈na2⌉ ...

∑⌊nbN ⌋
kN=⌈naN ⌉ f

(
k1
n , ...,

kN
n

)(∏N
i=1 ψ (nxi − ki)

)
∏N
i=1

(∑⌊nbi⌋
ki=⌈nai⌉ ψ (nxi − ki)

) .

For large enough n ∈ N we always obtain ⌈nai⌉ ≤ ⌊nbi⌋, i = 1, ..., N . Also
ai ≤ ki

n ≤ bi, iff ⌈nai⌉ ≤ ki ≤ ⌊nbi⌋, i = 1, ..., N .

When f ∈ CB
(
RN
)
we define

Bn (f, x) := Bn (f, x1, ..., xN ) :=
∞∑

k=−∞
f

(
k

n

)
Z (nx− k) := (27)

∞∑
k1=−∞

∞∑
k2=−∞

...
∞∑

kN=−∞
f

(
k1
n
,
k2
n
, ...,

kN
n

)( N∏
i=1

ψ (nxi − ki)

)
,
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n ∈ N, ∀ x ∈ RN , N ∈ N, the multivariate quasi-interpolation neural network
operators.

Also for f ∈ CB
(
RN
)
we define the multivariate Kantorovich type neural

network operators

Cn (f, x) := Cn (f, x1, ..., xN ) :=
∞∑

k=−∞

(
nN
∫ k+1

n

k
n

f (t) dt

)
Z (nx− k) :=

(28)
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

(
nN
∫ k1+1

n

k1
n

∫ k2+1
n

k2
n

...

∫ kN+1

n

kN
n

f (t1, ..., tN ) dt1...dtN

)

·

(
N∏
i=1

ψ (nxi − ki)

)
,

n ∈ N, ∀ x ∈ RN .
Again for f ∈ CB

(
RN
)
, N ∈ N, we define the multivariate neural net-

work operators of quadrature type Dn (f, x), n ∈ N, as follows. Let θ =
(θ1, ..., θN ) ∈ NN , r = (r1, ..., rN ) ∈ ZN+ , wr = wr1,r2,...rN ≥ 0, such that
θ∑
r=0

wr =
θ1∑
r1=0

θ2∑
r2=0

...
θN∑
rN=0

wr1,r2,...rN = 1; k ∈ ZN and

δnk (f) := δn,k1,k2,...,kN (f) :=

θ∑
r=0

wrf

(
k

n
+

r

nθ

)
:=

θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1,r2,...rN f

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, ...,
kN
n

+
rN
nθN

)
, (29)

where r
θ :=

(
r1
θ1
, r2θ2 , ...,

rN
θN

)
.

We put

Dn (f, x) := Dn (f, x1, ..., xN ) :=

∞∑
k=−∞

δnk (f)Z (nx− k) := (30)

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

δn,k1,k2,...,kN (f)

(
N∏
i=1

ψ (nxi − ki)

)
,

∀ x ∈ RN .
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For the next we need, for f ∈ C
(∏N

i=1 [ai, bi]
)
the first multivariate modulus

of continuity

ω1 (f, h) := sup
x,y∈

∏N
i=1[ai,bi]

∥x−y∥∞≤h

|f (x)− f (y)| , h > 0.

A totally similar definition applies to f ∈ CB
(
RN
)
.

Above ∥·∥∞ is the supremum norm.
In [20] we studied the basic approximation properties of An, Bn, Cn, Dn

neural network operators and as well of their iterates for Banach space valued
functions. That is, the quantitative pointwise and uniform convergence of
these operators to the unit operator I.

We need

Theorem 2.5. Let f ∈ C
(∏N

i=1 [ai, bi]
)
, 0 < β < 1, x ∈

(∏N
i=1 [ai, bi]

)
,

N, n ∈ N with n1−β > 2. Then
1)

|An (f, x)− f (x)| ≤ γ (N)

[
ω1

(
f,

1

nβ

)
+ 2c (β, n) ∥f∥∞

]
=: λ1, (31)

and
2)

∥An (f)− f∥∞ ≤ λ1. (32)

We notice that lim
n→∞

An (f) = f , pointwise and uniformly.

Proof. Similar to [20], p. 118.

We need

Theorem 2.6. Let f ∈ CB
(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with

n1−β > 2. Then
1)

|Bn (f, x)− f (x)| ≤ ω1

(
f,

1

nβ

)
+ 2c (β, n) ∥f∥∞ =: λ2, (33)

2)
∥Bn (f)− f∥∞ ≤ λ2. (34)

Given that f ∈
(
CU
(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Bn (f) = f , uniformly.

Proof. Similar to [20], p. 128.

We also need
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Theorem 2.7. Let f ∈ CB
(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with

n1−β > 2. Then
1)

|Cn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n) ∥f∥∞ =: λ3, (35)

2)
∥Cn (f)− f∥∞ ≤ λ3. (36)

Given that f ∈
(
CU
(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Cn (f) = f , uniformly.

Proof. Similar to [20], p. 129.

We also need

Theorem 2.8. Let f ∈ CB
(
RN
)
, 0 < β < 1, x ∈ RN , N, n ∈ N with

n1−β > 2. Then
1)

|Dn (f, x)− f (x)| ≤ ω1

(
f,

1

n
+

1

nβ

)
+ 2c (β, n) ∥f∥∞ = λ3, (37)

2)
∥Dn (f)− f∥∞ ≤ λ3. (38)

Given that f ∈
(
CU
(
RN
)
∩ CB

(
RN
))
, we obtain lim

n→∞
Dn (f) = f , uni-

formly.

Proof. Similar to [20], p. 131.

In this article we extend Theorems 2.5, 2.6, 2.7, 2.8 to the random level.
We are also motivated by [1] - [16] and continuing [17]. For general knowl-

edge on neural networks we recommend [25], [26], [27].

3. MAIN RESULTS

I) q-mean Approximation by Fuzzy-Random general sigmoid ac-
tivation function based Quasi-Interpolation Neural Network Oper-
ators

All terms and assumptions here as in Sections 1, 2.

Let f ∈ C
Uq
FR

(
N∏
i=1

[ai, bi]

)
, 1 ≤ q < +∞, n,N ∈ N, 0 < β < 1, −→x ∈(

N∏
i=1

[ai, bi]

)
, (X,B, P ) probability space, s ∈ X.
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We define the following multivariate fuzzy random general sigmoid activa-
tion function based quasi-interpolation linear neural network operators

(
AFR
n (f)

)
(−→x , s) :=

⌊nb⌋∗∑
−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙

Z
(
n−→x −

−→
k
)

⌊nb⌋∑
−→
k =⌈na⌉

Z
(
n−→x −

−→
k
) , (39)

(see also (26).
We present

Theorem 3.1. Let f ∈ C
Uq
FR

(
N∏
i=1

[ai, bi]

)
, 0 < β < 1, −→x ∈

(
N∏
i=1

[ai, bi]

)
,

n,N ∈ N, with n1−β > 2, 1 ≤ q < +∞. Assume that
∫
X (D∗ (f (·, s) , õ))q P (ds) <

∞. Then
1) (∫

X
Dq
((
AFR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
q

≤ (40)

γ (N)

{
Ω1

(
f,

1

nβ

)
Lq

+ 2c (β, n)

(∫
X
(D∗ (f (·, s) , õ))q P (ds)

) 1
q

}
=: λ

(FR)
1 ,

2)∥∥∥∥∥
(∫

X
Dq
((
AFR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
q

∥∥∥∥∥
∞,

(
N∏
i=1

[ai,bi]

) ≤ λ
(FR)
1 , (41)

where γ (N) as in (23) and c (β, n) as in (24).

Proof. We notice that

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
≤ D

(
f

(−→
k

n
, s

)
, õ

)
+D (f (−→x , s) , õ) (42)

≤ 2D∗ (f (·, s) , õ) .
Hence

Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
≤ 2qD∗q (f (·, s) , õ) , (43)

and(∫
X
Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
q

≤ 2

(∫
X
(D∗ (f (·, s) , õ))q P (ds)

) 1
q

.

(44)
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We observe that
D
((
AFR
n (f)

)
(−→x , s) , f (−→x , s)

)
= (45)

D


⌊nb⌋∗∑

−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙ Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

, f (−→x , s)⊙ 1

 =

D


⌊nb⌋∗∑

−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙ Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

, f (−→x , s)⊙

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

 =

(46)

D


⌊nb⌋∗∑

−→
k =⌈na⌉

f

(−→
k

n
, s

)
⊙ Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

,

⌊nb⌋∗∑
−→
k =⌈na⌉

f (−→x , s)⊙ Z (nx− k)
⌊nb⌋∑

−→
k =⌈na⌉

Z (nx− k)



≤
⌊nb⌋∑

−→
k =⌈na⌉


Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
. (47)

So that
D
((

jA
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
≤

⌊nb⌋∑
−→
k =⌈na⌉


Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
= (48)

⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ


Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
+
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⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ


Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
.

Hence it holds(∫
X
Dq
((
AFR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
q

≤ (49)

⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ


Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)


(∫

X
Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
q

+

⌊nb⌋∑
−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ


Z (nx− k)

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)


(∫

X
Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
q

≤


1

⌊nb⌋∑
−→
k =⌈na⌉

Z (nx− k)

 ·
{
Ω
(F)
1

(
f,

1

nβ

)
Lq

+ (50)

2

(∫
X
(D∗ (f (·, s) , õ))q P (ds)

) 1
q


⌊nb⌋∑

−→
k =⌈na⌉∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

Z (nx− k)




(by (23), (24))

≤ γ (N)

{
Ω
(F)
1

(
f,

1

nβ

)
Lq

+ 2c (β, n)

(∫
X
(D∗ (f (·, s) , õ))q P (ds)

) 1
q

}
.

(51)
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We have proved claim.

Conclusion 1. By Theorem 3.1 we obtain the pointwise and uniform conver-
gences with rates in the q-mean and D-metric of the operator AFR

n to the unit

operator for f ∈ C
Uq
FR

(
N∏
i=1

[ai, bi]

)
.

II) 1-mean Approximation by Stochastic general sigmoid activa-
tion function based full Quasi-Interpolation Neural Network Oper-
ators

Let g ∈ CU1
R

(
RN
)
, 0 < β < 1, −→x ∈ RN , n,N ∈ N, with ∥g∥∞,RN ,X < ∞,

(X,B, P ) probability space, s ∈ X.
We define

B(R)
n (g) (−→x , s) :=

∞∑
−→
k =−∞

g

(−→
k

n
, s

)
Z
(
n−→x −

−→
k
)
, (52)

(see also (27)).
We give

Theorem 3.2. Let g ∈ CU1
R

(
RN
)
, 0 < β < 1, −→x ∈ RN , n,N ∈ N, with

n1−β > 2, ∥g∥∞,RN ,X <∞. Then

1) ∫
X

∣∣∣(B(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds) ≤ (53){
Ω1

(
g,

1

nβ

)
L1

+ 2c (β, n) ∥g∥∞,RN ,X

}
=: µ

(R)
1 ,

2) ∥∥∥∥∫
X

∣∣∣(B(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds)

∥∥∥∥
∞,RN

≤ µ
(R)
1 . (54)

Proof. Since ∥g∥∞,RN ,X <∞, then∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ ≤ 2 ∥g∥∞,RN ,X <∞. (55)

Hence ∫
X

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds) ≤ 2 ∥g∥∞,RN ,X <∞. (56)

We observe that (
B(R)
n (g)

)
(−→x , s)− g (−→x , s) =
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∞∑
−→
k =−∞

g

(−→
k

n
, s

)
Z (nx− k)− g (−→x , s)

∞∑
−→
k =−∞

Z (nx− k) = (57)

 ∞∑
−→
k =−∞

g

(−→
k

n
, s

)
− g (−→x , s)

Z (nx− k) .

However it holds

∞∑
−→
k =−∞

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Z (nx− k) ≤ 2 ∥g∥∞,RN ,X <∞. (58)

Hence ∣∣∣(B(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Z (nx− k) = (59)

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Z (nx− k)+

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Z (nx− k) .

Furthermore it holds(∫
X

∣∣∣(B(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds)

)
≤

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

(∫
X

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds)

)
Z (nx− k)+ (60)

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

(∫
X

∣∣∣∣∣g
(−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds)

)
Z (nx− k) ≤
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Ω1

(
g,

1

nβ

)
L1

+ 2 ∥g∥∞,RN ,X

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

Z (nx− k) ≤

Ω1

(
g,

1

nβ

)
L1

+ 2c (β, n) ∥g∥∞,RN ,X ,

proving the claim.

Conclusion 2. By Theorem 3.2 we obtain pointwise and uniform convergences

with rates in the 1-mean of random operators B
(R)
n to the unit operator for

g ∈ CU1
R

(
RN
)
.

III) 1-mean Approximation by Stochastic general sigmoid activa-
tion function based multivariate Kantorovich type neural network
operator

Let g ∈ CU1
R

(
RN
)
, 0 < β < 1, −→x ∈ RN , n,N ∈ N, with ∥g∥∞,RN ,X < ∞,

(X,B, P ) probability space, s ∈ X.
We define

C(R)
n (g) (−→x , s) :=

∞∑
−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

g
(−→
t , s

)
d
−→
t

Z
(
n−→x −

−→
k
)
, (61)

(see also (28).
We present

Theorem 3.3. Let g ∈ CU1
R

(
RN
)
, 0 < β < 1, −→x ∈ RN , n,N ∈ N, with

n1−β > 2, ∥g∥∞,RN ,X <∞. Then

1) ∫
X

∣∣∣(C(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds) ≤[
Ω1

(
g,

1

n
+

1

nβ

)
L1

+ 2c (β, n) ∥g∥∞,RN ,X

]
=: γ

(R)
1 , (62)

2) ∥∥∥∥∫
X

∣∣∣(C(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds)

∥∥∥∥
∞,RN

≤ γ
(R)
1 . (63)

Proof. Since ∥g∥∞,RN ,X <∞, then∣∣∣∣∣∣nN
∫ −→

k+1
n

−→
k
n

g
(−→
t , s

)
d
−→
t − g (−→x , s)

∣∣∣∣∣∣ =
∣∣∣∣∣∣nN

∫ −→
k+1
n

−→
k
n

(
g
(−→
t , s

)
− g (−→x , s)

)
d
−→
t

∣∣∣∣∣∣ ≤
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nN
∫ −→

k+1
n

−→
k
n

∣∣∣g (−→t , s)− g (−→x , s)
∣∣∣ d−→t ≤ 2 ∥g∥∞,RN ,X <∞. (64)

Hence∫
X

∣∣∣∣∣∣nN
∫ −→

k+1
n

−→
k
n

g
(−→
t , s

)
d
−→
t − g (−→x , s)

∣∣∣∣∣∣P (ds) ≤ 2 ∥g∥∞,RN ,X <∞. (65)

We observe that (
C(R)
n (g)

)
(−→x , s)− g (−→x , s) =

∞∑
−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

g
(−→
t , s

)
d
−→
t

Z
(
n−→x −

−→
k
)
− g (−→x , s) =

∞∑
−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

g
(−→
t , s

)
d
−→
t

Z
(
n−→x −

−→
k
)
−g (−→x , s)

∞∑
−→
k =−∞

Z
(
n−→x −

−→
k
)
=

(66)
∞∑

−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

g
(−→
t , s

)
d
−→
t

− g (−→x , s)

Z (n−→x −
−→
k
)
=

∞∑
−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

(
g
(−→
t , s

)
− g (−→x , s)

)
d
−→
t

Z (n−→x −
−→
k
)
.

However it holds

∞∑
−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

∣∣∣g (−→t , s)− g (−→x , s)
∣∣∣ d−→t

Z (n−→x −
−→
k
)
≤ 2 ∥g∥∞,RN ,X <∞.

(67)
Hence ∣∣∣(C(R)

n (g)
)
(−→x , s)− g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

nN ∫ −→
k+1
n

−→
k
n

∣∣∣g (−→t , s)− g (−→x , s)
∣∣∣ d−→t

Z (n−→x −
−→
k
)
= (68)

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

nN ∫ −→
k+1
n

−→
k
n

∣∣∣g (−→t , s)− g (−→x , s)
∣∣∣ d−→t

Z (n−→x −
−→
k
)
+ (69)
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∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

nN ∫ −→
k+1
n

−→
k
n

∣∣∣g (−→t , s)− g (−→x , s)
∣∣∣ d−→t

Z (n−→x −
−→
k
)
=

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

[
nN
∫ 1

n

0

∣∣∣∣∣g
(
−→
t +

−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ d−→t
]
Z
(
n−→x −

−→
k
)
+ (70)

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

[
nN
∫ 1

n

0

∣∣∣∣∣g
(
−→
t +

−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ d−→t
]
Z
(
n−→x −

−→
k
)
.

Furthermore it holds(∫
X

∣∣∣(C(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds)

)
≤

(by Fubini’s theorem)

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

[
nN
∫ 1

n

0

(∫
X

∣∣∣∣∣g
(
−→
t +

−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds)

)
d
−→
t

]
Z
(
n−→x −

−→
k
)
+

(71)
∞∑

−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

[
nN
∫ 1

n

0

(∫
X

∣∣∣∣∣g
(
−→
t +

−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds)

)
d
−→
t

]
Z
(
n−→x −

−→
k
)
≤

Ω1

(
g,

1

n
+

1

nβ

)
L1

+ 2 ∥g∥∞,RN ,X

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

Z
(
n−→x −

−→
k
)
≤

Ω1

(
g,

1

n
+

1

nβ

)
L1

+ 2c (β, n) ∥g∥∞,RN ,X , (72)

proving the claim.

Conclusion 3. By Theorem 3.3 we obtain pointwise and uniform convergences

with rates in the 1-mean of random operators C
(R)
n to the unit operator for

g ∈ CU1
R

(
RN
)
.
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IV) 1-mean Approximation by Stochastic general sigmoid acti-
vation function based multivariate quadrature type neural network
operator

Let g ∈ CU1
R

(
RN
)
, 0 < β < 1, −→x ∈ RN , n,N ∈ N, with ∥g∥∞,RN ,X < ∞,

(X,B, P ) probability space, s ∈ X.
We define

D(R)
n (g) (−→x , s) :=

∞∑
−→
k =−∞

(
δ
n
−→
k
(g)
)
(s)Z

(
n−→x −

−→
k
)
, (73)

where (
δ
n
−→
k
(g)
)
(s) :=

−→
θ∑

−→
r =0

w−→
r
g

(−→
k

n
+

−→
r

n
−→
θ
, s

)
, (74)

(see also (29), (30)).
We finally give

Theorem 3.4. Let g ∈ CU1
R

(
RN
)
, 0 < β < 1, −→x ∈ RN , n,N ∈ N, with

n1−β > 2, ∥g∥∞,RN ,X <∞. Then

1) ∫
X

∣∣∣(D(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds) ≤{
Ω1

(
g,

1

n
+

1

nβ

)
L1

+ 2c (β, n) ∥g∥∞,RN ,X

}
=: γ

(R)
1 , (75)

2) ∥∥∥∥∫
X

∣∣∣(D(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds)

∥∥∥∥
∞,RN

≤ γ
(R)
1 . (76)

Proof. Notice that ∣∣∣(δ
n
−→
k
(g)
)
(s)− g (−→x , s)

∣∣∣ =∣∣∣∣∣∣
−→
θ∑

−→
r =0

w−→
r

(
g

(−→
k

n
+

−→
r

n
−→
θ
, s

)
− g (−→x , s)

)∣∣∣∣∣∣ ≤
−→
θ∑

−→
r =0

w−→
r

∣∣∣∣∣g
(−→
k

n
+

−→
r

n
−→
θ
, s

)
− g (−→x , s)

∣∣∣∣∣ ≤ 2 ∥g∥∞,RN ,X <∞. (77)

Hence ∫
X

∣∣∣(δ
n
−→
k
(g)
)
(s)− g (−→x , s)

∣∣∣P (ds) ≤ 2 ∥g∥∞,RN ,X <∞. (78)
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We observe that (
D(R)
n (g)

)
(−→x , s)− g (−→x , s) =

∞∑
−→
k =−∞

(
δ
n
−→
k
(g)
)
(s)Z

(
n−→x −

−→
k
)
− g (−→x , s) =

∞∑
−→
k =−∞

((
δ
n
−→
k
(g)
)
(s)− g (−→x , s)

)
Z
(
n−→x −

−→
k
)
. (79)

Thus ∣∣∣D(R)
n (g) (−→x , s)− g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

∣∣∣(δ
n
−→
k
(g)
)
(s)− g (−→x , s)

∣∣∣Z (n−→x −
−→
k
)
≤ 2 ∥g∥∞,RN ,X <∞. (80)

Hence it holds ∣∣∣(D(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

∣∣∣(δ
n
−→
k
(g)
)
(s)− g (−→x , s)

∣∣∣Z (n−→x −
−→
k
)
=

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

∣∣∣(δ
n
−→
k
(g)
)
(s)− g (−→x , s)

∣∣∣Z (n−→x −
−→
k
)
+

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

∣∣∣(δ
n
−→
k
(g)
)
(s)− g (−→x , s)

∣∣∣Z (n−→x −
−→
k
)
. (81)

Furthermore we derive(∫
X

∣∣∣(D(R)
n (g)

)
(−→x , s)− g (−→x , s)

∣∣∣P (ds)

)
≤

∞∑
−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
≤ 1

nβ

−→
θ∑

−→
r =0

w−→
r

(∫
X

∣∣∣∣∣g
(−→
k

n
+

−→
r

n
−→
θ
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds)

)
Z
(
n−→x −

−→
k
)

(82)
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+


∞∑

−→
k =−∞∥∥∥−→

k
n
−−→x

∥∥∥
∞
> 1

nβ

Z
(
n−→x −

−→
k
)
 2 ∥g∥∞,RN ,X ≤

Ω1

(
g,

1

n
+

1

nβ

)
L1

+ 2c (β, n) ∥g∥∞,RN ,X , (83)

proving the claim.

Conclusion 4. From Theorem 3.4 we obtain pointwise and uniform conver-

gences with rates in the 1-mean of random operators D
(R)
n to the unit operator

for g ∈ CU1
R

(
RN
)
.
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Abstract Here we present general multivariate radial mixed Ostrowski type inequalities
over balls. The proofs derive by implementation of some essential estimates out
of some new trigonometric and hyperbolic Taylor’s formulae ([2]) and reducing
the multivariate problem to a univariate one via general polar coordinates.
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1. INTRODUCTION

We are motivated by the following:
In 1938, A. Ostrwoski [5] proved the following famous inequality.

Theorem 1.1. Let f : [a, b] → R be continuous on [a, b] and differentiable
on (a, b) whose derivative f ′ : (a, b) → R is bounded on (a, b), i.e., ∥f ′∥∞ =
sup
t∈(a,b)

|f ′ (t)| < +∞. Then

∣∣∣∣ 1

b− a

∫ b

a
f (t) dt− f (x)

∣∣∣∣ ≤
[
1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a)

∥∥f ′∥∥∞ , (1)

for any x ∈ [a, b]. The constant 1
4 is the best.

Ostrowski type inequalities have great applications to numerical analysis
and probability and their literature is enormous.

Here K = R or C.
Recently the author proved:

Theorem 1.2. ([2]) Let f ∈ C3
K ([c, d]), a ∈ [c, d], such that f ′ (a) = f ′′ (a) =

0. Then
i)

∣∣∣∣ 1

d− c

∫ d

c
f (x) dx− f (a)

∣∣∣∣ ≤ ∥∥f ′′′ + f ′
∥∥
∞

[
(d− a)3 + (a− c)3

]
6 (d− c)

, (2)

25



26 George A. Anastassiou

ii) when f ′
(
c+d
2

)
= f ′′

(
c+d
2

)
= 0, and a = c+d

2 , we get∣∣∣∣ 1

d− c

∫ d

c
f (x) dx− f

(
c+ d

2

)∣∣∣∣ ≤ ∥∥f ′ + f ′′′
∥∥
∞

(d− c)2

24
. (3)

We are also motivated by author’s monograph, see chapters 5,6.
This work is based on author’s recent article [2], where we developed some

new trigonometric and hyperbolic type Taylor’s formulae.
We prove here a collection of multivariate Ostrowski type inequalities re-

lated to radial functions over a ball in RN , with respect to all norms ∥·∥p,
1 ≤ p ≤ ∞, and we give also their generalizations.

2. MAIN RESULTS

We make

Remark 1. We define the ball

B (0, R) :=
{
x ∈ RN : |x| < R

}
⊆ RN , N ≥ 2, R > 0,

and the sphere
SN−1 :=

{
x ∈ RN : |x| = 1

}
,

where |·| is the Euclidean norm.
Let dω be the element of surface measure on SN−1 and let

ωN =

∫
SN−1

dω =
2π

N
2

Γ
(
N
2

) . (4)

For x ∈ RN − {0} we can write uniquely x = rω, where r = |x| > 0 and
ω = x

r ∈ SN−1, |ω| = 1.
Note that ∫

B(0,R)
dy =

ωNR
N

N
(5)

is the Lebesgue measure of the ball.
Following [3, pp. 149-150, exercise 6] and [4, pp. 87-88, Theorem 5.2.2]

we can write for F : B (0, R) → R a Lebesgue integrable function that∫
B(0,R)

F (x) dx =

∫
SN−1

(∫ R

0
F (rω) rN−1dr

)
dω; (6)

a formula to be used next.

We present the following multivariate radial Ostrowski type inequality.
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Theorem 2.1. Let the function f : B (0, R) → R be radial, that is, there exists

a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R], ∀ x ∈ B (0, R).
We further assume that g ∈ C3 ([0, R]), and g(k) (r0) = 0, k = 1, 2, where
r0 ∈ [0, R] is fixed. Then (∀ ω ∈ SN−1)∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤ (7)

N !

RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

r3+N0

(3 +N)!
+

∥∥g′′′ + g′
∥∥
∞,[r0,R]

N−1∑
k=0

(−1)N+k−1

k! (N − k + 3)!
Rk (R− r0)

N−k+3

]
.

Proof. As in [2], we get that

|g (r)− g (r0)| ≤
∥∥g′′′ + g′

∥∥
∞,[r0,R]

(r − r0)
3

3!
, (8)

∀ r ∈ [r0, R] ,
and

|g (r)− g (r0)| ≤
∥∥g′′′ + g′

∥∥
∞,[0,r0]

(r0 − r)3

3!
, (9)

∀ r ∈ [0, r0] .
Next we observe ∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =∣∣∣∣∣∣g (r0)−
∫
SN−1

(∫ R
0 g (s) sN−1ds

)
dω∫

SN−1

(∫ R
0 sN−1ds

)
dω

∣∣∣∣∣∣ =∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ = N

RN

∣∣∣∣∫ R

0
sN−1 (g (r0)− g (s)) ds

∣∣∣∣ ≤
N

RN

∫ R

0
sN−1 |g (r0)− g (s)| ds = (10)

N

RN

[∫ r0

0
sN−1 |g (r0)− g (s)| ds+

∫ R

r0

sN−1 |g (r0)− g (s)| ds
]
≤

N

6RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

∫ r0

0
sN−1 (r0 − s)3 ds+



28 George A. Anastassiou

∥∥g′′′ + g′
∥∥
∞,[r0,R]

∫ R

r0

sN−1 (s− r0)
3 ds

]
=

N

6RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

∫ r0

0
(r0 − s)4−1 (s− 0)N−1 ds+ (11)

∥∥g′′′ + g′
∥∥
∞,[r0,R]

(−1)N−1
∫ R

r0

((R− s)−R)N−1 (s− r0)
3 ds

]
=

N

6RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

Γ (4) Γ (N)

Γ (4 +N)
r3+N0 +

∥∥g′′′ + g′
∥∥
∞,[r0,R]

(−1)N−1
N−1∑
k=0

(−1)k Rk
(
N − 1
k

)∫ R

r0

(R− s)N−k−1 (s− r0)
4−1 ds

]
=

N

6RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

3! (N − 1)!

(3 +N)!
r3+N0 + (12)

∥∥g′′′ + g′
∥∥
∞,[r0,R]

(−1)N−1
N−1∑
k=0

(−1)k Rk
(
N − 1
k

)
(N − k − 1)!3!

(N − k + 3)!
(R− r0)

N−k+3

]
=

N

RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

(N − 1)!

(3 +N)!
r3+N0 +

∥∥g′′′ + g′
∥∥
∞,[r0,R]

N−1∑
k=0

(−1)k+N−1Rk
(
N − 1
k

)
(N − k − 1)!

(N − k + 3)!
(R− r0)

N−k+3

]
=

N !

RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

r3+N0

(3 +N)!
+

∥∥g′′′ + g′
∥∥
∞,[r0,R]

N−1∑
k=0

(−1)k+N−1 Rk

k! (N − k − 1)!

(N − k − 1)!

(N − k + 3)!
(R− r0)

N−k+3

]
=

N !

RN

[∥∥g′′′ + g′
∥∥
∞,[0,r0]

r3+N0

(3 +N)!
+ (13)

∥∥g′′′ + g′
∥∥
∞,[r0,R]

N−1∑
k=0

(−1)N+k−1

k! (N − k + 3)!
Rk (R− r0)

N−k+3

]
.

We continue with a more general multivariate radial Ostrowski inequality.

Theorem 2.2. Let the function f : B (0, R) → R be radial, that is there exists

a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R], ∀ x ∈ B (0, R).
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We further assume that g ∈ C5 ([0, R]), and g(k) (r0) = 0, k = 1, 2, 3, 4, where
r0 ∈ [0, R] is fixed. Here α, β ∈ R : αβ

(
α2 − β2

)
̸= 0. Then (∀ ω ∈ SN−1)∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤ (14)

2N !

RN
∣∣β2 − α2

∣∣
[∥∥∥g(5) + (α2 + β2

)
g(3) + α2β2g′

∥∥∥
∞,[0,r0]

r3+N0

(3 +N)!∥∥∥g(5) + (α2 + β2
)
g(3) + α2β2g′

∥∥∥
∞,[r0,R]

N−1∑
k=0

(−1)N+k−1

k! (N − k + 3)!
Rk (R− r0)

N−k+3

]
.

(15)

Proof. As in [2], we get that

|g (r)− g (r0)| ≤
1

3
∣∣β2 − α2

∣∣ ∥∥∥g(5) + (α2 + β2
)
g(3) + α2β2g′

∥∥∥
∞,[r0,R]

(r − r0)
3

=: A (r − r0)
3 , ∀ r ∈ [r0, R] , (16)

and

|g (r)− g (r0)| ≤
1

3
∣∣β2 − α2

∣∣ ∥∥∥g(5) + (α2 + β2
)
g(3) + α2β2g′

∥∥∥
∞,[0,r0]

(r0 − r)3

=: B (r0 − r)3 , ∀ r ∈ [0, r0] . (17)

Next we observe ∣∣∣∣∣f (r0ω)−
∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ ≤
(as in the proof of Theorem 1.1)

N

RN

[∫ r0

0
sN−1 |g (r0)− g (s)| ds+

∫ R

r0

sN−1 |g (r0)− g (s)| ds
]
≤

N

RN

[
B

∫ r0

0
sN−1 (r0 − s)3 ds+A

∫ R

r0

sN−1 (s− r0)
3 ds

]
= (18)

(as earlier)
N

RN

[
B
3! (N − 1)!

(3 +N)!
r3+N0 +

A (−1)N−1
N−1∑
k=0

(−1)k Rk
(
N − 1
k

)
(N − k − 1)!3!

(N − k + 3)!
(R− r0)

N−k+3

]
=
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6N !

RN

[
B

r3+N0

(3 +N)!
+A

N−1∑
k=0

(−1)N+k−1

k! (N − k + 3)!
Rk (R− r0)

N−k+3

]
.

It follows an L1 Ostrowski inequality.

Theorem 2.3. All as in Theorem 2.1, except now g ∈ C2 ([0, R]). Then (∀
ω ∈ SN−1)∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤
1

RN

[∥∥g′′ + g − g (r0)
∥∥
L1([0,r0])

rN+1
0

(N + 1)
+

∥∥g′′ + g − g (r0)
∥∥
L1([r0,R])

[(
N

N + 1

)(
RN+1 − rN+1

0

)
− r0

(
RN − rN0

)]]
.

(19)

Proof. As in [2], we get that

|g (r)− g (r0)| ≤
∥∥g′′ + g − g (r0)

∥∥
L1([0,r0])

(r0 − r) , (20)

∀ r ∈ [0, r0] ,
and

|g (r)− g (r0)| ≤
∥∥g′′ + g − g (r0)

∥∥
L1([r0,R])

(r − r0) , (21)

∀ r ∈ [r0, R] .
Next we observe∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤
N

RN

[∫ r0

0
sN−1 |g (r0)− g (s)| ds+

∫ R

r0

sN−1 |g (r0)− g (s)| ds
]
≤

N

RN

[∥∥g′′ + g − g (r0)
∥∥
L1([0,r0])

∫ r0

0
sN−1 (r0 − s)2−1 ds+ (22)

∥∥g′′ + g − g (r0)
∥∥
L1([r0,R])

∫ R

r0

sN−1 (s− r0) ds

]
=

N

RN

[∥∥g′′ + g − g (r0)
∥∥
L1([0,r0])

rN+1
0

N (N + 1)
+
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∥∥g′′ + g − g (r0)
∥∥
L1([r0,R])

[(
RN+1 − rN+1

0

N + 1

)
− r0

(
RN − rN0

N

)]]
=

1

RN

[∥∥g′′ + g − g (r0)
∥∥
L1([0,r0])

rN+1
0

(N + 1)
+

∥∥g′′ + g − g (r0)
∥∥
L1([r0,R])

[(
N

N + 1

)(
RN+1 − rN+1

0

)
− r0

(
RN − rN0

)]]
.

(23)

Next comes an Ostrowski multivariate radial inequality for ∥·∥p, p > 1.

Theorem 2.4. Let p, q > 1 : 1
p +

1
q = 1. Let all as in Theorem 2.3. Then (∀

ω ∈ SN−1)∣∣∣∣∣f (r0ω)−
∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤ (24)

N !Γ
(
2 + 1

q

)
RN (q + 1)

1
q

∥∥g′′ + g − g (r0)
∥∥
Lp([0,r0])

r
N+1+ 1

q

0

Γ
(
N + 2 + 1

q

)+
∥∥g′′ + g − g (r0)

∥∥
Lp([r0,R])

N−1∑
k=0

(−1)N+k−1Rk (R− r0)
N−k+1+ 1

q

k!Γ
(
N − k + 2 + 1

q

)
 .

Proof. As in [2], we get that

|g (r)− g (r0)| ≤
∥∥g′′ + g − g (r0)

∥∥
Lp([r0,R])

(r − r0)
q+1
1

(q + 1)
1
q

, (25)

∀ r ∈ [r0, R] ,
and

|g (r)− g (r0)| ≤
∥∥g′′ + g − g (r0)

∥∥
Lp([0,r0])

(r0 − r)
q+1
q

(q + 1)
1
q

, (26)

∀ r ∈ [0, r0] .
Next we observe ∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
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(as earlier) ∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤
N

RN

[∫ r0

0
sN−1 |g (r0)− g (s)| ds+

∫ R

r0

sN−1 |g (r0)− g (s)| ds
]
≤

N

RN (q + 1)
1
q

[∥∥g′′ + g − g (r0)
∥∥
Lp([0,r0])

∫ r0

0
sN−1 (r0 − s)

(
2+ 1

q

)
−1
ds+ (27)

∥∥g′′ + g − g (r0)
∥∥
Lp([r0,R])

∫ R

r0

sN−1 (s− r0)
1+ 1

q ds

]
=

N

RN (q + 1)
1
q

∥∥g′′ + g − g (r0)
∥∥
Lp([0,r0])

(N − 1)!Γ
(
2 + 1

q

)
Γ
(
N + 2 + 1

q

) r
N+1+ 1

q

0 +

∥∥g′′ + g − g (r0)
∥∥
Lp([r0,R])

(−1)N−1
∫ R

r0

((R− s)−R)N−1 (s− r0)
1+ 1

q ds

]
=

(28)

N

RN (q + 1)
1
q

∥∥g′′ + g − g (r0)
∥∥
Lp([0,r0])

(N − 1)!Γ
(
2 + 1

q

)
Γ
(
N + 2 + 1

q

) r
N+1+ 1

q

0 +

∥∥g′′ + g − g (r0)
∥∥
Lp([r0,R])

N−1∑
k=0

(N − 1)!

k! (N − k − 1)!
(−1)N+k−1Rk

(N − k − 1)!Γ
(
2 + 1

q

)
Γ
(
N − k + 2 + 1

q

) (R− r0)
N−k+1+ 1

q

 =

(29)

N !Γ
(
2 + 1

q

)
RN (q + 1)

1
q

∥∥g′′ + g − g (r0)
∥∥
Lp([0,r0])

r
N+1+ 1

q

0

Γ
(
N + 2 + 1

q

)+
∥∥g′′ + g − g (r0)

∥∥
Lp([r0,R])

N−1∑
k=0

(−1)N+k−1Rk
(R− r0)

N−k+1+ 1
q

k!Γ
(
N − k + 2 + 1

q

)
 .

It follows a general L1 estimate.

Theorem 2.5. Let the function f : B (0, R) → R be radial, that is, there exists

a function g such that f (x) = g (r), where r = |x|, r ∈ [0, R], ∀ x ∈ B (0, R).
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We further assume that g ∈ C4 ([0, R]), and g(k) (r0) = 0, k = 1, 2, 3, 4, where
r0 ∈ [0, R] is fixed. Let also α, β ∈ R : αβ

(
α2 − β2

)
̸= 0. Then (∀ ω ∈ SN−1)∣∣∣∣∣f (r0ω)−

∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤
2∣∣β2 − α2
∣∣RN

[∥∥g′′′′ + (α2 + β2
)
g′′ + α2β2g − α2β2g (r0)

∥∥
L1([0,r0])

rN+1
0

(N + 1)
+

∥∥g′′′′ + (α2 + β2
)
g′′ + α2β2g − α2β2g (r0)

∥∥
L1([r0,R])[(

N

N + 1

)(
RN+1 − rN+1

0

)
− r0

(
RN − rN0

)]]
. (30)

Proof. As in [2], we get that

|g (r)− g (r0)| ≤

2∣∣β2 − α2
∣∣ ∥∥∥g′′′′

+
(
α2 + β2

)
g
′′
+ α2β2g − α2β2g (r0)

∥∥∥
L1([0,r0])

(r0 − r) , (31)

∀ r ∈ [0, r0] ,
and

|g (r)− g (r0)| ≤
2∣∣β2 − α2

∣∣ ∥∥∥g′′′′
+
(
α2 + β2

)
g
′′
+ α2β2g − α2β2g (r0)

∥∥∥
L1([r0,R])

(r − r0) , (32)

∀ r ∈ [r0, R] .
The rest of the proof goes as in Theorem 2.3.

Next comes a general Lp, p > 1, estimate.

Theorem 2.6. All as in Theorem 2.5 and let p, q > 1 : 1
p +

1
q = 1. Then (∀

ω ∈ SN−1)∣∣∣∣∣f (r0ω)−
∫
B(0,R) f (y) dy

V ol (B (0, R))

∣∣∣∣∣ =
∣∣∣∣g (r0)− N

RN

∫ R

0
g (s) sN−1ds

∣∣∣∣ ≤
2N !Γ

(
2 + 1

q

)
∣∣β2 − α2

∣∣RN (q + 1)
1
q∥∥∥g′′′′

+
(
α2 + β2

)
g
′′
+ α2β2g − α2β2g (r0)

∥∥∥
Lp([0,r0])

r
N+1+ 1

q

0

Γ
(
N + 2 + 1

q

)+ (33)
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+
(
α2 + β2

)
g
′′
+ α2β2g − α2β2g (r0)

∥∥∥
Lp([r0,R])

N−1∑
k=0

(−1)N+k−1Rk (R− r0)
N−k+1+ 1

q

k!Γ
(
N − k + 2 + 1

q

)
 .

Proof. As in [2], we have that

|g (r)− g (r0)| ≤
2∣∣β2 − α2

∣∣
∥∥∥g′′′′

+
(
α2 + β2

)
g
′′
+ α2β2g − α2β2g (r0)

∥∥∥
Lp([0,r0])

(r0 − r)
q+1
1

(q + 1)
1
q

, (34)

∀ r ∈ [0, r0] ,
and

|g (r)− g (r0)| ≤
2∣∣β2 − α2

∣∣
∥∥∥g′′′′

+
(
α2 + β2

)
g
′′
+ α2β2g − α2β2g (r0)

∥∥∥
Lp([r0,R])

(r − r0)
q+1
1

(q + 1)
1
q

, (35)

∀ r ∈ [r0, R] .
The rest of the proof goes as in Theorem 2.4.
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Abstract This work approaches an important computer vision area that is video ob-
ject detection and tracking. Variational and non-variational partial differential
equation (PDE)-based models for image and video object detection and track-
ing are surveyed here. Detection and tracking techniques based on Geometric
Active Contour models, representing energy-based segmentation schemes, are
presented first. The PDE-based detection and tracking geometric models using
level-sets are then disscused. Moving object tracking approaches based on the
optical flow estimated using PDEs are described next. Histogram-based PDE
models for video tracking are then presented. Object detection techniques
using PDE-based edge and contour extraction are also discussed. Our own
contributions in this field, representing diffusion-based detection and tracking
methods for certain object classes, are briefly presented.

Keywords: object detection and tracking, geometric active contour, level-sets, optical flow,

variational scheme, nonlinear diffusion.

2020 MSC: 97U99.

1. INTRODUCTION

The object detection and tracking represents the process of locating the
objects of interest in a video sequence and tracking them across that entire
movie. It is a still challenging computer vision sub-domain that has a va-
riety of important application fields, such as the video surveillance, security
systems, human—computer interaction, law enforcement, biometric authenti-
cation, video indexing and retrieval, human action recognition, robotic vision,
augmented reality and medical imaging. Many object detection and tracking
techniques have been developed in the last decades.

Thus, video object detection could be performed applying algorithms based
on template matching [1], frame differencing [2], dictionary-based models [3],
deformable part-based models [4], active contours [5], boosted cascade classi-
fiers [6], SIFT, SURF and HOG descriptors with SVM [7, 8, 9], neural networks

35
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[10] and deep learning models [11]. The object tracking solutions are based on
mean-shift schemes [12], Kalman filters [13], optical flow [14], object instance
matching [15], Hidden Markov Models (HMM) [16], Particle Swarm Optimiza-
tion (PSO) [17], fragment-based models [18] and convolutional neural networks
(CNN) [19].

The most detection and tracking approaches are related to several classes
of image objects: faces [20], people [21], body components (skin, eyes, hands)
[22], vehicles [23], animals [24] and road signs. We have also proposed some
skin [25, 26], face [26], person [25, 27] and generic object [9, 28] detection and
tracking techniques in the last 15 years. In this work we survey some geometric
and PDE-based models for moving object detection and tracking. Our own
contributions in this computer vision domain are also described here.

2. GEOMETRIC ACTIVE CONTOUR MODELS
FOR DETECTION AND TRACKING

Active Contour models (snakes), which were introduced by Michael Kass,
Andrew Witkin and Demetri Terzopoulos in 1988 [29], are based on PDE
variational schemes and their principle is to evolve an initial curve towards
the object of interest. They can be used to detect the image objects in each
frame of a video sequence. Then, a video tracking process could be performed
by determining the correspondences between the object instances detected in
succesive frames.

Since these active contours have some weaknesses, some improved versions
have been developed. Thus, the Geometric (Geodesic) Active Contours, in-
troduced by Caselles, V., et al. in 1993 [30], represent an improvement of
classical active contour methods. This technique, where the final contour does
not depend on initialization, allows the simultaneous detection of external and
internal borders of several objects.

An approach based on the next geodesic active contour was proposed by M.
Chihaoui et al. in 2016 [31]:

∂ψ

∂t
= g(I)|∇ψ|div

(
∇ψ
|∇ψ|

)
+∇g(I) · ∇ψ + vg(I)|∇ψ| (1)

where g represents a decreasing function. Their moving object detection and
tracking scheme is described in Fig. 1.

Figure 1. Moving object detection and tracking scheme
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The moving object detection component is based on a combination of the
frame difference method and the adaptive technique of background subtrac-
tion. The process of tracking by the geodesic active contour is performed as
following:

It starts with the first image of that video sequence.

An initialization is carried by a rectangle parallel to the image contours.

The geodesic active contour is obtained by the points marked inside and
outside the rectangle to detect all the moving objects even if they are
outside it.

Next, the contour is deformed and fixed around the object following the
closest point.

A geometric active contour-based object detection and tracking example is
displayed in Fig. 2 [31]. This geometric active contour – based framework has
some clear advantages. So, compared to conventional methods and geometric
methods (rectangle, ellipse ...), it can make detection and monitoring less
sensitive to noise and ensure a closed contour without the link between the
detected objects, even if they are close or if the background contains regions
of high gradient, such as the white lines.

Figure 2. Geometric Active Contour based detection and tracking example

Another category of PDE-based geometric models are those based on level
sets. An effective PDE-based level-set approach for moving object detection
and tracking was introduced by N. Paragios in 1997 [32]. In the detection
stage they define for each pixel the following measurement:

Idetection(x, y) = max
(v,w)∈ng(x,y)

{
Etrans((x, y), (v, w))

Esmooth((x, y), (v, w))

}
(2)
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where

Etrans((x, y), (v, w)) = p(d(x, y)|static) · p(d(v, w)|mobile)
+ p(d(x, y)|mobile) · p(d(v, w)|static)

Esmooth((x, y), (v, w)) = p(d(x, y)|static) · p(d(v, w)|static)
+ p(d(x, y)|mobile) · p(d(v, w)|mobile)

(3)

and

p(d) =
λ

2
e−λ|d|, p(d) =

1

2σ
√
π
e−

d2

2σ2 (4)

They find the curve C(p, t) that minimizes the following energy:

E(C(p)) = (1− λ)

∫ 1

0
|C ′(p)|2dp︸ ︷︷ ︸

Einternal(C)

+λ

∫ 1

0
g2(|∇Idetection(C(p))|)dp︸ ︷︷ ︸

Eimage(C)

(5)

The moving objects are detected if I(detection) has large gradient values
only close to the borders of the moving regions [32].

In the object tracking stage, the moving estimated area between two suc-
cesive frames is determined as the union of the moving object locations. A
modified snake model is proposed for the tracking of these objects. It has the
following form:

E(C(p)) = (1− λ)

∫ 1

0
|C ′(p)|2dp︸ ︷︷ ︸

Einternal(C)

+ λ

∫ 1

0(

detectionterm︷ ︸︸ ︷
γ(|∇Idetection(C(p))|)+(1− γ)

tracking term︷ ︸︸ ︷
g(|∇It(C(p))|)2 dp︸ ︷︷ ︸

Eimage(C)

(6)
While the detection term of this functional forces the curve to fit the moving

area, avoiding the edges or static objects, the tracking term is used for curve
evolution until the curve reaches the exact location of the moving object. The
associated Euler–Lagrange PDE is then solved by applying the level-set scheme
of Osher and Sethian. An object detection and tracking example based on the
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described model is displayed in Fig. 3.

Figure 3. Object detection and tracking example

3. HISTOGRAM-BASED PARTIAL
DIFFERENTIAL EQUATIONS FOR OBJECT
TRACKING

A histogram-based PDE model for tracking video objects with complex
shapes and / or with high nonlinear motion was introduced by P. Li and
L. Xiao in 2009 [33]. They formulate histogram-based tracking as a functional
optimization problem using Jesson–Shannon divergence that is bounded, sym-
metric and a true metric. Optimization of the functional consists in searching
for a candidate region of very complex shape, whose color distribution is most
similar to the known, target distribution. If the target density p(u) is given in
the form of color histogram, then the candidate histogram is represented as:

q(u,Ω) =
G1(u,Ω)

G2(Ω)
=

∫
Ω δ(I(x)− u)dx∫

Ω dx
(7)

The tracking problem is formulated as seeking a candidate image region
which minimizes the energy functional:

argmin
Ω
E(Ω) =

∫
Rm

f(u,Ω)du (8)

where

f(u,Ω) = −p(u) ln 2p(u)

p(u) + q(u,Ω)
− q(u,Ω) ln

2q(u,Ω)

p(u) + q(u,Ω)
(9)

One derives the partial differential equation (PDE) that describes the evo-
lution of the object contour:

∂Ωt = FN (10)
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where N(x) is the unit inward normal to the boundary and

F = − 1

G2(Ω)

(
ln

2q(I(x),Ω)

p(I(x)) + q(I(x),Ω)
−
∫
Rm

q(u,Ω) ln
2q(u,Ω)

p(u) + q(u,Ω)
du

)
(11)

A level-set algorithm is then applied to compute the solution of this PDE.
Its idea is that at any time the contour is implicitly represented by a zero level
set of a higher-dimensional function. So, we have:

ϕ(τ , ∂Ω(x, τ)) = 0, given ∂Ω(x, τ = 0) (12)

A PDE is obtained as ϕτ = F |∇ϕ| and it is numerically discretized on a
fixed discrete grid. This level-set technique can deal succesfully with topo-
logical change of the object’s shape. It is effective in following objects with
complex shapes or with highly non-rigid motion. It is also global convergent,
independent of the initial position. Its main disadvantage is the high compu-
tational cost, given its high complexity [33].

An example of object tracking performed using the histogram-based PDE
model is depicted in Fig. 4. The process at the frames 5, 35, 70 and 90 of a
movie sequence is described in that figure.

Figure 4. Object tracking: frames #5, #35, #70 and #90

4. OPTICAL FLOW-BASED MOVING OBJECT
TRACKING

Optical flow represents the pattern of apparent motion of objects, surfaces,
and edges in a visual scene caused by the relative motion between an observer
and a scene. Optical flow is an effective approach to track the movement of
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the objects. It studies the relative motion of objects across different frame
sequences based on the velocity of the movement and illumination changes
[34]. There are various methods of determination of the optical flow, which
can be grouped in the following categories:

Block-based methods: based on the minimizing sum of squared differ-
ences or sum of absolute differences

Phase correlation based approaches

Differential techniques: Lucas–Kanade, Horn–Schunck, Buxton–Buxton
and Black–Jepson methods

Here one describes PDE variational optical flow computation schemes, like
the Horn-Schunck model and its extensions [34]. They formulate the flow as
a global energy functional to be minimized:

E =

∫∫
[(Ixu+ Iyv + It)

2 + α2(∥∇u∥2 + ∥∇v∥2)]dxdy (13)

where V⃗ = [u(x, y), v(x, y)]⊤. It is solved by using two Euler–Lagrange partial
differential equations:

∂L

∂u
− ∂

∂x

∂L

∂ux
− ∂

∂y

∂L

∂uy
= 0

∂L

∂v
− ∂

∂x

∂L

∂vx
− ∂

∂y

∂L

∂vy
= 0

(14)

where L is the integrand of E. One obtains the next system:

Ix(Ixu+ Iyv + It)− α2∆u = 0

Iy(Ixu+ Iyv + It)− α2∆v = 0
(15)

It is solved by using the following iterative schemes:

uk+1 = ūk − Ix(Ixū
k + Iyv̄

k + It)

4α2 + I2x + I2y
, vk+1 = v̄k − Iy(Ixū

k + Iyv̄
k + It)

4α2 + I2x + I2y
(16)

The Horn–Schunck model is sensitive to noise and applicable to tracking ob-
jects with high speed movement [34]. Other variational models, representing
improved versions of it, use other data terms and other smoothness compo-
nents.
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Many moving object detection and tracking techniques have been developed
using these optical flow models. Their general scheme is the following one:

Figure 5. Object detection and tracking based on optical flow

In the next figure there is described an example of optical flow motion
tracking in a traffic scene.

Figure 6. Object detection and tracking based on optical flow

5. CONTOUR-BASED MOVING OBJECT
DETECTION
AND TRACKING

The edges and contours of the images are successfully used for moving object
detection and tracking. Such a contour-based detection and tracking technique
was proposed by M. Yokoyama and T. Poggio in 2014 [35].

Their approach detects the moving edges by using a gradient-based optical
flow technique and an edge detector. Canny edge detector is used to extract
those edges having strong magnitudes of the gradients, but some PDE – based
edge detectors could be used as well. The extracted edges are restored as lines,
and background lines of the previous frame are subtracted. A line clustering
process is then performed: a NN-based clustering with respect to the distance
and velocity is applied for this task [35].

It labels two lines as the same, if they satisfy the following constraints:

min
i∈{1,...,m}
j∈{1,...,n}

{|xpi − xqj |+ |ypi − yqj |} ≤ αd, min
i∈{1,...,m}
j∈{1,...,n}

{|upi − uqj |}

≤ αu, min
i∈{1,...,m}
j∈{1,...,n}

{|vpi − vqj |} ≤ αv
(17)

where (up, vp) represents the velocity.
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Then, the contours of the clustered lines are obtained by using active con-
tours. The discrete energy function of a snake of the contour {p1, ..., pN} is

E =
N∑
i=1

(αiEcont + βiEcurv + γiEimage), (18)

where

Econt = ∥pi − pi−1∥2, Ecurv = ∥pi−1 − 2pi + pi+1∥2, Eimage = −∥∇I∥ (19)

Then, the object tracking process consists in solving the correspondence
problem for the detected objects. The similarity between an object of the
previous frame, {Ŝ1, ..., ŜNm} ∈ R̂prev(m), and an object of the current frame,

{p̂1, ..., p̂n} ∈ Ŝ, is defined as:

p(m,m′) =

Nm∑
j=1

nj∑
i=1

lij

Nm∑
j=1

|Sj |
, lij =

{
1 if p̂i ∈ Rcurv(m

′) where p̂i ∈ Ŝj
0 otherwise.

(20)

Effective moving object detection and tracking results have been obtained.
A contour-based moving object detection example is described in Fig. 7.

Figure 7. Contour-based video object detection

6. PDE-BASED AUTOMATIC DETECTION AND
TRACKING TECHNIQUES FOR CERTAIN
OBJECT CLASSES

Our own contributions in the moving object detection and tracking domain
are described in this section. We proposed some novel video detection and
tracking techniques that use the nonlinear PDE models, which have been
widely approached by us in the last years [36, 37, 38], to perform a multi-scale
analysis of the detected objects in order to solve the correspondence problem.
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The first one is a vehicle detection and tracking technique that was dissem-
inated in a high impact journal [39]. It detects the moving vehicles in the
frames of the video sequence by combining some deep and machine learning-
based detection techniques: Gaussian Mixture Models (GMM), Aggregated
Channels Network (ACF), YOLO-V2 and Faster R-CNN.

Then, the correspondence between the video objects detected in succes-
sive frames is determined using a multi-scale analysis of those objects. A
scale-space representation is created by applying the numerical approximation
algorithm that solves a nonlinear fourth-order reaction-diffusion based model
whose mathematical validity is rigorously investigated here [39]. A color image
feature extraction is then performed at each scale using SURF and HOG-based
features and the feature vectors determined at multiple scales are next con-
catenated into a final descriptor. An instance matching-based vehicle tracking
technique using the distances between these feature vectors is then proposed
in [39]. We developed some proper metrics for feature vector distance com-
puting [41, 42, 43]. The proposed approach outperforms other techniques, as
shown by the method comparison results in Table 1.

Table 1. Vehicle detection and tracking method comparison results

Detection
technique

Precision Recall
Tracking
approach

Precision Recall

The proposed
approach

0.8423 0.8257
The proposed
technique

0.8401 0.8216

Aggregated
Channels

Network (ACF)
0.6741 0.6824

GMM+Mean-
shift tracking

0.7148 0.7332

Gaussian
Mixture

Models (GMM)
0.6843 0.6722

GMM+
Kalman filter

0.7643 0.7527

Fastert R-CNN 0.8192 0.8046 EB+IoU tracker 0.8576 0.8615

R-CNN 0.6581 0.6625 SIFT tracking 0.6233 0.6181

YOLO-v2 0.7632 0.7811
SIFT+

Kalman filtering
0.7486 0.7391

Frame diffe-
rencing (FD)

0.5826 0.5972

Frame
differencing
(FD)+object
matching

0.5801 0.5879

HOG+SVM 0.6149 0.6349
HOG+SVM
+feature
matching

0.6102 0.6213
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A moving vehicle detection and tracking example is described in Fig. 8.

Figure 8. Moving vehicle detection and tracking example
(feature vector distances are attached to bboxes)

Here we describe only the reaction-diffusion based scale-space representa-
tion that uses the following well-posed nonlinear anisotropic diffusion-based
filtering model proposed by us [36]:

∂u

∂t
+ λξ(∥∇2u∥)∆(ψ(∥∇uσ∥)∇2u) + α(u− u0) = 0, in (0, T )× Ω

u(0, x, y) = u0(x, y), ∀(x, y) ∈ Ω
u(t, x, y) = 0, ∀(x, y) ∈ ∂Ω, in (0, t)× Ω
∂

∂n⃗
(t, x, y) = 0, ∀(x, y) ∈ ∂Ω, in (0, t)× Ω

(21)

where the diffusivity function is

ψ : [0,∞) → [0,∞) : ψ(s) = β 3

√
δ

|ζ + γs2|
(22)

and

ξ : [0,∞) → [0,∞) : ξ(s) = ζ(ηsε + ν)
1
ε+1 , ν, η ∈ [1, 5), ζ ∈ (0, 1), ε ∈ (0, 1).

(23)
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This PDE model is solved by applying the finite difference method and the
following explicit iterative numerical approximation scheme is obtained for it:

un+1
i,j = uni,j(α+1)−λξ(∥∆uni,j∥)(ψni+1,j+ψ

n
i−1,j+ψ

n
i,j+1+ψ

n
i,j−1−4ψni,j)−u0i,jα

(24)
This numerical algorithm, which is stable and consistent to the PDE in

(6.1), is then used to create the scale-space representation for the detected
RGB color objects. We consider the next solution to this issue, since applying
it on each of the 3 color channels is not a good one since R, G and B have high
correlation levels. One converts the RGB object V eh to the decorrelated color
space CIE L∗ a∗ b∗ and its luminance channel L(V eh) is filtered by applying
the numerical scheme. We obtain the following multi-scale representation of
K scales for the vehicle object:

S(V eh) = {V eh,RGB([(L(V eh))τ , a(V eh), b(V eh)]), ...,

RGB([(L(V eh))τ(K−1), a(V eh), b(V eh)])} (25)

Another contribution represents a multiple pedestrian tracking framework
that was disseminated in a IEEE conference volume [40]. The moving per-
son detection process is performed by applying a combination of advanced
computer vision and machine learning solutions, such as GMM, HOG, SVM,
ACF [40]. An instance matching-based tracking technique that uses a deep
learning-based multiscale analysis of the subimages of the detected pedestrians
is then proposed.

Its scale-space is created by applying the numerical approximation algo-
rithm of a well-posed nonlinear second-order anisotropic diffusion-based model
that is introduced here [40]. It has the following form:

∂u

∂t
− αψ(|∇2u|)∇ · (δ(∥∇u∥)∇u) + β(u− u0) = 0, (x, y) ∈ Ω

u(0, x, y) = u0(x, y), ∀(x, y) ∈ Ω
u(t, x, y) = 0, ∀(x, y) ∈ ∂Ω;

(26)

where its functions are the following:

δ : [0,∞) → [0,∞) : δ(s) = λ

(
ξ

|γs3 + η log10 ξ|

)
ψ : [0,∞) → [0,∞) : ψ(s) = ζ r

√
φsr + ν

(27)

where α ∈ [1, 2), β ∈ (0, 0.4), η ∈ (0, 1], γ ≥ 3, ξ ≥ 4, φ, ν ∈ [1, 5),
ζ ∈ (0, 0.5, 1) and λ ≥ 1.

The explicit iterative numerical approximation scheme that solves this parabolic
PDE model, by applying the finite difference method, is obtained in the fol-
lowing form:
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un+1
i,j = uni,j(1− β) + u0i,jβ + αψ(uni+h,j + uni−h,j + uni,j+h + uni,j−h − 4ui,j)·

·
(
δi+ 1

2
j(u

n
i+1,j − uni,j)− δi−h

2
j(u

n
i,j − uni−1,j)

+δi,j+ 1
2
(uni,j+1 − uni,j)− δi,j− 1

2
(uni,j − uni,j−1)

)
.

The obtained scale-space has the form S(p) = {p,RGB([(L(p))ρ, a(p), b(p)]),
..., RGB([(L(p))ρ(K−1), a(p), b(p)])} where ρ ∈ [3.10] and K ≥ 3. A feature ex-
traction process involving two pre-trained CNNs (Inception-V3 and ResNet-
101) is applied at each scale, powerful 2D feature vectors being obtained [40].
Then, a video object instance matching technique that is based on the feature
vector distances is next applied to determine the correspondences between the
pedestrians detected in consecutive frames. Thus, the moving person trajec-
tories are identified succesfully [40]. A multiple pedestrian tracking example
is displayed in Fig. 9.

Figure 9. Multiple pedestrian tracking example

This approach outperforms many other pedestrians detectors and trackers,
as illustrated by the method comparison results in Table 2 [40].

Table 2. Method comparison results

Technique Precision Recall

The proposed framework 0.8467 0.8351

AdaBoost+Blcok matching 0.8312 0.8221

Faster R-CNN+color feature matching 0.7839 0.7693

HOG+SVM+Kalman filtering 0.7362 0.7285

Temporal differencing+object mathcing 0.7137 0.7214

HOG+SVM+feature matching 0.7423 0.6372
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7. CONCLUSIONS

An overview of geometric and PDE-based models for moving object detec-
tion and tracking has been presented here. The PDE-based models can be
used in the detection stage (see Active Contours), tracking stage (see optical
flow) or both processes. They provide effective detection and tracking results
but may lead to higher computational costs, due to their complexity.

Our contributions in this computer vision field, representing detection and
tracking models for special classes of objects (vehicles, pedestrians), have
been also disscused. While the most PDE models for detection and track-
ing have variational characters, the PDE-based schemes proposed by us are
non-variational, since they cannot be achieved by minimizing some energy
functionals.

Also, our nonlinear diffusion models are used only for the multi-scale analy-
sis that facilitates the correspondence-based tracking processes. We have also
developed some PDE-based edge detection techniques that could lead to some
object detection and tracking models which will represent the focus of our
future research work.
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1. INTRODUCTION

The work is devoted to the geometry of the Gromov–Hausdorff distance [1,
2, 3, 4] defined on the class of all non-empty metric spaces and is closely related
to the works [7, 9], the concepts and results of which we use without detailed
explanation.

M. Gromov in his “Metric structures for Riemannian and non-Riemannian
spaces” [3] made a short remark: “One can also make a moduli space of isom-
etry classes of non-compact spaces X lying within a finite Hausdorff distance
from a given X0, e.g. X0 = Rn. Such moduli spaces are also complete and
contractible.”

This observation was not proved in [3] because it probably seemed obvious.
In [7, Theorem 4] the completeness of moduli spaces (clouds) is proved and it
is stated, that a natural attempt to prove the contractibility of a cloud poses
the problem of describing the stabilizer and the center of the cloud. Let us
give the basic definitions.

Let (X, ϱ) be an arbitrary metric space and 0 < r ≤ ∞ be a real number.
As is customary in metric geometry, instead of ϱ(x, y) we write |xy| as a rule.
If A and B are non-empty subsets of X, then we put

|AB| = |BA| = inf
{
|ab| : a ∈ A, b ∈ B

}
.

Next, we define the closed r-neighborhood of the set A by setting
Br(A) =

{
x ∈ X : |xA| ≤ r

}
.

Finally, the Hausdorff distance between A and B is the value
dH(A,B) = inf

{
r : A ⊂ Br(B), B ⊂ Br(A)

}
.

53
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The Hausdorff distance is a generalized pseudometric. The word “general-
ized” means that the distance may take infinite value, as in the case of the
straight line R and any of its points. The prefix “pseudo” means that the
distance may take zero value between different subsets, as in the case of a set
and its dense subset. It is obvious that the Hausdorff distance satisfies all
the axioms of generalized pseudometrics: it is non-negative, symmetric and
satisfies the triangle inequality. Nevertheless, on the set consisting of all non-
empty bounded closed subsets of a metric space X, the Hausdorff distance is
a metric.

The Gromov–Hausdorff distance between non-empty metric spaces X and
Y is the value

dGH(X,Y ) = inf
{
dH(X

′, Y ′) : X ′, Y ′ ⊂ Z, X ′ ≈ X, Y ′ ≈ Y
}
,

where for the metric spaces X and X ′ the expression X ≈ X ′ means that these
spaces are isometric. The Gromov–Hausdorff distance is a generalized pseu-
dometric vanishing on each pair of isometric spaces [4]. There are a countable
discrete complete bounded metric space X and a countable locally compact
complete bounded metric space with exactly one non-isolated point Y such
that dGH(X,Y ) = 0.

Compact metric spaces form the set GHc, on which the Gromov–Hausdorff
distance is a metric. The class GHb of all bounded metric spaces no longer
forms a set. But within the framework of von Neumann–Bernays–Gödel set
theory we can say that the Gromov–Hausdorff distance is a pseudometric on
GHb. We will denote the class of all metric spaces by GH, and the class of all
metric spaces located at a finite distance from of a given metric space X will
be called the cloud of the space X and denoted by [X]. By ∆1 we denote a
one-point metric space. It is clear that [∆1] = GHb. For a metric space (X, ϱ)
and a positive number λ > 0, λX means the “similar space” (X,λϱ), i.e. the
set X, the distances on which are multiplied by λ.

The transformation Hλ : GH → GH, Hλ : X 7→ λX for λ > 0 we call
similarity with the coefficient λ.

The diameter of a metric space is defined as

diamX = sup{|xy| : x, y ∈ X}.

Theorem 1.1 ([4]). For any metric spaces X and Y ,
(1) 2dGH(∆1, X) = diamX;
(2) 2dGH(X,Y ) ≤ max{diamX,diamY };
(3) if the diameter of X or Y is finite, then

∣∣diamX−diamY
∣∣ ≤ 2dGH(X,Y ).

(4) if the diameter of X is finite, then for any λ > 0 and µ > 0 we have
dGH(λX, µX) = 1

2 |λ−µ| diamX, whence it immediately follows that the curve
γ(t) := tX is shortest between any of its points, and the length of such a
segment of the curve is equal to the distance between its ends.
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(5) for any λ > 0, we have dGH(λX, λY ) = λ dGH(X,Y ).

Property (5) implies that similarities are well defined on the classes GHc, GHb,
and GH.

Returning to the contractibility of the cloud, we note that formulas (4) and
(5) illustrate the existence of a canonical contraction of the Gromov–Hausdorff
space of all compact metric spaces to the one-point space ∆1. It is also possible
to give a strict meaning to the statement that similarity carries out contraction
of the cloud of all bounded metric spaces to the one-point space ∆1.

Formula (5) means that the similarity is continuous in space, but formula
(4) in all other clouds does not guarantee continuity with respect to the con-
traction parameter λ.

There are constructed [5, Corollary 5.9], [10] examples of spaces X such that
the spaces X and λX lie in the same cloud if and only if λ = 1. This means
that, in the general case, the similarity cannot contract the cloud by itself.
Therefore, the author believes that the statement about the contractibility
of any cloud (even in the case of cloud [Rn], mentioned by Gromov) is cur-
rently a hypothesis. Recently the author proved that the cloud of any space
“with large metric gaps” (the spaces considered in this work are as follows) is
contractible [11, Theorem 1.2].

Since for an unbounded metric space (X, ϱ) the “similar” space
λX = (X,λϱ) can be at infinite Gromov–Hausdorff distance from the
original space X [5, 6, 7, 8, 9, 10], then the cloud stabilizer becomes important:

St[X] =
{
λ ∈ R+ : dGH(X,λX) <∞

}
=
{
λ ∈ R+ : [λX] = [X]

}
.

The cloud stabilizer does not depend on the representative X taken from
the cloud and is a subgroup in the multiplicative group of positive numbers
(R+,×).

In this plan, already subsets of the half-line (of non-negative numbers with
the standard metric of the modulus of the difference) give many interesting
and varied examples.

For example, in [5] it is shown that in the case of a countable subsetX whose
points go to infinity very quickly (for example, for geometric hyperprogression
X =

{
pn

α}∞
n=1

, p > 1, α > 1) and the standard line metric, St[X] = {1}.
In [10] a similar result is proved for an arbitrary normalized metric on a geo-
metric hyperprogression, i.e. for a metric for which only distances to the zero
point are induced from the straight line.

In [5, 6, 8] it is shown that for a geometric progression Xp =
{
pn
}∞
n=1

,

p > 1, and the standard line metric, St[Xp] = Gp =
{
pn
}∞
n=−∞. In [9] it is

shown that for an arbitrary normalized metric on a geometric progression any
subgroup of the group Gp can be the stabilizer. One could get the feeling that
the value α = 1 is some kind of watershed in the nature of the stabilizer.
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In this work, we show that for a geometric subprogression X =
{
pn

α}∞
n=1

,
p > 1, 0 < α < 1, and an arbitrary normalized metric, the equality
St[X] = {1} holds. Thus, we can say that for α = 1 there is not a “wa-
ter divide”, but “an archipelago of islands in a sea of trivial stabilizer”.

The normed vector spaces form the “Himalayas” with maximum stabilizer
– the whole multiplicative group of positive numbers. We especially note that
for every nontrivial proper subgroup H ⊂ (R+,×), one of the following is
valid:

a) H is closed - in which case, H = Gp for some p > 1;
b) H is not closed - in which case, H is everywhere dense.

There are exactly 2c = 22
ℵ0 of proper dense subgroups, but the author does

not know of any example of a cloud with such a stabilizer.

2. BASIC CONCEPTS

Let X and Y be arbitrary sets. A multi-valued mapping R : X → Y is
uniquely determined by its graph, for which we keep the notation

R =
{
(x, y) : y ∈ R(x)

}
.

It is clear that the graphs of set-valued mappings are exactly subsets of
R ⊂ X×Y such that for any point x ∈ X there exists a point y ∈ Y such that
(x, y) ∈ R. Such a set R ⊂ X × Y will also be called a complete relation. To
simplify the notation for a point from R(x), we will also use the notation yx.
In metric geometry, a surjective set-valued mapping is called a correspondence.
For a R correspondence, the R−1 inverse plot is a subset of the product Y ×X,
so we will denote it by R∗. The set of all correspondences X in Y is denoted
by R(X,Y ). To avoid confusion, we always denote the points of the second
space as y even though it is also denoted by X.

For a correspondence R ⊂ X × Y of metric spaces (X, ϱX) and (Y, ϱY ),
define its distortion as

disR = sup
{∣∣ϱX(x, x′)− ϱY (y, y

′)
∣∣ : (x, y), (x′, y′) ∈ R

}
. (1)

It is convenient to estimate the Gromov–Hausdorff distance in terms of
distortion of correspondences [4]

Theorem 2.1. For any metric spaces X and Y the following equality holds:

dGH(X,Y ) =
1

2
inf
{
disR : R ∈ R(X,Y )

}
.

In what follows, we will assume that X,Y ⊂ [0,∞) and 0 ∈ X, 0 ∈ Y . The
point 0 in the set X will be denoted by 0X . Since we will consider different
metrics on these sets, then, if necessary, we will use the notation disϱX ,ϱY R.
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We are interested in normalized metrics, i.e. such metrics ϱ on the set X
that

ϱ(x, 0X) = x for any point x ∈ X. (2)

It follows from the triangle inequality that for any two points x, x′ ∈ X we
have:

x− x′ = ϱ(x, 0X)− ϱ(x′, 0X) ≤ ϱ(x, x′) ≤ ϱ(x, 0X) + ϱ(0X , x
′) = x+ x′. (3)

Both extreme cases provide interesting examples. The case of left equality
(for all x > x′) corresponds to the fact that the metric is taken from the line
on the set X. The case of right equality (for all x ̸= x′) corresponds to the

discrete hedgehog X̂ [7]. Intermediate “linear” metrics also provide important
examples. For any −1 ≤ α ≤ 1 we define on the set of non-negative numbers,
and hence on any set X we consider, the metric

ϱα(x, x
′) = x+ αx′ =

1− α

2
|x− x′|+ 1 + α

2
(x+ x′) when x′ < x. (4)

It is clear that the formula (4) defines a metric on the set of non-negative
real numbers. The inequalities (3) can be formulated as the assertion that for
any normalized metric ϱ the inequalities ϱ−1 ≤ ϱ ≤ ϱ1 are valid.

Let φ : {0} ∪ N → [0,∞), φ(0) = 0, be a strictly increasing function. Con-
sider on the number line the subset

Xφ =
{
xn = φ(n) : n ∈ {0} ∪ N} ⊂ [0,∞)

}
. (5)

The set of all normalized metrics on Xφ denoted by Mφ or M for a fixed
function φ.

The function φ will be called sparse, if the difference

∆φ(n) = φ(n)− φ(n− 1), n ≥ 1,

monotonically (from some rank n0) increases to infinity, i.e.

∆φ(n+ 1) ≥ ∆φ(n) for n ≥ n0 and ∆φ(n)
n→∞−→ ∞. (6)

Sparse functions are remarkable in that their correspondences with finite
distortion have a simple structure.

Theorem 2.2. Let φ and ψ be sparse functions and R ∈ R(Xφ,ϱ, Xψ,ρ) is a
correspondence such that disR < M . Then for some n0 and an integer k for
all n ≥ n0 the equality R(xn) = {yn+k} holds.

This is where our main result comes from.
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Theorem 2.3. For numbers p > 1, 0 < α < 1 and any normalized metric
ϱ ∈ Mφ on a sparse set Xφ, where φ(n) = pn

α
, we have the equality

St
[
(Xφ, ϱ)

]
= {1}.

On the one hand, the theorem 2.2 gives a strong necessary condition for
the correspondence of a finite distortion. On the other hand, this necessary
condition is based only on comparing the distances to the zero point, therefore,
it cannot be sufficient for the finiteness of the distortion of this correspondence.
Sufficiency holds for metrics with some condition of “translation invariance”.
For a geometric progression, invariant normalized metrics are important. In
our case, the analog is the class of the following metrics. Let’s say that the
metric ϱ ∈ Mφ is invariant (ϱ ∈ IMφ), if there exists a function α : N → [−1, 1]
such that

ϱ(xm, xn) = xm + α(m− n)xn for n < m. (7)

In [9, Proposition 3.5], there is a description of such functions α that define
a metric on Xφ by the formula (7). The following result [9, Theorem 2.14]
contains all linear metrics of (4).

Theorem 2.4. Any function α : N → [a, b], where −1 ≤ a ≤ b ≤ 1 and
b ≤ 1 + 2a, by the formula (7) defines an invariant normalized metric
ϱα ∈ IMφ.

Theorem 2.5. Let φ and ψ be strictly increasing functions such that
|ψ(n + k) − φ(n)| < K for some fixed k ∈ Z, K > 0 and all sufficiently
large n (n ≥ n0). Then

dGH
(
(Xφ, ϱα), (Xψ, ϱα)

)
<∞

for any function α from theorem 2.4.

Corollary 2.1. Let φ and ψ be sparse functions, and α and β be the functions
from theorem 2.4. Then the following conditions are equivalent:

1) dGH
(
(Xφ, ϱα), (Xψ, ϱβ)

)
<∞;

2) α = β and dGH
(
(Xφ, ϱ−1), (Xψ, ϱ−1)

)
<∞;

3) α = β and |ψ(n + k) − φ(n)| < K for some fixed k ∈ Z, K > 0 and all
sufficiently large n (n ≥ n0).

Example 2.1. For any strictly increasing functions φ and ψ the implications
3) =⇒ 1), 2) are valid for any number −1 ≤ α ≤ 1. For the functions

φ(n) = 3

[
n+1
2

]
+(−1)n and ψ(n) = 3n condition 2) is satisfied, but for α > −1

conditions 1) and 3) are not true.
However, the reason lies not so much in the non-sparseness of the functions

φ and ψ, but in the fact that that the case α = −1 is exceptional and different
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from the general function α : N → [−1+ ε, 1], whose values are separated from
the number −1.

3. PROOFS

In [9, Proposition 1.1] the assertion is proved, which we present in full for
the convenience of the reader.

Proposition 3.1. If for the complete relation R of the spaces XϱX and YϱY
the inequality disR < M is true, then for every point x ∈ X and every point
yx ∈ R(x) the inequality |x− yx| < K is true, where K =M + y0.

For any sparse function φ, for any number M > 0, there exists a number
n > 1, such that

φ(n)− φ(n− 1) ≥M.

We denote the smallest such number by nφ(M).

Proposition 3.2. If for a sparse function ψ : N → R+ and a complete relation
R of the spaces XϱX and Xψ,ρ the inequality disR < M is true, then for
any point x ∈ X from y ∈ R(x) and y ≥ ynψ(M) = ψ(nψ(M)) the equality

R(x) = {y} follows.

Proof. Let y′ ∈ R(x). Then

|y′ − y| ≤ ρ(y′, y) = ρ(y′, y)− ϱ(x, x) ≤ disR < M.

The condition y ≥ ψ(nψ(M)) and the definition of the number nψ(M) imply
the equality y′ = y.

Proposition 3.3. If for a sparse function φ : N → R+ and a complete relation
R of the spaces Xφ,ϱX and Xρ the inequality disR < M is true, then for any
point x ∈ X from x ≥ xnφ(M) = φ(nφ(M)) and R(x) ∩ R(x′) ̸= ∅ follows
x = x′.

Proof. Let y ∈ R(x) ∩R(x′). Then

|x′ − x| ≤ ϱ(x′, x) = ϱ(x′, x)− ρ(y, y) ≤ disR < M.

The condition x ≥ φ(nφ(M)) and the definition of the number nφ(M) imply
the equality x′ = x.

Proof of the theorem 2.2. Since the metric spaces Xφ,ϱ and Xψ,ρ are un-
bounded, then there are numbers n0 ≥ nφ(2M + 2y0) ≥ nφ(M) and
m0 ≥ nψ(2M + 2x0) ≥ nψ(M) such that ym0 ∈ R(xn0). Here y0 ∈ R(0)
and x0 ∈ R∗(0), i.e. 0 ∈ R(x0).
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Since m0 ≥ nψ(M), then according to the proposition 3.2 R(xn0) = {ym0};
from n0 ≥ nφ(M) according to the proposition 3.3 it follows R∗(ym0) = {xn0}.

According to Proposition 3.1 |xn0 − ym0 | < M + y0, so ym0 < xn0 +M + y0.
Similarly |xn0+1 − yxn0+1 | < M + y0, so xn0+1 −M − y0 < yxn0+1 .

It follows from the inequality n0 ≥ n(2M + 2y0) that

xn0+1 − xn0 > xn0 − xn0−1 ≥ 2M + 2y0.

So yxn0+1 > xn0+1 −M − y0 > xn0 +M + y0. Therefore, yxn0+1 > ym0 = yxn0 .
Thus, we have proved that yxn2 > yxn1 ≥ ym0 follows from n2 > n1 ≥ n0.
A similar property is also true for the inverse (symmetric) correspondence

R∗. m2 > m1 ≥ m0 implies xym2
> xym1

≥ xn0 .
If yxn0+1 > ym0+1, then for the point xym0+1 from the proven monotonicity

property the inequality xn0 < xym0+1 < xn0+1.
The resulting contradiction shows that yxn0+1 = ym0+1. We prove by in-

duction that yxn0+i = ym0+i for every i ≥ 1. It is clear that k = m0 − n0 is
the desired one. □

Proposition 3.4. For p > 1 and 0 < α < 1, the following properties hold for
the function φ(x) = px

α
:

1) The function φ(n) is sparse.

2) For any integer k the equality limx→∞
φ(x+k)
φ(x) = 1 is true.

Proof. Consider the function φ(x) = px
α
, x > 0. It is easy to calculate that

φ′(x) = αxα−1φ(x) ln p = α ln p px
α

x1−α > 0.

1) Therefore, the sequence
{
φ(n) = pn

α}
is strictly increasing. An increase

of the sequence ∆φ(n) is equivalent to the convexity of the sequence
{
φ(n)

}
,

i.e. to the condition

φ(n+ 1) ≤ φ(n+ 2) + φ(n)

2
for each n. (8)

It is easy to calculate that φ′′(x) = αxα−2
(
αxα ln p + α − 1

)
φ(x) ln p. For

sufficiently large x the second derivative is positive φ′′(x) > 0, therefore the
inequality (8) is true for all sufficiently large n.

Let us show that φ′(x) → ∞ as x → ∞. This will be done via L’Hopital’s
rule applied to the related exponent, by means of the substitution xα = t:

lim
x→∞

px
α

x1−α
= lim

t→∞

pt

t
1−α
α

= lim
t→∞

α ln p

1− α
· pt

t
1−2α
α

= . . . =

= lim
t→∞

αk ln p

Πki=1(1− iα)
· pt

t
1−(k+1)α

α

= ∞,
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where k is a number such that 1−kα > 0 and 1− (k+1)α ≤ 0. By Lagrange’s

theorem, ∆φ(n+1) = φ(n+1)−φ(n) = φ′(n+θn)
n→∞−−−→ ∞, where 0 < θn < 1.

2) Consider the function f(x) = xα. It is easy to calculate that f ′(x) =

αxα−1 = α
x1−α

x→∞−−−→ 0. By Lagrange’s theorem,

∆f (n+ k) = f(n+ k)− f(n) = f ′(n+ kθn)k
n→∞−−−→ 0,

where 0 < θn < 1.

Hence limn→∞
φ(n+k)
φ(n) = limn→∞ p(n+k)

α−nα = plimn→∞ ∆f (n+k) = p0 = 1.

Proof of Theorem 2.3. The sparseness of the φ function is proved in the
Proposition 3.4.

Let ϱ ∈ MXφ and λ ∈ St
[
(Xφ, ϱ)

]
. According to [9, Proposition 1.4], the

λϱ metric on Xφ can be identified with the normalized metric on the sparse set
Xλφ given by the function λφ. Let R be a correspondence between setsXφ and
Xλφ such that disR < ∞. According to the theorem 2.2 there exist natural
n0 and integer k such that that R(xn) = {yn+k} for all n ≥ n0. According to
the proposition 3.1 there exists a number K > 0, that |yn+k − xn| < K for all
n ≥ n0. The latter means that

|λp(n+k)α − pn
α | < K for all n ≥ n0.

The inequality can be written as

|λ− pn
α−(n+k)α | < K

p(n+k)α
for all n ≥ n0.

The left and right sides of the last inequality have limits as n→ ∞. Obviously,
the limit of the right-hand side is the number 0. According to the proposi-
tion 3.4 the limit of the left side is equal to |λ− 1|. From the limit inequality
|λ−1| ≤ 0 the required equality λ = 1 follows. □

Proof of Theorem 2.5. The correspondence R ∈ R(Xφ, Xψ) is given by the
formula R(xn) = {yn+k} for n ≥ n0 and R(xn) = {0Y , y1, . . . , yn+k−1} for
n < n0. Let us estimate disR.

For numbers m > n ≥ n0, the following estimate is true∣∣|xmxn|−|ym+kyn+k|
∣∣ = ∣∣xm+α(m−n)xn−ym+k−α(m+k−n−k)yn+k

∣∣ ≤ ∣∣xm−ym+k

∣∣+∣∣α(m−n)(xn−yn+k)
∣∣ ≤ 2K.

For numbers m ≥ n0 > n, the estimate is true
∣∣|xmxn| − |ym+kyn+k|

∣∣ =∣∣xm + anxn − ym+k − an+kyn+k
∣∣ ≤ ∣∣xm − ym+k

∣∣ + xn + yn+k ≤ K + φ(n0 −
1) + φ(n0 + k − 1), where an, an+k are some numbers between −1 and 1.

For numbers n0 > m,n, the estimate is true
∣∣|xmxn| − |ym+kyn+k|

∣∣ ≤ xm +
xn+ym+k+yn+k ≤ 2φ(n0−1)+2φ(n0+k−1). □
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Proof of the theorem 2.1. 1) =⇒ 3). Let R ∈ R(Xφ, Xψ) be a correspondence
such that disR < M . According to the theorem 2.2 for some n0 and an
integer k for all n ≥ n0 R(xn) = {yn+k}. According to the proposition 3.1
there are integers n0 and K > 0 such that for every n ≥ n0 the inequality
|xn − yn+k| < K is true.

Let r be an arbitrary natural number. For every n ≥ 1, the following
inequality holds: |β(r)−α(r)|xn ≤ |β(r)−α(r)|xn+K−|β(r)||yn+k−xn|+K−
|yn+r+k−xn+r| ≤ 2K+

∣∣(β(r)−α(r))xn+β(r)(yn+k−xn)+(yn+r+k−xn+r)
∣∣ =

2K +
∣∣(yn+r+k + β(r)yn+k)− (xn+r + α(r))xn)

∣∣ ≤ 3K. Since the numbers xn
tend to infinity, it follows from the above inequality that |β(r) − α(r)| = 1.
The latter means that α and β functions coincide.

The implications 3) =⇒ 1), 2) are contained in Theorem 2.5.
The implication 2) =⇒ 3) is contained in Theorem 2.2. □
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1. INTRODUCTION

Notons avec C2V la catégorie des espaces localement convexes topologiques
vectoriels Hausdorff (voir [6]). Nous utiliserons les notations suivantes.

Structures de factorisation:
(Epi,Mf ) = (la classe des épimorphismes, la classe des noyaux) = (la classe

des morphismes à image dense, les inclusions topologiques à image fermée);
(Eu,Mp) = (la classe des épimorphismes universels, la classe des monomor-

phismes précis)=(la classe des morphismes surjectifs, la classe des inclusions
topologiques);

(Ep,Mu) = (la classe des épimorphismes précis, la classe des monomor-
phismes universels) (voir [2]);

Sous-catégories coréflectives, réflectives et leurs foncteurs:

M̃ = des espaces avec la topologie Mackey, m : C2V → M̃;
S = des espaces avec la topologie faible, s : C2V → S;
Sh = des espaces Schwartz, sh : C2V → Sh;
iR = des espaces inductifs semi-réflexifs [1], ir : C2V → iR;
sR = des espaces semi-réflexifs, rs : C2V → sR;
Γ0 = des espaces complets, g0 : C2V → Γ0;
lΓ0 = des espaces localement complets [5];
qΓ0 = des espaces quasicomplets.

1.1. Soit A et B deux classes de morphismes. Alors:
1. A ◦B = {a · b|a ∈ A, b ∈ B et la composition a · b existe}.
2. La classe A se nomme B-héréditaire, si f · g ∈ A et f ∈ B, alors g ∈ A.
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LEMME ([2], Lemme 2.6). La classe Epi est Mu-héréditaire.
20. La classe A se nomme B-cohéréditaire, si f ·g ∈ A et g ∈ B, alors f ∈ A.
3. A⊤ est la classe de tous les morphismes orthogonaux du dessus pour tout

morphisme de A, et A⌝ = A⊤ ∩ Epi (voir [2]).
30. A⊥ est la classe de tous les morphismes orthogonaux du bas pour tout

morphisme de A, et A⌞ = A⊥ ∩Mono.

1.2. Pour M, classe de monomorphismes, et A, classe d’objets (une sous-
catégorie), notons par SM(A) la sous-catégorie pleine de tous lesM-sous-objets
des objets de A, et par P (A) la sous-catégorie pleine de tout produit des objets
de A.

Notation duale: QE(A), où E ⊂ Epi.

1.3. Couples de sous-catégories conjuguées, sous-catégories c-
coréflectives et c-réflectives (voir [3]).

Soit k : C2V → K et l : C2V → L un foncteur coréflecteur et un foncteur
réflecteur.

Notons µK = {m ∈ Mono| k(m) ∈ Iso}, εL = {e ∈ Epi| l(e) ∈ Iso}.
Définition (voir [3]). (K,L) se nomme un couple de sous-catégories con-

juguées de la catégorie C2V, si µK = εL.
Soit Pc la classe de couples des sous-catégories conjuguées. Chaque compo-

nente d’un couple de sous-catégories conjuguées est unique déterminée. (M̃, S)
est le plus petit élément, et (C2V,C2V) le plus grand élément de la classe Pc.

Si (K,L) ∈ Pc, alors K se nomme la sous-catégorie c-coréflective, et L

- la sous-catégorie c-réflective. Soit Kc (respectivement: Rc) la classe des
sous-catégories c-coréflectives (respectivement: sous-catégories c-réflectives),
et Bic = {εL|L ∈ Rc}.

1.4. La sous-catégorie Sh des espaces Schwartz et la sous-catégorie uN des
espaces ultranucléaires sont des sous-catégories c-réflectives (voir [3]).

1.5. Pour A, une classe d’objets injectifs (Mp-injectifs), la sous-catégorie
SMpP (A) est c-réflective . Ces sous-catégories forment une classe propre de
sous-catégories (voir [3]).

1.6. L’opération λR (voir [4]). Soit A une classe d’épimorphismes de la
catégorie C2V. Notons avec λ(A) la sous-catégorie pleine de tous les objets Z
à propriété:

Pour tout p : X → Y ∈ A, tout morphisme f : X → Z s’exteint par p:

f = g · p,

pour un g. Si L est une classe d’objets ou une sous-catégorie de la catégorie
C2V et R ∈ R, alors notons λR(L) = λ(A), où A = {rX |X ∈ |L|}.



La catégorie des espaces B-inductifs semi-réflexifs 65

L’opération λ∗ est définie duale et λ∗(A), où A ⊂ Mono, et A est une
sous-catégorie de la catégorie C2V.

1.7. Proposition. 1. Pour toute classe d’épimorphismes A, la sous-
catégorie λ(A) est épiréflective.

2. Soit (K,L) ∈ Pc, et B = µK. Alors λ(B) = L, et λ∗(B) = K.

1.8. Foncteurs commutatifs. On examinera deux foncteurs t1, t2, tous
les deux coréflecteurs, tous les deux réflecteurs, ou l’un coréflecteur et l’autre
réflecteur. Dans la catégorie C2V si t1t2A ∼ t2t1A pour tout A ∈ |C2V|, alors
on peut facilement vérifier que les foncteurs t1 · t2 et t2 · t1 sont isomorphes.

1.9. Sous-catégories semi-réflexives.
Définition (voir [4]). 1. Soit A une sous-catégorie et L une sous-catégorie

réflective de la catégorie C2V. L’objet X se nomme (L,A)-semi-réflexif, si sa
L-réplique appartient à la sous-catégorie A. La sous-catégorie pleine de tous les
objets (L,A)-semi-réflexifs se nomme produit semi-réflexif des sous-catégories
L et A, notée

R = L ∗sr A.

2. Soit L et R deux sous-catégories réflectives de la catégorie C2V. R se
nomme une sous-catégorie L-semi-réflexive, si elle est fermée par rapport à
(εL)-sous-objets et (εL)-facteur-objets.

La classe de toutes les sous-catégories L-semi-réflexives est notée Rsf (εL).
Alors Rsf (εL) = Rs(εL) ∩ Rf (εL), où Rs(εL) = {R ∈ R|R = SεL(R)} et

Rf (εL) = {R ∈ R|R = QεL(R)}.

Théorème [4]. 1. Soit L ∈ Rc et R ∈ R. Alors: L ∗sr R ∈ Rsf (εL).
2. Soit R ∈ Rsf (εL), T ∈ R et L ∩ R ⊂ T ⊂ λR(L). Alors R = L ∗sr (T).

Les résultats principaux de l’ouvrage.

On affirme que iR ⊂ B-iR ⊂ sR (Lemme 3.4) et B-iR est une sous-catégorie
S-semi-réflexive (Théorème 3.5). La Théorème 3.7 permete de construire B-
iR-replique de tout objet de la catégorie C2V.

2. La sous-catégorie des espaces inductifs semi-réflexifs

2.1. Soit (E, t) un espace localement convexe et A un ensemble absolument
convexe dans l’espace dual E

′
. L’espace normé (E

′
A, nA) est défini par l’espace

linéaire E
′
A de l’ensemble A et le fonctionnnel Minkowski nA de l’ensemble A.

Définition. Soit F une famille d’ensembles absolument convexes de l’espace
E

′
. La topologie inductive j(F) définie par la famille F sur l’espace E

′
est
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la plus fine topologie localement convexe pour laquelle les applications jA :
(E

′
A, nA) → (E

′
, j(F)) sont continues.

On a examiné divers cas pour la famille F, famille des ensembles absolu-
ment convexes et compacts ou précompacts dans les espaces E

′
τ et E

′
β (E

′
τ est

l’espace E
′
avec la topologie Mackey τ , β est la topologie de la convergeance

uniforme sur tous les ensembles bornés de (E, t)).

2.2. Soit U une base d’ensembles absolument convexes de la topologie t et
F = {U0, U ∈ U}, où U0 est polaire à l’ensemble U : U0 = {f ∈ E

′ ||f(U)| ≤
1}.

Définition [1]. L’espace (E, t) est nommé inductif semi-réflexif, si (E
′
, j(F))

′
=

E.
La sous-catégorie des espaces inductifs semi-réflexifs sera notée par iR.

2.3. Théorème [1]. Un espace localement convexe est inductif semi-
réflectif alors et seulement alors quand sa Sh-réplique est un espace complet.

2.4. Remarques. 1. Tenant compte des notations ci-dessus, le résultat
mentionné sera écrit

iR = Sh ∗sr Γ0.

2. Ainsi iR ∈ Rsfg(εSh), et

iR = Sh ∗sr T

pour T ∈ R et Sh ∩ iR ⊂ T ⊂ λiR(Sh) ([4], Théorème 4.13).

3. ([4], Théorème 6.4). iR = Ch ∗d (Sh ∩ Γ0) où (Ch, Sh) ∈ Pc.

2.5. Théorèmes. 1. tX = uX · vX est ((εSh)⊤, εSh)-factorisation de
morphisme tX .

2. Mentionnons aussi que

sR = S ∗sr qΓ0

(voir [6]). De plus,

sR = S ∗sr T, sR = M̃ ∗d (S ∩ qΓ0)

pour T ∈ R et S ∩ sR ⊂ T ⊂ λsR(S) ([4], Théorème 4.13).

3. La sous-catégorie des espaces B-inductifs semi-réflexifs

3.1.Définition [5]. Un ensemble A absolument convexe dans un espace lo-
calement convexe (E, t) est nommé sphère Banach, si (EA, nA) est un espace
Banach.
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3.2. Définition [7]). Soit (E, t) un espace localement convexe et F la
famille de toutes les sphères Banach de E

′
. L’espace (E, t) est nommé B-

inductif semi-réflexif si (E
′
, j(F))

′
= E.

La sous-catégorie des espaces B-inductifs semi-réflexifs sera notée par B-iR.

3.3. Soit X ∈ |C2V|,mX : mX → X la M̃-coréplique de X et smXh : mX →
shmX la Sh-réplique de mX.

Théorème [7]. L’espace localement convexe X est B-inductif semi-réflexif
alors et seulement alors quand shmX est complet: shmX ∈ |Γ0|.

3.4. Lemme. 1. iR ⊂ B-iR ⊂ sR.

2. B-iR = QεS(M̃ ∩ iR).
3. B-iR = QεS(iR).

Démonstration. 1. L’inclusion iR ⊂ B-iR est mentionnée dans [7].
B-iR ⊂ sR. Soit (E, t) ∈ |B-iR|. Alors E′

τ = (E′, j(F)). Donc E′
τ est un es-

pace tonnelé comme limite inductive d’une famille d’espace Banach ([6], cap.II,
p.7.1 et 7.2). Alors (E, t) est un espace semi-réflexif ([6], cap.IV, Affirmation
5.5).

2. B-iR ⊂ QεS(M̃ ∩ iR). Soit A ∈ |B-iR|,mA : mA → A M̃-coréplique
de A et smAh : mA → shmA Sh-réplique de mA. En vertu du Théorème 3.3

shmA ∈ |Γ0| et en vertu de p. 2.4 mA ∈ |iR|. Donc A ∈ |QεS(M̃ ∩ iR)|.
QεS(M̃ ∩ iR) ⊂ B-iR. Soit A ∈ |QεS(M̃ ∩ iR)|, mA : mA → A M̃-coréplique

de A. Alors mA ∈ |iR|. Donc shmA ∈ |Γ0|.
3. B-iR ⊂ QεS(iR). Soit X ∈ |B-iR|, et mX : mX → X M̃-coréplique de

l’objet X. Alors mX ∈ |iR| et mX ∈ µM̃ = εS. Donc X ∈ |QεS(iR)|.
QεS(iR) ⊂ B-iR. Soit A ∈ |QεR(iR)|. Alors A est un (εS)-facteur-objet d’un

objet X ∈ |iR|: b : X → A ∈ εS. Soit mX : mX → X M̃-coréplique de l’objet

X. Alors b ·mX : mX → A et M̃-coréplique de l’objet A.
Soit encore que smXh : mX → shmX et sAh : X → shX Sh-répliques des

l’objets respectifs. Alors

sXh ·mX = sh(m
X) · smXh , (1)

où sXh , s
mX
h et mX appartiennent à la classe εS = Eu∩Mu. Donc sh(m

X) ∈ εS
aussi.

Puisque X ∈ |iR|, il résulte que shX ∈ |Γ0|. Alors shmX ∈ |Γ0| aussi,
puisque sh(m

X) ∈ εS. Ainsi on a démontré que shmA ∈ |Γ0| et A ∈ |B-iR|.2
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3.5. Théorème. B-iR ∈ Rsf (εS).

Démonstration. Vérifions que B-iR ∈ R. Il en suffit de démontrer que la
sous-catégorie B-iR est fermée par rapport avec les produits et les sous-espaces
fermés - Mf -sous-objets.

Soit {Xi, i ∈ I} une famille d’objets de la sous-catégorie B-iR, on a

shmΠXi = shΠmXi

puisque le foncteur coréflecteur m : C2V → M̃ commute avec les produits ([6],
cap. IV, Théorème 4.3). Puisque S ⊂ Sh, le foncteur sh : C2V → Sh commute
avec les produits, (voire [3], Exemple 3.9). Donc
shΠmXi = ΠshmXi et shmΠXi ∈ |Γ0|.
Vérifions que la sous-catégorie B-iR est fermée par rapport aux les sous-

espaces fermés - Mf -sous-objets. Soit A ∈ |B-iR| et i : X → A ∈ Mf .

Examinons le diagramme suivant commutatif formé de M̃-coréplique et Sh-
réplique des objets respectifs.

i ·mX = mA ·m(i), (1)

sh(i) · sXh = sAh · i, (2)

shm(i) · smXh = smAh ·m(i), (3)

sXh ·mX = sh(m
X) · smXh , (4)

sAh ·mA = sh(m
A) · smAh , (5)

sh(i) · sh(mX) = sh(m
A) · shm(i). (6)

De plus
sh(i) · b = sh(m

A) · i1 (7)
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est le carré cartésien construit sur les morphismes sh(i) et sh(m
A). Alors, de

l’égalité (6), on déduit que

sh(m
X) = b · b1, (8)

shm(i) = i1 · b1. (9)

pour un morphisme b1.

M̃ est une sous-catégorie (Eu ∩ Mu)-coréflective et Sh est une sous-catégorie
(Eu ∩Mu)-réflective. De plus, la classe Eu ∩Mu est (Eu ∩Mu)-héréditare et
(Eu∩Mu)-cohéréditare. Ainsi, dans les égalités (4) et (5), tous les morphismes
appartiennent à la classe Eu ∩Mu. Puisque sh(m

A) ∈ Eu ∩Mu, il résulte que
b ∈ Eu ∩Mu. De l’égalité (8), on déduit que b1 ∈ Eu ∩Mu aussi.

La sous-catégorie Sh est c-réflective (voir [3]). Une sous-catégorie R est c-
réflective si et seulement si R est Eu-réflective et le foncteur r : C2V → R est
exactement à gauche: r(Mf ) ⊂ Mf ([3], Théorème 2.7).

Ainsi sh(i) ∈ Mf . Donc i1 ∈ Mf aussi, et P , comme sous-espace fermé de
l’espace complet shmA, est complet. Puisque smXh est une application bijective
et b1 ∈ Mu, les topologies des espaces mX et shmX sont compatibles avec la
même dualité. Donc shmX ∈ |Γ0|.

B-iR ∈ Rf (εS). Résulte du Lemme 3.4 p.2.

B-iR ∈ Rs(εS). Soit A ∈ |B-iR|, b : X → A ∈ εS = µM̃ et mX : mX → X

M̃-coréplique de X. Donc b ·mX : mX → A est M̃-coréplique de A et mX ∈
|iR|. Alors X ∈ |B-iR|.2

3.6. Mentionnons que iR ∈ Rsf (εSh) et B-iR, sR ∈ Rsf (εS). Dans l’ouvrage

[7], on affirme que les sous-catégories des espaces inductifs semi-réflexifs et B-
inductifs semi-réflexifs ne cöıncident pas. Soit (E, t) un espace réflexif normé
infinit dimensionnel. On affirme que (E, σ(E,E

′
)) est B-inductif semi-réflexif,

mais il n’est pas inductif semi-réflexif.

3.7. Théorème. 1. B-iR = Ch ∗d (Sh ∩ U), où U = Sh ∨ B-iR, U est le
suprême des sous-catégories Sh et B-iR dans la latice R.
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2. B-iR = Sh ∗sr T, pour tout T ∈ R et S ∩B-iR ⊂ T ⊂ λB−iR(Sh).

3. B-iR ⊂ Sh ∗sr lΓ0.

Démonstration. 1.Le Théorème 6.4 [4] indique une méthode qui permet
de construire B-iR-réplique de tout objet de la catégorie C2V.

2. Voir [4] Théorème 4.19.

3. Soit A ∈ |B-iR| et on va démontrer que Sh-réplique shA appartient à la
catégorie lΓ0. On a le diagramme commutatif

dans lequel tous les morphismes appartiennent à la classe Eu ∩Mu = εS. De
plus, shmA ∈ |Γ0|. Ainsi, shA ∈ |QεS(Γ0)| = |lΓ0|.2

3.8. Soit Ch la conjuguée de la sous-catégorie Sh : (Ch, Sh) ∈ Pc. Examinons
les foncteurs respectifs:

ch : C2V → Ch, sh : C2V → Sh, ir : C2V → iR,

br : C2V → B-iR,m : C2V → M̃, s : C2V → S.

Théorème. 1. Soit T ∈ Kc et Ch ⊂ T. Alors les foncteurs t : C2V → T et
ir commutent: t · ir = ir · t.

2. Soit L ∈ Rc et L ⊂ Sh. Alors les foncteurs l : C2V → L et ir commutent:
l · ir = ir · l.

3. Soit T ∈ Kc. Alors les foncteurs t : C2V → T et br commutent: t · br =
br · t.

Démonstration. Les affirmations 1 et 3 résultent du Théorème 5.2, et les
affirmations 2 et 4 résultent du Corollaire 5.5 [4].2
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Abstract In this paper, we present a deduction of swallow water equations in the presence
of vegetation based on spatial averaging techniques starting from the general
principles of conservation of mass and momentum. For this purpose, we worked
in the hydrostatic approximation of the pressure field and we considered certain
hypotheses of kinematic and topographical nature and assumptions on the
structure of the vegetation. Some elements of differential geometry necessary
to facilitate the reading of the paper can be found in the Appendix.

Keywords: shallow water equation, numerical approximation.

2020 MSC: 35Q35, 35K55, 35L60, 76S99, 53Z05.

1. INTRODUCTION

The presence of plants on the hill creates a resistance force to the water
flow and influences the process of water accumulation on the soil surface. The
large diversity of plants growing on a hill makes the elaboration of an unitary
model of the water flow over a soil covered by vegetation very difficult. Here,
we present a model based on water mass and momentum balance equations
that takes into account the presence of certain type of plants.

More precisely, the plants form a dense net of rigid vertical tubes and the
water fills the “voided” space up to a level not higher than these plant tubes,
see Figure 1. The figure 1 explaines the representative element of the volume
Pδ used for mediation. The bottom surface of Pδ has a representative width δ
along two orthogonal directions on this surface. The water depth h associated
to Pδ is the averaged value of the physical water depth h̃ inside Pδ.

The article is structured as follows. A full hyperbolic PDE model obtained
by averaging the equations for the conservation of mass and momentum is
presented in Section 2. Some closure relations for these balance equations can
be found in

In the Section 3 we introduce some closure relations conceerning the water-
plant and water-soil interaction and we anlyse some mathematical properties
of the model. We note that, by suitable assumptions, different simplified
models can be obtained from the general model.

73
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Fig. 1. The representative element of the volume used for mediation

The Appendix is dedicated to some elements of differential geometry used
throughout the paper.

2. SPACE AVERAGING MODELS

Space averaging is a method to define a unique continuous model associated
to a heterogeneous fluid-solid mechanical system. The method is largely used
in porous soil media models [2, 5, 12]. For the fluid-plant physical system, the
porous analogy was also used in [1, 6, 8], especially in the case of submerged
vegetation.

At a hydrographic basin scale, there are variations in the geometrical prop-
erties of the terrain (curvature, orientation, slope) and vegetation density or
vegetation type etc. Assume there is a map that models the terrain surface

xi = bi(ξ1, ξ2), (ξ1, ξ2) ∈ D ⊂ R2, i = 1, 2, 3. (1)

Denote the tangent vectors to the coordinate curves on this surface by

ςa = ∂ab :=
∂b

∂ξa
, a = 1, 2. (2)

Using this fixed surface, one introduces a new coordinate y3 along the nor-
mal direction ν to the surface. A point in the neighborhood of this surface is
defined in this new system of coordinates Y = (ξ1, ξ2, y3) by

xi = bi(ξ1, ξ2) + y3νi, (ξ1, ξ2) ∈ D ⊂ R2, y3 ∈ J ∈ R, i = 1, 2, 3, (3)

where ν = (ν1, ν2, ν3) represents the unit normal to the surface.
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We introduce the tangent vectors to the coordinate curves defined by Y

ζI := ∂Ix, I = 1, 2, 3. (4)

One has
ζ3 = ν, ζa = (δba − y3κba)ςb, a = 1, 2, (5)

where κ is the curvature tensor of the terrain surface.
In the presence of vegetation on the hill slope, the fluid occupies the free

space between plant bodies and the mechanical characteristics of the fluid flow
are defined only in the domain occupied by the fluid.

We adopt the following
General convention: any variable bearing a tilde over it designates a micro-
local physical quantity, while the absence of tilde indicates the corresponding
averaged quantity. Also, when the micro-local quantity does not differ from the
corresponding averaged quantity, we denote the micro-local quantity without
tilde.

Denote by Ωf and Ωp the spatial domain occupied by fluid and plants, respec-

tively. Consider ψ̃ to be some microscopic quantity that refers to the fluid.
Let y = (y1, y2) be a point in D. One introduces the rectangular domain

Dδ = Dδ(y) := [y1 − δ, y1 + δ]× [y2 − δ, y2 + δ]. (6)

Define the spatial averaging volume

P = P (y) =
{
(x1, x2, x3) | xi = bi(ξ1, ξ2) + y3νi,

0 < y3 < h̄(ξ1, ξ2), (ξ1, ξ2) ∈ Dδ(y), i = 1, 2, 3
}
.

Here, h̄ is some extension of h̃ to the domain D, where h̃ is the function
describing the free water surface outside the domain occupied by plants.

Denote by P f the fluid domain inside P ,

P f := P ∩ Ωf .

The boundary of P f can be partitioned as

∂P f = Σfp ∩ Σff ∩ Σfa ∩ Σfs,

where Σfp is the fluid-plant contact surface inside P f , Σfa is the free surface
of the fluid inside P f , Σfs is the fluid-soil contact surface inside P f , and Σff

is the boundary surface separating the fluid inside and outside P f .
The general form of a balance equation, [7] is

∂t

∫
P f

ρ̃ ψ̃dV +

∫
∂P f

ρ̃ ψ̃(ṽ · n− un)dσ =

∫
∂P f

Φ̃ψ · ndσ +

∫
P f

ρ̃ ϕ̃ψdV. (7)
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Here, the significance of the above quantities are:
- ρ̃ – the micro-local mass density of the fluid;
- ṽ – the micro-local velocity of the fluid;
- n – the exterior unit normal on ∂P f ;
- Φ̃ψ – the micro-local flux density of ψ̃;

- ϕ̃ψ – the micro-local mass density of supply ψ̃;
- un – the normal surface velocity;
- dV – the volume element;
- dσ – the surface element.
To obtain a mathematical treatable model, one needs to make some assump-

tions concerning the complex fluid-plant-soil system. The first assumption
refers to the plant cover.

Assumption 2.1 (Vegetation structure). The plant cover satisfies:
A1. The plants are almost normal to the terrain surface and they behave like
rigid sticks.
A2. The water depth is smaller than the height of the plants.

We remark that A1 is often used in the porous model of the vegetation and
A2 is proper to the overland flow.

The soil-fluid Ifs and fluid-air Ifa interfaces can be represented as

Ifs := {x
∣∣∣xi = bi(ξ1, ξ2), (ξ1, ξ2) ∈ Df , i = 1, 2, 3}

and

Ifa := {x
∣∣∣xi = bi(ξ1, ξ2) + h̃(ξ1, ξ2)δi3, (ξ1, ξ2) ∈ Df , i = 1, 2, 3},

respectively, where Df :=
{
(ξ1, ξ2) ∈ D

∣∣b(ξ1, ξ2) ∈ Ωf
}
.

Define the averaged water depth by

h(y1, y2, t) :=
1

ωf

∫
Dfδ

h̃(ξ1, ξ2, t)β(ξ1, ξ2)dξ1dξ2, (8)

where ωf measures the area of Σfs,

ωf :=

∫
Dfδ

β(ξ1, ξ2)dξ1dξ2. (9)

The volume of the fluid inside the elementary domain P is given by

vol(P f ) = ωfh. (10)
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A pure geometrical result which refers to the flux of ψ̃ through the boundary
Σff is formulated as:

Lemma 1.

∫
Σff

ρ̃ ψ̃ ṽ · ndσ = ∂a

∫
Df

h̃(ξ1,ξ2,t)∫
0

ρ̃ ψ̃ ṽa∆dy3β(ξ1, ξ2)dξ1dξ2, (11)

where ∆ = 1 − y3KM + (y3)2KG, with KM and KG the mean and Gauss
curvature respectively, and βdξdη is the area element of the terrain surface.
The quantities ṽa, with a = 1, 2 stand for the contravariant components of the
velocity fields in the local basis {ζI}I=1,3

ṽ = ṽaζa + ṽ3ν.

In Lemma 1, the partial differentiation ∂a stands for

∂a :=
∂

∂ya
.

2.1. AVERAGED MASS BALANCE EQUATION

Although the water density is considered to be a constant function, we keep
it in the mass balance formulation for emphasizing the physical meaning of
the equations. Define the averaged water flux by

ρva(x, t) :=
1

vol(P f )

∫
Dfδ

h̃(ξ1,ξ2,t)∫
0

ρ̃ ṽa∆dy3βdξ1dξ2. (12)

The mass balance equation results from (7) by taking ψ̃ = 1, Φ̃ψ = 0 and

ϕ̃ψ = 0. Since the plants are treated as solid bodies and the water does
not penetrate the plant bodies, the water flux through the boundary of the
elementary volume P f reduces to∫
∂P f

ρ̃(ṽ · n− un)dσ =

∫
Σff

ρ̃ ṽ · ndσ +

∫
Σfa

ρ̃(ṽ · n− un)dσ +

∫
Σfs

ρ̃ ṽ · ndσ.

The second integral in the r.h.s. of the above relation represents the water
flux due to the rain which leads to the water mass gain inside P f . The third
term corresponds to the water flux due to the infiltration which contributes to
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the water loss inside P f . Using Lemma 1 and the definition of the averaged
quantities, one can write the mass balance:

∂

∂t
(ωfh) + ∂a (ωfhv

a) = ωr − ωf i, (13)

with ∫
Σfa

ρ̃(ṽ · n− un)dσ = −ρωr and

∫
Σfs

ρ̃ ṽ · ndσ = ρωf i (14)

representing the rain and the infiltration rates, respectively. Here, as in (9),
ω is defined as

ω :=

∫
Dδ

β(ξ1, ξ2)dξ1dξ2.

2.2. AVERAGED MOMENTUM BALANCE
EQUATIONS

The momentum balance equation results from (7) with ψ̃ = ṽ, Φ̃ψ = T̃ ,

where T̃ is the stress tensor and ϕ̃ψ = f̃ , with f̃ denoting the body forces.
Here, we only consider the gravitational force.

In contrast to the planar case, there are some difficulties in writing component-
wise the space averaging balance momentum equations. These difficulties ap-
pear due to the point dependence of the local basis. In the euclidean basis of
X, the momentum of the elementary volume P f is given by

Hi(P f ) =

∫
P f

ρ̃ ṽidV.

Using the components of ṽ in the basis of Y coordinates, we obtain

Hi(P f ) =

∫
Σfs

h̃∫
0

ρ̃ ζia ṽ
a∆dy3dσ +

∫
Σfs

h̃∫
0

ρ̃ νi ṽ3∆dy3dσ, (15)

which can be rewritten as

Hi(P f ) = ς ia

∫
Σfs

h̃∫
0

ρ̃ ṽa∆dy3dσ + νi
∫

Σfs

h̃∫
0

ρ̃ ṽ3∆dy3dσ + Ei1(ṽ, P
f ). (16)

Here and in what follows, we make the following convention: ςa = ςa(y),
where y = (y1, y2) is the point defining the domain Dδ(y) from (6). When it
appears inside the integral, the unit normal ν is a variable quantity depending



Fluid Flow on Vegetated Hillslope: A Mathematical Model 79

on the current point from the domain Dδ, but when it appears outside the
integral, it is the unit normal defined by the same y as ςa.

The term

Ei1(ṽ, P
f ) :=

∫
Σfs

h̃∫
0

ρ̃(ζia − ς ia)ṽ
a∆dy3dσ

represents an error introduced by neglecting the variation of the basis ζI along
the domain P f .

By averaging, from (16) one has

H(P f ) = ρhωfv
aςa + ρhωfv

3ν + E1(ṽ, P
f ). (17)

If one neglects the momentum transfer on the fluid-air and fluid-soil in-
terfaces, then the flux of the momentum through the boundary ∂P f can be
reduced to

F(ρ̃ ṽ, ∂P f ) :=

∫
∂P f

ρ̃ ṽ(ṽ · n− un)dσ =

∫
Σff

ρ̃ ṽ(ṽ · n)dσ.

Using Lemma 1, one has

F(ρ̃ ṽ, ∂P f ) = ∂a

∫
Df

h̃(ξ1,ξ2,t)∫
0

ρ̃ ṽ ṽa∆dy3β(ξ1, ξ2)dξ1dξ2,

and then,

F(ρ̃ ṽ, ∂P f ) =

∂a(ρωfhv
bvaςb) + ∂a(ρωfhw

baςb) + ∂a(ρωfhv
3vaν)+

E2(ṽ
2, P f ),

(18)

where the fluctuation

ρwab :=
1

ωfh

∫
Σf

∫ h̃(ξ1,ξ2,t)

0
ρ̃(ṽb − vb)ṽay3β(ξ1, ξ2)dξ1dξ2.

The quantity E2(ṽ
2, P f ) (as E1(ṽ, P

f ) appearing above), represents the error
introduced by approximating the variable local basis (ζ1(ξ

1, ξ2, y3), ζ2(ξ
1, ξ2, y3),

ν(ξ1, ξ2, 0)) with the fixed local basis (ς1, ς2,ν) at (y
1, y2, 0). The quantities

E3, E4 and E5 introduced in what follows are errors of the same nature.
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Rel. (18) can be rewritten as

F(ρ̃ ṽ, ∂P f ) =

=∂a(ρωfhv
bva)ςb + ρωfhv

bva∂aςb + ∂a(ρωfhw
ba)ςb + ρωfhw

ba∂aςb+

∂a(ρωfhv
3va)ν + ρωfhv

3va∂aν + E2(ṽ
2, P f )

=∂a(ρωfhv
bva)ςb + ρωf (hv

bva + wba)(γcabςc + κabν)+

∂a(ρωfhw
ba)ςb + ∂a(ρωfhv

3va)ν − ρωfhv
3vaκbaςb + E2(ṽ

2, P f )

=∂a(ρωfh(v
bva + wba))ςb − ρωfhv

3vaκbaςb + ρωf (hv
bva + wba)γcabςc+

ρωf (hv
bva + wba)κabν + ∂a(ρωfhv

3va)ν + E2(ṽ
2, P f ),

(19)

where γcab are the Christoffel symbols.
To express the contribution of the stress forces to the momentum balance,

we decompose the stress tensor field T̃ in two components: the pressure field
p̃ and the viscous part of the stress tensor field τ̃

T̃ = −p̃I + τ̃ .

The flux of the stress vector can now be written as

F(T̃ , ∂Pf ) = F(−pI, ∂Pf ) + F(τ̃ , ∂Pf ).

An elementary calculation show that

F(−pI, ∂Pf ) = −
∫
Df

h̃(ξ1,ξ2,t)∫
0

(
∂apg

abζb + ∂3pν
)
∆dy3βdξ1dξ2 (20)

The pressure field is determined up to a constant value. If we subtract the
atmospheric pressure from the water pressure, on the interface fluid-air the
pressure must be zero. We assume the pressure field to be hydrostatically
distributed.

Let g = −gi3 be the gravitational force acting on the mass unit. In the
local frame of coordinates related to the free surface of the fluid, this force has
the representation

g = f̃aζa − f̃3ν.

Assumption 2.2 (Hydrostatic approximation). One assumes that
A3. The hydrostatic pressure field has the form

p̃(ξ1, ξ2, y3) = ρ̃ f̃3(h̃(ξ1, ξ2)− y3).

We neglect the shear forces on the fluid-air interface, i.e.

F(τ̃ ,Σfa) = 0.
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On the fluid-soil interface, the stress vector t̃ := τ̃ · n can be written as

t̃ = t̃aζa + t̃3ν.

On the soil-water interface, we can write

F(τ̃ ,Σfs) = ςa

∫
Σfs

t̃adσ + ν

∫
Σfs

t̃3dσ + E3(T̃ ,Σ
fs). (21)

Introducing the shear force at the fluid-soil interface

σas =
1

ρωf

∫
Σfs

t̃adσ,

relation (21) takes the form

F(τ̃ ,Σfs) = ςaρωfσ
a
s + ν

∫
Σfs

t̃3dσ + E3(T̃ ,Σ
fs). (22)

On the fluid-plant interface

F(τ̃ ,Σfp) =

∫
Σfp

τ̃ · ndσ =
∑
l

∫
Σfpl

τ̃ · ndσ, (23)

where Σfpl is the fluid-plant surface corresponding to the plant l. Obviously,⋃
l

Σfpl = Σfp. Since the plant stems are supposed to be perpendicular to the

ground surface, (23) becomes

F(τ̃ ,Σfp) = ςa
∑
l

∫
Σfpl

t̃adσ + E4(τ̃ ,Σ
fp) (24)

and introducing the plant resistance force

σap =
1

ρω

∑
l

∫
Σfpl

t̃adσ,

relation (24) becomes

F(τ̃ ,Σfp) = ςaρωσ
a
p + E4(τ̃ ,Σ

fp). (25)
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On the fluid interface of P f , invoking again Lemma 1, the contribution of
the viscous part of the stress tensor on the interface fluid-fluid takes the form

F(τ̃ ,Σff ) = ∂a

∫
Σfs

h̃∫
0

τ̃ baζb∆dy3dσ + ∂a

∫
Σfs

h̃∫
0

τ̃3aν∆dy3dσ.

Then, we write the above quantity as,

F(τ̃ ,Σff ) = ∂a(ωfhτ
baςb) + ∂a(ωfhτ

3aν) + E5(τ̃ v, P
f ). (26)

Rel. (26) implies that

F(τ̃ ,Σff ) =

=∂a(ωfhτ
ba)ςb + ωfhτ

ba∂aςb + ∂a(ωfhτ
3a)ν + ωfhτ

3a∂aν

+E5(τ̃ v, P
f )

=∂a(ωfhτ
ba)ςb + ωfhτ

ba(γcabςc + κabν) + ∂a(ωfhτ
3a)ν

−ωfhτ3aκbaςb + E5(τ̃ v, P
f )

=∂a(ωfhτ
ba)ςb − ωfhτ

3aκbaςb + ωfhτ
baγcabςc + ωfhτ

baκabν

+∂a(ωfhτ
3a)ν + E5(τ̃ v, P

f ).

(27)

For the supply Φ̃ψ, we only consider the contribution of the gravitational
force. Proceeding by components as in (16), the second term in the r.h.s. of
(7) is finally expressed as

∫
P f

ρ̃ϕ̃ψdV =

∫
Df

h̃(ξ1,ξ2,t)∫
0

(
f̃aζa − f̃3ν

)
∆dy3βdξ1dξ2 (28)

The relations (17, 19, 20, 22, 25, 27) and some order assumptions are the
basis for averaged momentum equations.

The porosity θ of the plant cover is defined by

θ =
ωf
ω
.

Let β0 = β(y1, y2), where y = (y1, y2) is the point defining the domain
Dδ(y) from (6).

Let ϵ be a small parameter.

Assumption 2.3 (Kinematical and topographical assumptions). Suppose that
the physical processes satisfy the following properties:
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A4. The water depth. h̃ = O(ϵ).
A5. The velocity. v3 = O(ϵ).
A6. Geometric assumptions:
A6.1. Curvature. The terrain surface curvatures and the curvature of the
coordinate curves are of order of ϵ. This means that locally the surface is
almost planar.
A6.2. Metric tensor. β = β0 +O(ϵ).
A7. The averaged dimension δ. dp << δ << L and δKM = O(ϵ).

In what follows, by abuse of notations, we denote β0 by β.
The shallow water type approximation of the averaged momentum balance

for an incompressible fluid results by an asymptotic analysis.

Theorem 2.1 (Averaged momentum equations). Under assumptions A1–A7,
the first order approximation for the momentum equations is given by

∂t(hβθv
a) + ∂bF

ab(h,v) + hβθβab∂aw = Ga(h,v), a = 1, 2, (29)

where

w = g(b3 + hν3), (g − the gravitational acceleration)

Fab(h,v) = hβθ

(
vavb + wab − 1

ρ
τab
)
,

Ga(h,v) = βθσap + βθσas − γabcη
bc

and

ηac = hβθ

(
vavb + wab − 1

ρ
τab
)
.

Sketch of proof. Using Assumption 2.3 and relations (17, 19, 22, 25, 27) one
can prove that the terms E1, . . . ,E5 are of order ϵ2. For ϵ << 1 these terms
as well as the terms containing the factors v3h, hκ or h2 (which are of same
order ϵ2) can be neglected.

The equations (29) must be supplemented by empirical laws concerning
the averaged stress tensor τ , the averaged vegetation force resistance σp, the
averaged shear fluid-soil force σs and the averaged fluctuation wab. These
empirical laws are expressed by functions depending on the averaged velocity
v, the averaged water depth h and a set of parameters λ defined by the
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characteristics of the plant cover.

τab = Tab(∇v, h,λ),

σbp = Sb
p(v, h,λ),

σbs = Sb
s(v, h,λ),

wab = Wab(v, h,λ).

(30)

3. SHALOW WATER EQUATIONS WITH
VEGETATION ( SWE-VEG) MODELS

The averaged models of water flow on a vegetated hillslope consists of mass
balance equation (13), momentum balance equations (29) and a set of empir-
ical relations (30). The empirical relations are generaly obtained by experi-
ments or in situ mesurements of hydrodinamic variables.

The models we will present here quantify the interactions water-plant, σbp
and water-soil, σbp. One assumes that the viscosity of fluid and the fluctuation
of the velocity field have a small effect as compared with the bed friction and
plant resistance. We set

τ = 0, w = 0

The averaged vegetation force resistance

The most used empirical relations that relate the vegetation resistance and
fluid velocity have the form [8, 1]

σap = −1

2
Cdmhd|v|va, (31)

where m is the number of stems on the surface ω and d is the averaged diam-
eters of the stems.

The bed shear stress

One uses the experimental relations of Manning or Ch´ezy, or the Darcy–Weisbach
formula:

σab = − g

C2
b

|v|va, (32)

|v| being the magnitude of the averaged velocity i.e.

|v|2 = βabv
avb.

Generally, Cb depends on h, see [11], [13]
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Therefore the base model is given by

∂

∂t
(hβθ) + ∂a (hβθv

a) =β(mr − θmi),

∂

∂t
hθβvc +

∂

∂ya
θβ hvcva + hθβγcabv

avb + hβθβca∂aw =− βK(h, θ)|v|vc.
(33)

The parameter function K(h, θ) is given by

K(h, θ) =
1

2
Cdm(y)hd+

gθ

C2
b

here m stands for the density number of the stems on surface area. In our
model, the porosity θ and the density number m are related by

θ = 1−m
πd2

4
.

such that one can write

K(h, θ) = αph(1− θ) + αsθ,

where the new parameters are given by

αp =
2Cd
πd

, αs =
g

C2
b

.

Note that the system equations modeling the water flow on an unvegetated
hill can be obtained from the model (33) by simply considering the porosity
θ = 1.

The full PDE model for the water flow on vegetated hill is given by (33).
The system is hyperbolic with source terms and there is an energy function
that is a conserved quantity in the absence of plants and water-soil friction.
Also, the model preserves the steady state of the lake.

Proposition 2. The model (33) is of hyperbolic type with source terms.
(a) The conservative form of the system is given by

∂tH
i(y, t,u) + ∂aF

ia(y, t,u) = Pi(y, t,u), (34)

where

u =

 h
v1

v2

 , H(y, t,u) =

 βθh
βθhv1

βθhv2

 ,

F(y, t,u) =

 βθhv1 βθhv2

βθ(hv1v1 + gν3β11h2/2) βθ(hv1v2 + gν3β12h2/2)
βθ(hv2v1 + gν3β21h2/2) βθ(hv2v2 + gν3β22h2/2)

 ,
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and

P(y, t,u) =
β(mr − θ(y)mi)

−βθhγ1abvavb − gh

[
βθβ1a

(
∂ax

3 +
h

2
∂aν

3

)
− h

2
ν3∂aβθβ

1a

]
− βK|v|v1

−βθhγ1abvavb − gh

[
βθβ2a

(
∂ax

3 +
h

2
∂aν

3

)
− h

2
ν3∂aβθβ

2a

]
− βK|v|v2

 .

(b) For any unitary vector n ∈ R3, the eigenvalue problem [17](
∂

∂ui
Fjana − λ

∂

∂ui
Hj

)
ri = 0 (35)

has three solutions:

λ− = vana −
√
gν3h, λ0 = vana, λ+ = vana +

√
gν3h. (36)

Proof. In order to prove the existence of the solution for (35), it is sufficient
to show that

∂

∂ui
Fjana − λ

∂

∂ui
Hj = βθ

 δ hn1 hn2
v1δ + gν3hβ1ana hδ + hv1n1 hv1n2
v2δ + gν3hβ2ana hv2n1 hδ + hv2n2

 ,

where δ = vana − λ. The solutions (36) results then from straightforward
calculations.

Proposition 3. The following properties hold for system (33):
(a) it preserves the steady state of a lake

x3 + hν3 = constant;

(b) there is a conservative equation for the energy

∂

∂t
hβθE+

∂

∂ya
hβθva

(
E+ g

h

2
ν3
)

= β

((
M(−1

2
|v|2 + w

)
−K|v|3

)
, (37)

where

E :=
1

2
|v|2 + g(x3 +

h

2
ν3), M = mr − θmi

(c) Bernoulli’s law. At a steady state, in the absence of mass source and
friction force, the total energy

Et =
1

2
|v|2 + gx3 + p(y, h)

is constant along a current line

va∂aE
t = 0. (38)
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3.1. FLOW ON ALMOST LOCAL FLAT SURFACE

The model equations (33) is a too complicate mathematical for many prac-
tical applications. It is a good base model to generate simplified models of
certain realistics problem. A simplified version of the full model correspond
to a given soil surface topograhy and a given structure of the plant cover. In
the sequell we introduce a simplified variant of the full model that yet allows
variation in the soil topography and plant porosity.

Let the soil surface be given by

x1 = y1, x2 = y2, x3 = z(y1, y2),y ∈ D ⊂ R2 (39)

We denote the euclidian norm of gradient of surface by

|∇z|2 = (∂1z)
2 + (∂2z)

2

The geometrical characteristics of the surface can be written as(see the
Anexa):

βab = δab + ∂az∂bz, β =
√
1 + |∇z|2

νa =
−∂az
β

, ν3 =
1

β

γcab =
∂cz∂

2
abz

β2
, κab =

βbc∂2cbz

β

(40)

An almost local flat surface is one characterized by:

∂2abz ≈ 0, a, b = 1, 2.

For such surface one assumes that:

β = constant, γabc = 0, κab = 0, a, b, c = 1, 2

One these ground the equations (33) can be approximate as:

∂

∂t
θh+ ∂a (θhv

a) = M,

∂

∂t
θhva + ∂bθhvav

b + θh∂aw = −K(h, θ)|v|va.
(41)

where
K(h, θ) = αph(1− θ) + θαs,M = mr −miθ, (42)

Note that the water depth is measured along the normal direction to the base
flow surface in the case of slity inclined surface the vertical components of the
unitary normal to the surface can approximat by, ν3 = 1 so that the potential
of free water surface is given by

w = g(z(y1, y2) + h). (43)
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The model (41, 43 ) is most used model in the practical applications. It
preserve the main properties of the full model.

Proposition 4. The reduce model (39) equations of the water flow on vege-
tated hill is of the hyperbolic type with source terms.
(a) The conservative form of it is given by

∂

∂t
θh+ ∂a (θhv

a) = M,

∂

∂t
θhva + ∂b

(
θhvav

b + δbaθg
h2

2

)
= −hg∂az − g h

2

2 ∂aθ −K(h, θ)|v|va.

(44)
(b) For any unitary vectors n ∈ R2 the eginvalues are given by

λ− = vana −
√
gh, λ0 = vana, λ+ = vana +

√
gh. (45)

Proposition 5. The system (39) has the properties:
(a) it preserve the steady state of a lake

x3 + h = constant,

(b) there exists a conservative form equation of the energy disipation

∂

∂t
θhE+

∂

∂ya
θhva

(
E+ ggravit

h

2

)
=

((
M(−1

2
|v|2 + w

)
−K|v|3

)
, (46)

where

E :=
1

2
|v|2 + g(x3 +

h

2
)

(c) Bernoulli law. In a steady state in the absence of the mass source and
without friction force the total energy, i.e

Et =
1

2
|v|2 + gx3 + p(y, h)

is constant along of a current line

va∂aE
t = 0. (47)

The presence of the plants and the exitence of the frictional ineraction
between water and soil induce and energetic lost. To put in evidence such
phenomenon let us consider a domain Ω whos and let n be the normal uni-
tary to the ∂Ω outward orientated. One assume that the ∂Ω consists in an
impermeables portion and an exit portion ∂Ω = Γ1 ∪ Γ2 n · v = 0 on Γ1 and
n · v > 0 on the Γ2, one of the two portion can be a void set.
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Proposition 6 (Energy disipation). Assume that there is no mass production.
Then the energy of Ω is a deacreasing function whith respect to time

∂t

∫
Ω

hβθEdx < 0 (48)

To prove the assertion one integrates the energy dissipation equation (46)

∂t

∫
Ω

hβθEdx+

∫
∂Ω

hβθv · nEtds = −
∫
Ω

K|v|3dx

and and one observes that the second integrals in the left hand side is a positive
quantity.

4. APPLICATIONS

We will presents three applications of the SWE-Veg model given by 41,
43. The first application deals with the Riemann problem and the next two
applications reffer to the ability of the model to accuratelly predict the real
phenomena.

Riemann problem. The Riemann Problem is a central topic in the
theory of the hyperbolic systems, [14], [15], [16], . When solvable, the solution
of it consists in a superposition of shock and rarefaction waves. This very
special solutions can be used to define a class of numerical schemes, Riemann
solver: [18], [19], [22], [24].

In the case of the SWE-Veg model a shock wave solution is defined as
a measure solution that satisfies certain requirements, [20], [23], [9]. The
Riemann solver is still composed by picewise smooth solutions, but this time
the solver include a new steady shock wave located at the point discontinuity
of the soil or porosity function [25], [26].

The Riemann problem for the shallow water equations with topography and
vegetation consists in finding a solution in the class of functions with bounded
variation for the equations 41 with the following initial conditions:

(h, u, z, θ) =

{
(hL, uL, zL, θL) x < 0,

(hR, uR, zR, θR) x > 0
(49)

In the papper [26] was proved that Riemann problem is locally solvable. In the
figures (2), (3 and (4) we illustrate the solution of the RP for different initial
data. All pictures contain the h profiles at the moment of time t = 0.7s. In
all cases illustrate here the solutions include rarefaction wave, that propagate
to the left and a shock wave that propagate to the right. If the data terrain
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(a) (b) (c)

Fig. 2. Solutions of Riemann Probelm: (uL, θL) = (uR, θR); (a) (hL, zL) =
(0.6, 1), (hR, zR) = (0.2, 1); (b) (hL, zL) = (0.6, 1), (hR, zR) = (0.2, 1.1); (c) (hL, zL) =
(0.6, 1.05), (hR, zR) = (0.2, 1).

(a) (b) (c)

Fig. 3. Solutions of Riemann Probelm: (uL, zL) = (uR, zR); (a) (hL, θL) =
(0.6, 1), (hR, θR) = (0.2, 1); (b) (hL, θL) = (0.6, 0.9), (hR, θR) = (0.2, 1); (c) (hL, θL) =
(0.6, 1), (hR, θR) = (0.2, 0.9).

present a jump then a new shock wave is generated that is located at the
discontiuity point, x = 0.

The global solvability of the Riemann problem for SWE-veg equations is an
open problem. The problem was discused in the paper [26].

Comparision of the model prediction with the experimental data.
Generally speaking, a mathematical model is a metaphor of the reality that it
refers. He cannot quantify all the state variables but only a part of them, the
variables that dominate and control the evolution or state of the system. With
necessity the model must retain the dominant forces that govern the physical
phenomenon and must ignore others that induce small effects in the state of
it.

The SWE-Veg models are intended to predict the dynamics of water flow
on the soil surface. Apparently this is not so complicated process, but really
it is difficult to mathematically model it. The water-plant and water soil
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(a) (b) (c)

Fig. 4. Solutions of Riemann Probelm: uL = uR; (a) (hL, zL, θL) =
(0.6, 1, 1), (hR, zR, θR) = (0.2, 1, 1); (b) (hL, zL, θL) = (0.6, 1., 1), (hR, zR, θR) = (0.2, 1.1, 1);
(c) (hL, zL, θL) = (0.6, 1.05, 1), (hR, zR, θR) = (0.2, 0, 1, 1).

interactions forces are hardly quantifiables and in certain circumstances new
processes can become relevant, erosion and water infiltration, for examples

In spite of this difficulties the SWE-Veg model can predict the evolution of
water dynamics variables with a satisfactory accuracy.

The model is versatil enough to cope with a large class of physical processes.
By a proper choice of the model parameters αp and αs and a proper determi-
nation of the porosity function θ and soil altitude function z it can be used to
simulate water flow for different, real or imaginary, scenarios.

We will illustrate the model ability to predict main water flow charcteristics
by comparing its prediction with some experimental data. All results furnished
by the model was obtained by using a numerical scheme exposed in [27].

We consider two experiments, one is the dam break simulation and another
one is the water flow on a vegetated slope.

Water flow on vegetated slope
Briefly, the experimental installation consists of an 18m long and 1m width

laboratory flume with a longitudinal bottom slope S = 1.05mm/m, see figure
(5). = 1.1738. Figure (6) includes the numerical and experimental data for
forth different steady configurations. The experimental data are extracted
from the graphics The experimental results was reported in [28].

Dam break flow in an L-shaped channel
We consider the CADAM test case of the dam break flow propaga- tion in an

impermeable L-shaped channel, [29], [30]. The layout of this experiment and
the initial state of the water at rest are presented in Figure (7). The water level
in reservoir is h = 0.53[m] and h = 0 in the channel. The experimental data for
bare soil are for [30]. We simulate the same problem but considering in addition
a vegetated channel with θ = 0.99, the numerical and experimental results are
given in the figures (8) . One notes the vegetation effect to dammped the
water oscilation and to slow down the speed of the propagation of the direct
wave, see the data from gauge P4.
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Fig. 5. Experimental instalation for water flow on vegetated slope
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Fig. 6. Flow over a slope with vegetation

5. FINALY REMARKS AND FURTHER
RESEARCH

The flow of water is a natural phenomenon that interests everyone. To
predict the flow main characteristcs like water depth or water velocity of water
coming from rain or generated by the floods is of the great important for
hydrogist or agriculters. To predict the flow main characteristics like water
depth or water velocity of water coming from rain or generated by the floods is
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Fig. 7. Experimental instalation for dam break flow
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Fig. 8. Dam break flow in L-shaped channel

of the great important for hydrologist, agriculturists or or officials responsable
with soil and water management. Given that there are a large variety of
geographical context where the water flow is of the interes, there are a plethora
of mathematical model used to study it . Some of them are empirical models
and some of them are physical processes based models.

Independently of their character, all includes many simplified hypothesis in
order to be solvable or to fit to a particular case.

In the paper we has try to show how one can obtain a class of shallow water
model equations by using the general continuum mechanical principles.

This mathematical dedudicting way revels what was assumed as important
and what was less important and was dropped out from the model. In this
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way a person interesed in applications can judge in advance if a simplified
version of the model is adequat for a given problem or one must consider a
more complicated model.

A comparating study presented in the section Application show thta the
simplified model (41), (43) is able to accurate predict the main characteristics
of the water flow and it can be used for many application in hydrology or
agrucukture.

It is very versatil and it can be relativelly ease programated.
The elements of differential geometry presented in the Annexa faciltate the

readers to understend the mathematical tools used in the paper.
We belive that there are two main directions to extend the area of appli-

cations of the model: to develope more accurate and more economically, in
time and computer memory, numerical schemes and to incorporate the surface
curvature effects in the model.
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6. BASICS OF DIFFERENTIAL GEOMETRY IN
EUCLIDEAN SPACE

6.1. CURVILINEAR COORDINATE

Let Ox be a Cartesian coordinate system in the reference Euclidean space
E3. Let {yI}I=1,3 be another coordinate system and let

xi = xi(y1, y2, y3), y ∈ D (50)

be the transformation rule. By coordinate line, one understands the curves
generated by the variation of a single variable yI , while the rest are kept
constants. The tangent vectors at the coordinate lines are defined by

eI = ∂Ix. (51)

The set of vectors {eI}I=1,3 give rise to a new base of tensor fields. For the
vectors and tensors of rank 2, one writes

v = vIeI , t = tIJeIeJ .
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In the new coordinate system, the components of the metric tensor g are given
by

gIJ = δije
i
Ie
j
J (52)

and
gIJ = δijhIi h

J
j , (53)

where
hIj = ∂jy

I . (54)

One has
ejIh

I
i = δji , ejIh

J
j = δJI (55)

and then
gIKgKJ = δIJ .

The volume element is
J = εijke

i
1e
j
2e
k
3, (56)

with εijk representing the Levi-Civita symbol. From (56) and (52), one obtains

det g = J2, (57)

where g is the matrix with the elements gIJ .
The variation of the basis {eI}I with respect to the y coordinate is stored

inside Christoffel’s symbols Γ

∂IeJ = ΓLIJeL. (58)

Alternatively, one can calculate the Γ coefficients by

ΓLIJ = hLi ∂Je
i
I ,

ΓLIJ = −eiIe
j
J∂ih

L
j ,

ΓLIJ =
1

2
gLK (∂IgKJ + ∂JgKI − ∂KgIJ) .

(59)

The first relation here results from the definition (58) and (55), the second
relation results from the first one, and the last relation results from (58) and
(52). Define now the covariant derivative of a vector by

vI;L = ∂Lv
I + vKΓILK (60)

and the covariant derivative of tensor by

tIJ;L = ∂Lt
IJ + tKJΓILK ++tIKΓJLK . (61)

An elementary way to introduce the covariant derivative is to estimate the
difference of vector fields between two neighbor points

v(y +△y)− v(y) =vI(y +△y)eI(y)(y +△y)− vIeI(y)

=
(
∂Lv

I(y) + vK(y)ΓILK(y)
)
eI(y)△yL +O(△y2).
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6.2. BASIC NOTIONS OF DIFFERENTIAL
GEOMETRY ON A SURFACE IN E3

For completeness, we present here the essential facts about the differential
geometry of the surface in the euclidean space E3; as a reference, one can
consult the classical books [4]. Let Ox be a Cartesian coordinate system in
the reference Euclidean space E3. Let S be a surface in E3 and let

xi = bi(y1, y2), (y1, y2) ∈ D ∈ R2 (62)

be a parameterization of S. One defines the tangent vectors to the surface by

τ ia =
∂bi

∂ya
(63)

and the oriented normal direction to the surface by

Ni = εj k iτ
j
1τ
k
2. (64)

The unitary normal ν to the surface is given by

νi =
Ni

||N||
. (65)

Metric tensor β of the surface. The covariant components of β are given
by

βab = δijτ
i
aτ
j
b (66)

and the contravariant components βab of it are defined by the relations

δab = βacβcb = βbcβ
ca. (67)

The area element of the surface is defined by

dσ(y) = β(y)dy1dy2, (68)

where

β =
√
εabβa1βb2, (69)

with εab being the Levi-Civita symbol.
Note that

||N|| = β.

The curvature tensor κ. The curvature tensor κ and the affine connection
γ can be defined by the Gauss-Wiengarten equations

∂τ a
∂yb

= γca bτ c + κa bν, (Gauss)

∂ν

∂ya
= −κbaτ b. (Wiengarten)

(70)
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6.3. SURFACE BASED CURVILINEAR
COORDINATE SYSTEM

A surface S based coordinate system in the space E3 is introduced as follows.
Given a parameterization (62) of the surface, one defines the applications

xi = bi(y1, y2) + y3νi, (y1, y2) ∈ D̃ ⊂ R2, y3 ∈ Ĩ ∈ R, (71)

where Ĩ is an open neighborhood of zero. Assume that (71) defines a coordi-

nate transformation from D̃ × Ĩ to a space neighborhood Ω of the surface S.
The surface S in the new coordinate system is given by y3 = 0. Furthermore,
we have:

• the tangent vectors to the coordinate lines

eI =
∂x

∂yI
=⇒

{
ea = qbaτ b, qba := δba − y3κba, a = 1, 2
e3 = ν

; (72)

• the coefficients of the metric tensor

gIJ = δije
i
Ie
j
J =⇒

{
gab = qcaq

d
bβcd, ga3 = 0,

g3a = 0, g33 = 1,
(73)

with √
detg = β∆, ∆ := 1− 2y3KM + (y3)2KG, (74)

where KM = 1/2κaa and KG = ϵa,bκ
a
1κ

b
2 are the mean curvature and the Gauss

curvature of the surface, respectively; • the affine connection

∂eI
∂yJ

= ΓLIJeL =⇒

{
Γcab =

(
γdab − y3

(
∂aκ

d
b + κfb γ

d
af

))
Qcd, Γca3 = −κeaQce,

Γ3
ab = (δca − y3κca)κcb, Γ3

a3 = 0,
(75)

where Q is defined by

τ a = Qbaeb =⇒


Q1

1 =
1− y3κ22
∆(y)

, Q2
1 =

y3κ21
∆(y)

,

Q1
2 =

y3κ12
∆(y)

, Q2
2 =

1− y3κ11
∆(y)

.

(76)

Obs. For any y3 ∈ I, the tangent vectors ea, a = 1, 2 belong to the tangent
plane at the surface y3 = const and they are orthogonal to the normal e3 = ν.
In the new coordinate system, the volume element is ϑ(y)dy1dy2dy3, where

ϑ(y) = ϵi j ke
i
1e
j
2e
k
3 =

√
detg =

(
1− 2y3KM + (y3)2KG

)
β. (77)
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6.4. INTEGRALS OF VECTORS AND SECOND
ORDER TENSORS

Let V be a domain in E3 defined by

x = b(y1, y2) + y3ν, (y1, y2) ∈ D, u(y1, y2) < y3 < w(y1, y2)

where D is a open closed domain with boundary ∂D, u(y1, y2) and w(y1, y2)
are two functions that define some surfaces in E3. We are interested in calcu-
lating the flux of vectors or tensors through the boundary of V , to evaluate
integral of vectors in V or to calculate integrals of vectors on surfaces. In E3,
such integrals define global quantities of the same type with the integrands:
scalars define scalars, vectors define vectors and second order tensors define
second order tensors. If one uses curvilinear coordinates, such invariant prop-
erties are lost for vectors and tensors.

Let S and V be a surface and a domain in E3, respectively. Define the flux
of f and Φ through a surface by

Ff (S) :=

∫
S

f i nidσ,

FiΦ(S) :=

∫
S

Φij njdσ,

where n stands for outward oriented unitary normal to the surface.
Define by components the integral of a vector field f on V

I
j
f (V ) :=

∫
V

f jdx

and the integral on the surface S

I
j
f (S) :=

∫
S

f jdσ.

Let Sr be the surface defined by some function r(y1, y2)

x = b(y1, y2) + r(y1, y2)ν, (y1, y2) ∈ D.

One denotes the “vertical” boundary of V by

Σ = {x ∈ E3|x = b(y1(s), y2(s)) + y3ν(y1(s), y2(s)),

s ∈ (0, L), u(y1(s), y2(s)) < y3 < w(y1(s), y2(s))
} (78)

where
(
y1(s), y2(s)

)
, s ∈ (0, L) is a parameterization of ∂D.
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Let f and Φ be a vector field and a second order tensor field in E3, respec-
tively. Using the law of transformation of the coordinate system of a tensor
field under coordinate transformation, one can write

f i = f IeiI , Φij = eiIe
j
JΦ

IJ .

Next lemma refers to various integrals.

Lemma 7. Let f and Φ be some smooth fields on a domain Ω ⊂ E3. Let Sr,
V and Σ be a surface, domain and portion of ∂V , respectively, as previously
defined. Then:

Iif (V ) =

∫∫
D

τ ia w∫
u

qab f
bϑdy3 + νi

w∫
u

f3ϑdy3

 dy1dy2,

Ff (Sr) =

∫∫
D

ϑ(y)

(
f3 − fa

∂r

∂ya

)∣∣∣∣
y3=r

dy1dy2,

Ff (Σ) =

∫∫
D

∂r

∂ya

w∫
u

ϑfady3dy1dy2,

FiΦ(Sr) =

∫∫
D

[(
τ ic q

c
b

(
Φb3 − ∂r

∂ya
Φba
)

+ νi
(
Φ33 − ∂r

∂ya
Φ3a

))
ϑ(y)

]∣∣∣∣
y3=r

dy1dy2,

FiΦ(Σ) =

∫∫
D

τ ic

 ∂

∂ya

w∫
u

qcbϑ(y)Φ
bady3

+ γcae

w∫
u

qebϑ(y)Φ
bady3 − κca

w∫
u

ϑ(y)Φ3ady3

dy1dy2

+

∫∫
D

νi

κca w∫
u

qcbϑ(y)Φ
bady3

+
∂

∂ya

w∫
u

ϑ(y)Φ3ady3

dy1dy2.

(79)
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Proof. Let (y1(s), y2(s)), s ∈ (0, L) be a parameterization of the boundary
∂D. On Σ, the tangent directions are given by

ts = eaw
a,

e3 = ν,

where wa =
dya

ds
and the outward normal direction is given by

Ni := ϵjkie
j
3t
k
s = ϵjkiν

jekaw
a.

Thus, one can evaluate the flux as

Ff (Σ) :=

∫
Σ
f inidσ =

L∫
0

w̃(s)∫
ũ(s)

f iNidy
3ds,

with w̃(s) = w(y1(s), y2(s)), ũ(s) = u(y1(s), y2(s)). Then, one writes f in the
local basis {e1, e2, e3} and obtains

f iNi = (f beib + f3νi)Ni = ϵjkiν
jekae

i
bw

af b = ϑ(y)ϵabw
af b

and

Ff (Σ) =

L∫
0

w̃(s)∫
ũ(s)

ϑ(y)ϵabw
af bdy3ds =

L∫
0

ϵabw
a

w̃(s)∫
ũ(s)

ϑ(y)f bdy3ds.

Observe that ϵabw
a = ϵab

∂ya

∂s
is the normal direction to the boundary ∂D

and use the flux-divergence theorem and to obtain

Ff (Σ) =

∫∫
D

∂

∂ya

w(y1,y2)∫
u(y1,y2)

ϑ(y)fady3dy1dy2. (80)

On Sr, one has the tangent vectors

ζa =
∂x

∂ya
= ea +

∂r

∂ya
ν (81)

and normal direction

Ni = ϵjki

(
ej1 +

∂r

∂y1
νj
)(

ek2 +
∂r

∂y2
νk
)
. (82)
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Then, we obtain

f iNi = ϑ(y)

(
f3 − ∂r

∂ya
fa
)
.

Consequently,

Ff (Sr) =

∫∫
D

ϑ(y)

(
f3 − ∂r

∂ya
fa
)∣∣∣∣

y3=r

dy1dy2. (83)

Consider now a second order tensor Φ. The coordinate transformation (71)
implies that the contravariant components of the tensor in the two coordinate
system are related by

Φij = eiIe
j
JΦ

IJ .

The main difficulty in this case is that the vectors of the basis depend on the
variables (y1, y2, y3) and there is no sense to find the components of the global
vector quantity FΦ in the new system of coordinates. We proceed to find the
Cartesian components of FΦ, but calculated as functions of the contravariant
components ΦIJ .

On the surface Σ, one has

ΦijNj = eiIe
j
JΦ

IJNj = ϑ(y)ϵabw
aeiIΦ

Ib

and the flux is given by

FiΦ(Σ) =

∫∫
D

∂

∂ya

w∫
u

ϑ(y)eiIΦ
Iady3dy1dy2.

Using the relations (72) we get

FiΦ(Σ) =

∫∫
D

∂

∂ya

τ ic w∫
u

qcbϑ(y)Φ
bady3 + νi

w∫
u

ϑ(y)Φ3ady3

 dy1dy2.

Applying Weigartern formula, we can write

FiΦ(Σ) =

∫∫
D

τ ic ∂

∂ya

w∫
u

qcbϑ(y)Φ
bady3 + νi

∂

∂ya

w∫
u

ϑ(y)Φ3ady3

dy1dy2

+

∫∫
D

τ ic

γcae w∫
u

qebϑ(y)Φ
bady3 − κca

w∫
u

ϑ(y)Φ3ady3

 dy1dy2

+

∫∫
D

νiκea

w∫
u

qebϑ(y)Φ
bady3dy1dy2.
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Regrouping the terms, we obtain the result for FiΦ(Σ).

Lemma 8. Consider that the stress tensor of the fluid has the following form

tij = −pδij + τ ij

and set

Fistress(Sr) =

∫∫
Sr

tijnjdσ.

Then

Fistress(Sr) =

∫∫
D

[
τ idq

d
a

(
(p− τ̃33)gab

∂r

∂yb

+ τ̃a3

√
1 + gbc

∂r

∂yb
∂r

∂yc

)
ϑ(y)

]∣∣∣∣∣
y3=r(y1,y2)

dy1dy2

+

∫∫
D

[
νi
(
−p+ τ̃33 +

∂r

∂ya
τ̃a3

·

√
1 + gbc

∂r

∂yb
∂r

∂yc

)
ϑ(y)

]∣∣∣∣∣
y3=r(y1,y2)

dy1dy2.

(84)

In this lemma, τ̃ IJ denotes the contravariant components of the viscous
stress tensor in the frame given by the tangent vectors to the surface y3 =
r(y1, y2) and the unit normal to the tangent plan (which points to the same
direction as the unit normal ν to the support surface).
Proof. Let r(y1, y2) be a parameterization of the surface Sr and let ζ1, ζ2
and n be the tangent vectors and the unit normal given by (81) and (82),
respectively. One can write

tijnj = −pni + τ ijnj = −pni + τ̃a3ζia + τ̃33ni. (85)

Using the basis {eI}, the unit normal has the form

n = naea + n3ν, na = −gab ∂r
∂yb

ϑ(y)

||N ||
, n3 =

ϑ(y)

||N ||
,

||N || = ϑ(y)

√
1 + gab

∂r

∂ya
∂r

∂yb
, y3 = r(y1, y2)

and the tangent vectors are expressed by

ζa = ea +
∂r

∂ya
nu.
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Since the area element is given by

dσ = ||N ||dy1dy2,

then, we immediately obtain the conclusion of this lemma.
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1. INTRODUCTION

Let further U = {z ∈ C, |z| < 1}, be the unit disk on a complex plane C, T
be the unit circle on C, let dm2 be the normalized Lebegues measure on C,
let futher Un be the unit polydisk on C× ...× C.

And finnaly let Hp be the classical analytic Hardy class in the unit disk
for all positive values of p, let dm(ξ) be the normalized Lebegues measure
on T. The goal of this short paper is to extend certain classical estimates
of complex function theory, in the unit disk to several variables extending
certain known one dimensional results to several variables using the so-called
expanded Bergman projection which was recently studied in papers of the
author.

The expanded Bergman projection for any analytic function in the unit disk
we define as follows (see [5])

(Tn,αf) (w) = C(n, α)

∫
U

f (z) (1− |z|)α
n∏
k=1

(1− ⟨z̄, wk⟩)
α+2
n

dm2 (z) , α > −1,

where w = (w1, . . . , wn) ∈ Un, C(n, α) is a Bergman constant from Bergman
representation formula, is playing a crucial role during the study of diagonal
map (see [2], [3], [5], [7] and references there).

We will now provide new estimates for this operator using, in particular,
Stein type maximal functions from [6]. We at the same time extend previously
known estimates.
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In this paper we as usual denote by Dα for any positive α the fractional
derivative of analytic f function in the unit disk,

Dαf(z) =

∞∑
k=0

(k + 1)αakz
k,

for any analytic function f, f(z) =
∞∑
k=0

akz
k (see [5]).

2. MAIN RESULT

The following theorem is the main result of this note.

Theorem 2.1. (a) Let Γγ(ξ) =
{
z ∈ U :

∣∣1− ξ̄z
∣∣ < γ(1− |z|)

}
, γ > 1, ξ ∈ T.

Let β ∈ (0, 12), α > β, n = 2. Then∫
T

(
sup

z1∈Γγ(ξ)
sup

z2∈Γγ(ξ)

∣∣Dα
z2Tn,0(f)(z1, z2)

∣∣ (1− |z1|)α−β(1− |z2|)βdm(ξ)

)2

⩽ C ∥f∥2H2(U) .

(b) Let p > 2, 1p +
1
q = 1, t ∈ (−2,−1), α > max(t+ 2

q , 0), n = 2. Then

sup
z1,z2∈U

|Tn,αf(z1, z2)| (1− |z1|)t+2(1− |z2|)
α−t
2

− 1
q

≤ C

(∫
T

sup
z∈Γγ(ξ)

|f(z)| (1− |z|)
α
2

)p
dm(ξ).

Proof. Let T2,0(f) = Φ(z1, z2). Then using Hölder’s inequality we obtain

|Φ(z1, z2)| ≤ C

∫
U

|f(w)|
|1− ⟨w̄, z1⟩| |1− ⟨w̄, z2⟩|

dm2(w)

≤ C

(∫
U

|f(w)|2 (1− |w|)2β

|1− ⟨w̄, z1⟩|2
dm2(w)

) 1
2 (∫

U

(1− |w|)−2β

|1− ⟨w̄, z2⟩|2
dm2(w)

) 1
2

.

Hence since β ∈ (0, 12) and α > β,

∣∣Dα
z2Φ(z1, z2)

∣∣ ≤ C

(∫
U

|f(w)|2 (1− |w|)−2β

|1− ⟨w̄, z1⟩|2
dm2(w)

) 1
2 (∫

U

(1− |w|)2β

|1− ⟨w̄, z2⟩|2+2αdm2(w)

) 1
2

,

and we have

sup
z1,z2∈Γγ(ξ)

∣∣Dα
z2Φ(z1, z2)

∣∣ (1− |z2|α−β)(1− |z1|β)

≤ C sup
z1∈Γγ(ξ)

(∫
U

|f(w)|2 (1− |w|)−2β

|1− ⟨w̄, z1⟩|2
dm2(w)(1− |z1|)2β

) 1
2

= G1(f), (see[4]).
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Note that

(
∣∣1− 〈|λ| ξ̄, z〉∣∣) ≍ (

∣∣1− 〈λ̄, z〉∣∣), z ∈ U, λ ∈ Γβ(ξ).

Hence

G1(f)(ξ) ≤ C sup
0<r<1

(∫
U

(1− |z|)−2β |f(z)|2 (1− r)2β∣∣1− 〈rξ̄, z〉∣∣2 dm2(z)

) 1
2

= G̃1(f, ξ, β).

Obviously for γ ∈ (1, 2− 2β), β ∈ (0, 12),

G̃1(f, ξ, β) ≤ C sup
0<r<1

(∫
T

(1− r)γ−1 |f(rξ)|2

|1− ⟨rξ, φ⟩|γ
dm(ξ)

) 1
2

.

Hence it is enough to use estimates for Stein-type maximal functions [6]∥∥∥∥∥ sup
0<r<1

(∫
T

(1− r)α−1 |f(rφ)|p

|1− ⟨rφ̄, ξ⟩|α
d(φ)

) 1
p

∥∥∥∥∥
Lp

≤ C ∥f∥Hp ,

f ∈ Hp, p > 1, β ∈ (0, 1p), α ∈ (1, 2− βp) to get what we need. So the proof
of first estimate is complete.

Let us prove the second estimate. First, we have the following chain of
known estimates (see for example [4]).

(1)

∫
U
dµ(z) ≤ C

∫
T

∫
Γt(ξ)

dµ(z)

1− |z|
dm(ξ),

(2)

∫
T
|MH−Lf(ξ)|p dξ ≤ C

∫
T
|f(ξ)|p dξ, p > 1,

where MH−L is a classical maximal Hardy-Littlewood operator.

(3)

∫
U
|f(z)|p̃ dm2(z) ≤ C

∫
T

(
sup

z∈Γγ(ξ)
|f(z)|

)p̃
C(µ)(ξ)dξ,

where µ is a positive Borel measure, 0 < p̃ <∞, f is measurable in U and as
usual C(µ)(ξ) = sup

ξ∈I

1
|I|
∫
△I dµ(ξ),△I = {z = rξ, ξ ∈ I, 1− |z| < r < 1} , I ⊂ T.

Using (1) we have

|Φ(z1, z2)| ≤ C(α)

∫
U

|f(w)| (1− |w|α)
(1− ⟨z1, w̄⟩)

α+2
2 (1− ⟨z2, w̄⟩)

α+2
2

dm2(w),
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where z1, z2 ∈ U and C(α) is a Bergman projection constant. Further using
(1) and applying twice Hölder’s inequality we get

|Φ(z1, z2)| ≤ C

∫
T

(∫
Γα(ξ)

|f(w)|2 (1− |w|)2α−tdm2(w)

(1− |w|)2 |1− ⟨z1, w̄⟩|α+2

) p
2

dξ

 1
p

×

×

∫
T

(∫
Γα(ξ)

(1− |w|)tdm2(w)

|1− ⟨z2, w̄⟩|α+2

) q
2

dm(ξ)

 1
q

≤ B(f)(1− |z2|)
−
(
α−t
2

− 1
q

)
,

p > 2, α > t+ 2
q , t ∈ (−2,−1), α > t

2 ,
1
p +

1
q = 1.

Using Fubini’s theorem, duality argument

B(f) = sup
∥φ∥

L(
p
2 )

′

∫
T

∫
Γα(ξ)

|f(w)|2 (1− |w|)2α−tdm2(w)

(1− |w|)2 |1− ⟨z1, w̄⟩|α+2 |ψ(ξ)| dm(ξ)

= sup
∥φ∥

L(
p
2 )

′

∫
U

|f(w)|2 (1− |w|)2α−t

|1− ⟨z1, w̄⟩|α+2

∫
T
|ψ(ξ)|χΓα(ξ)(z)dξ

dm2(w)

(1− |w|)2
.

Hence using (3) and the estimate

sup
z∈Γη

1

1− |z|

∫
T
|ψ(ξ)|χΓτ (ξ)(z)dm(ξ) ≤ CMH−L(φ)(ξ), (see[4]),

we have (f̃ = f(1− |w|)
α
2 )

B(f) ≤ sup
φ

∫
T
(A∞(f̃)(ξ))2MH−L(φ)(ξ)C

(
(1− |w|)α−t−1

|1− ⟨z, w⟩|α+2

)
(ξ)dξ

≤ sup
φ

∫
T
(A∞(f̃)(ξ))2MH−L(φ)(ξ)dξ sup

w̃∈U

∫
U

(1− |w|)α−t−1(1− |w̃|)Ndm2(w)

|1− ⟨z1, w̃⟩|α+2 |1− ⟨w̃, w⟩|N+1
,

where MH−L is a maximal Hardy-Littlewood function. We used the fact that

∥C(F )∥L∞ = sup
w̃∈U

∫
U

|F (z)| dm2(z)

|1− ⟨w̃, z⟩|N
(1− |w̃|)N−1, N > 1.

From last estimate, Hölder’s inequality and (2) we fimally get

|Φ(z1, z2)| (1− |z1|)t+2(1− |z2|)
α−t
2

− 1
q ≤ C

∥∥∥f̃∥∥∥
Lp
,

t ∈ (−2,−1), p > 2. The proof of Theorem 1 is complete.
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Remark 2.1. Putting n = 1, α = 0, β = 0 in first estimate of Theorem 1 we
get the following well-known estimate for Hp classes (see [5], Chapter 1)∫

T
sup

z∈Γγ(ξ)
|Φ(z)|2 dm(ξ) ≤ C ∥Φ∥2H2(U) .

Putting n = 1, α = 0, t = −2 in the second statement of Theorem 1 we get
the well-known estimate (see [1], Theorem 2.5, [4], [5])

sup
|z|<1

|Φ(z)| (1− |z|)
1
p ≤ C

∫
T

sup
w∈Γγ(ξ)

|Φ(w)|p dm(ξ) = ∥Φ∥pHp .

We similarly show the following results for multifunctional case, some are
valid even in the unit ball.

We assume that parameters α and β in the following theorems are positive
.

Theorem 2.2. Let α+ β < 1
2 , α > β, β < 1

2 . Then we have that

∫
T

(
sup

z1∈Γγ(ξ)
sup

z2∈Γγ(ξ)

∣∣∣Dα
z2(T2,0f̃)(z1, z2)

∣∣∣ (1− |z1|)α−β(1− |z2|)β+α
)2

dξ ≤

≤ C ∥f1∥2H2(U) ∥f2∥
2

H
m−1
α

. . . ∥fm∥2
H
m−1
α

,

where f̃ =
m∏
j=1

fj ; m ≥ 2; m ∈ N.

Theorem 2.3. Let α+ β < 1
2 , α > β, β < 1

2 . Then

∫
T

(
sup

z1∈Γγ(ξ)
sup

z2∈Γγ(ξ)

∣∣∣Dα
z2(T2,0)(f̃)(z1, z2)

∣∣∣ (1− |z1|)α−β(1− |z2|)β+α
)2

dm(ξ) ≤

≤ C̃ ∥f1∥2H2(U) ∥f2∥
2
α

m−1
. . . ∥fm∥2 α

m−1
,

where ∥f∥t = (sup
z∈U

) |f(z)| (1− |z|)t; t ≥ 0; f̃ =
m∏
j=1

fj ; m ≥ 2.

We will show these results in the second part of this paper related with this
topic.
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